化合物半导体器件及其制造方法转让专利

申请号 : CN201310100377.X

文献号 : CN103367426B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吉川俊英

申请人 : 创世舫电子日本株式会社

摘要 :

本发明涉及化合物半导体器件及其制造方法。一种AlGaN/GaN·HEMT,包括:化合物半导体层叠结构;形成在化合物半导体层叠结构上的p型半导体层;以及形成在p型半导体层上的栅电极,其中,将作为p-GaN的惰性元素的Mg引入到p型半导体层中的栅电极的两侧并且Mg的引入部分被钝化。

权利要求 :

1.一种化合物半导体器件,包括:

化合物半导体层叠结构;

形成在所述化合物半导体层叠结构上方的p型半导体层;以及形成在所述p型半导体层上方的电极,

其中在所述p型半导体层中惰性元素被引入到所述电极的两侧中并且所述惰性元素的引入部分被钝化,其中所述惰性元素为氩(Ar)、铁(Fe)、磷(P)、氧(O2)或硼(B)或其任意组合;

其中在所述p型半导体层中所述惰性元素被引入到表面层部分中,并且在所述表面层部分的下方留有未引入所述惰性元素的部分。

2.根据权利要求1所述的化合物半导体器件,还包括:覆盖所述p型半导体层的所述惰性元素的所述引入部分的保护绝缘膜。

3.一种制造化合物半导体器件的方法,包括:形成化合物半导体层叠结构;

在所述化合物半导体层叠结构上方的电极形成区域处形成p型半导体层;以及通过在所述p型半导体层的所述电极形成区域的两侧处引入惰性元素来使所述p型半导体层的惰性元素的引入部分钝化,其中所述惰性元素为氩(Ar)、铁(Fe)、磷(P)、氧(O2)或硼(B)或其任意组合;

其中将所述惰性元素引入到所述p型半导体层的表面层部分中,并且在所述表面层部分的下方留有未引入所述惰性元素的部分。

4.根据权利要求3所述的制造化合物半导体器件的方法,还包括:形成覆盖在所述p型半导体层上的保护绝缘膜,其中经由所述保护绝缘膜将所述惰性元素引入到所述p型半导体层中。

5.根据权利要求3所述的制造化合物半导体器件的方法,还包括:在将所述惰性元素引入到所述p型半导体层之后,形成覆盖所述p型半导体层的所述惰性元素的所述引入部分的保护绝缘膜。

说明书 :

化合物半导体器件及其制造方法

技术领域

[0001] 本文讨论的实施方案涉及化合物半导体器件及其制造方法。

背景技术

[0002] 氮化物半导体已经被认为通过使用特性如高饱和电子速率和宽带隙而适用于高耐受电压和高功率半导体器件。例如,作为氮化物半导体的GaN的带隙为3.4eV,并且该带隙大于Si的带隙(1.1eV)和GaAs的带隙(1.4eV),并且GaN具有高击穿电场强度。因此,GaN非常有望作为用于高电压操作并且获得高功率的电源的半导体器件的材料。
[0003] 作为使用氮化物半导体的器件,关于场效应晶体管-特别是高电子迁移率晶体管(HEMT),已有大量报道。例如,在GaN基HEMT(GaN-HEMT)中,将GaN用作电子传输层并且将AlGaN用作电子供给层的AlGaN/GaN·HEMT吸引了注意。在AlGaN/GaN·HEMT中,在AlGaN处产生由GaN与AlGaN之间晶格常数的差异引起的畸变。通过由此产生的压电极化和AlGaN的自发极化来获得高浓度二维电子气(2DEG)。因此,期望将AlGaN/GaN·HEMT作为高耐受电功率器件如高效率开关元件和电动车辆。
[0004] [专利文献1]日本公开特许公报第2009-289827号
[0005] [专利文献2]日本公开特许公报第2005-243727号
[0006] 在氮化物半导体器件中,需要对2DEG的产生量进行局部控制的技术。例如,在HEMT的情况下,期望的是在电压关断的情况下电流不流过,即,从所谓故障安全的观点来看的所谓常断型操作。在电压关断以实现以上的情况下,器件有必要对在栅电极下方的2DEG的产生量进行抑制。
[0007] 作为使GaN·HEMT能够进行常断操作的方法之一,提出了在电子供给层上形成p型GaN的方法,将存在于与p型GaN层的下方对应的部分处的2DEG停止以得到常断操作。在这个方法中,在例如待成为电子供给层的AlGaN上的整个表面处生长p型GaN,对p型GaN进行干法蚀刻以在栅电极的形成部分处保留来形成p型GaN层,并且在其上形成栅电极。
[0008] 如上所述,将干法蚀刻用于p型GaN的图案化。干法蚀刻使设置在p型GaN下方的电子供给层的表面层受损,从而,薄层电阻(Rsh)和接触电阻(ρc)增大,并且导通电阻减小。在这种情况下,即使施加栅极电压,也不能获得足够的导通电流(漏极电流)。另外,存在漏极电流发生大的变化的问题。

发明内容

[0009] 对应于上述问题做出本实施方案,并且本实施方案的一个目的在于通过确保稳定且大的漏极电流而无任何变化来改进器件特性并且能够实现确定的常断来提供高可靠性化合物半导体器件及其制造方法。
[0010] 半导体器件的一个方面包括:化合物半导体层叠结构;形成在化合物半导体层叠结构上方的p型半导体层;以及形成在p型半导体层上方的电极,其中在p型半导体层中惰性元素被引入到电极的两侧中并且惰性元素的引入部分被钝化。
[0011] 制造半导体器件的方法的一个方面包括:形成化合物半导体层叠结构;在化合物半导体层叠结构上方的电极形成区域处形成p型半导体层;以及通过将惰性元素引入到p型半导体层的电极形成区域的两侧中来使p型半导体层的惰性元素的引入部分钝化。

附图说明

[0012] 图1A至图1C是按工艺次序示出根据第一实施方案的AlGaN/GaN·HEMT的制造方法的示意性截面图;
[0013] 图2A和图2B是继图1A至图1C之后按工艺次序示出根据第一实施方案的AlGaN/GaN·HEMT的制造方法的示意性截面图;
[0014] 图3A和图3B是继图2A至图2B之后按工艺次序示出根据第一实施方案的AlGaN/GaN·HEMT的制造方法的示意性截面图;
[0015] 图4是描述在AlGaN/GaN·HEMT处的栅极电压与漏极电流之间关系的特性曲线图;
[0016] 图5A和图5B是按工艺次序示出根据第一实施方案的修改实施例的AlGaN/GaN·HEMT的制造方法的示意性截面图;
[0017] 图6A和图6B是继图5A至图5B之后按工艺次序示出根据第一实施方案的修改实施例的AlGaN/GaN·HEMT的制造方法的示意性截面图;
[0018] 图7是示出使用根据第一实施方案或修改实施例的AlGaN/GaN·HEMT的HEMT芯片的示意性俯视图;
[0019] 图8是示出使用根据第一实施方案或修改实施例的AlGaN/GaN·HEMT的HEMT的分立封装件的示意性俯视图;
[0020] 图9是示出根据第二实施方案的PFC电路的接线图;
[0021] 图10是示出根据第三实施方案的电源装置的示意性构造的接线图;以及[0022] 图11是示出根据第四实施方案的高频放大器的示意性构造的接线图。

具体实施方式

[0023] 在下文中,将参照附图详细说明优选实施方案。在以下各个实施方案中,描述化合物半导体器件的构造及其制造方法。
[0024] 注意,在以下附图中,存在为了示出方便而未以相对精确的尺寸和厚度示出的部件。
[0025] (第一实施方案)
[0026] 在第一实施方案中,公开了作为化合物半导体器件的AlGaN/GaN·HEMT。
[0027] 图1A至图3B是按工艺次序示出根据第一实施方案的AlGaN/GaN·HEMT的制造方法的示意性截面图。
[0028] 首先,如图1A所示,在例如作为生长衬底的半绝缘Si衬底1上形成化合物半导体层叠结构2和p型半导体层3。蓝宝石衬底、GaAs衬底、SiC衬底、GaN衬底等可以用作生长衬底替代Si衬底。此外,衬底的导电性是半绝缘的或导电的。
[0029] 化合物半导体层叠结构2通过包括成核层2a、电子传输层2b、中间层(间隔层)2c以及电子供给层2d构成。在电子供给层2d上形成有p型半导体层3。
[0030] 详细地,通过例如金属有机气相外延(MOVPE)法在Si衬底1上外延生长以下各个化合物半导体。可以使用分子束外延(MBE)法等代替MOVPE法。
[0031] 在Si衬底1上依次生长待成为成核层2a、电子传输层2b、中间层(间隔层)2c、电子供给层2d以及p型半导体层3的各个化合物半导体。通过在Si衬底1上生长例如约0.1μm的厚度的AlN来形成成核层2a。通过生长例如约300nm的厚度的i(有意未掺杂的)-GaN来形成电子传输层2b。通过生长例如约5nm的厚度的i-AlGaN来形成中间层2c。通过生长约30nm的厚度的n-AlGaN来形成电子供给层2d。通过生长例如约30nm的厚度的p-GaN来形成半导体层3。存在其中不形成中间层2c的情况。可以通过形成i-AlGaN来形成电子供给层。
[0032] 将氨(NH3)气和作为Ga源的三甲基镓(TMGa)气体的混合气体用作生长GaN的源气体。将三甲基铝(TMAl)气体、TMGa气体以及NH3气体的混合气体用作生长AlGaN的源气体。根据待生长的化合物半导体层,适当地设定TMAl气体、TMGa气体、TMIn气体的供给的存在/不存在和其流量。将作为共用源的NH3气体的流量设定为约100sccm至10slm。此外,将生长压力设定为约50托至300托,并且将生长温度设定为约800℃至1200℃。
[0033] 在AlGaN生长为n型的情况下,也就是说,在形成电子供给层2d(n-AlGaN)的情况下,将n型杂质添加到AlGaN的源气体中。在此,例如,以预定的流量将包含有Si的硅烷(SiH4)气体添加到源气体以将Si掺杂至AlGaN中。将Si的掺杂浓度设定为约1×1018/cm3至120 3 18 3
×10 /cm,例如,约1×10 /cm。
[0034] 在GaN生长为p型的情况下,也就是说,在形成p型半导体层3(p-GaN)的情况下,将p型杂质例如从Mg、C中选择的一种添加到GaN的源气体中。在本实施方案中,Mg用作p型杂质。以预定的流量将Mg添加到源气体以将Mg掺杂至GaN中。将Mg的掺杂浓度设定为例如约1×
1016/cm3至1×1021/cm3。当掺杂浓度低于约1×1016/cm3时,GaN未完全变为p型,并且它变为常通的。当掺杂浓度高于约1×1021/cm3时,结晶性劣化,并且无法获得足够的特性。因此,Mg的掺杂浓度设定为约1×1016/cm3至1×1021/cm3,并且由此其变为能够获得足够特性的p型半导体。在本实施方案中,将p型半导体层3的Mg的掺杂浓度设定为约5×1019/cm3。
[0035] 在化合物半导体层叠结构2中,如果不形成p型半导体层3,则在电子传输层2b与电子供给层2d之间的界面处(准确地,与中间层2c的界面。在下文中,称其为GaN/AlGaN界面)产生由GaN晶格常数与AlGaN晶格常数之间的差异导致的畸变而引起的压电极化。由于电子传输层2b和电子供给层2d的自发极化效应和压电极化效应二者,因此,在GaN/AlGaN界面的整个区域处产生高电子浓度的2DEG。
[0036] 在化合物半导体层叠结构2上形成有p型半导体层3,并且由此,在GaN/AlGaN界面处的2DEG停止并且消失。在图1A中,示出了其中2DEG消失的现象。
[0037] 随后,如图1B所示,形成保护绝缘膜4。
[0038] 详细地,通过等离子体CVD法等在p型半导体层3上沉积绝缘膜例如氮化硅膜(SiN膜)从而以例如约40nm的膜厚度覆盖p型半导体层3。由此形成覆盖在p型半导体层3上的保护绝缘膜4。例如,可以沉积氧化硅膜(SiO2膜)等作为保护绝缘膜。
[0039] 随后,如图1c所示,形成元件隔离结构5。在图2A及后面的图中不示出元件隔离结构5。
[0040] 详细地,例如,将氩(Ar)注入化合物半导体层叠结构2的元件隔离区中。由此,在化合物半导体层叠结构2处形成有元件隔离结构5。通过元件隔离结构5在化合物半导体层叠结构2上限定有源区域。
[0041] 注意,例如,可以通过使用另一已知的方法如STI(浅沟槽隔离)法代替上述的注入法来进行元件隔离。此时,例如,将氯蚀刻气体用于化合物半导体层叠结构2的干法蚀刻。
[0042] 随后,如图2A所示,在保护绝缘膜4上形成抗蚀剂掩模11。
[0043] 详细地,在保护绝缘膜4的表面上涂覆抗蚀剂,通过光刻法处理抗蚀剂,并且形成在与保护绝缘膜4的栅电极的预定形成部分的两侧对应的部分处开口的抗蚀剂掩模11。将抗蚀剂掩模11的开口设定为开口11a。
[0044] 随后,如图2B所示,将惰性元素引入到p型半导体层3中。
[0045] 详细地,通过使用抗蚀剂掩模11将使p-GaN钝化的惰性元素注入p型半导体层3中。例如,氩(Ar)、铁(Fe)、磷(P)、氧(O2)或硼(B)或其任意组合,在此,将Ar用作惰性元素。例如,在加速度能量约10keV并且剂量约1×1014/cm2的条件下将Ar注入。Ar穿过保护绝缘膜4的通过开口11a露出的部分,并且通过抗蚀剂掩模11在开口部分下方处将Ar仅引入到p型半导体层3。在上述的注入条件下引入Ar,并且由此,将Ar引入到p型半导体层的表面层部分中,并且在表面层部分下方留有未引入Ar的部分。将p型半导体层3的引入Ar的表面层部分设定为Ar引入区域3a。如上所述形成有Ar引入区域3a,并且由此,在表面层部分处留有Ar,Ar未到达电子供给层2d,并且防止了由Ar的注入引起的电子供给层2d的损坏。
[0046] 通过抛光工艺、化学溶液处理等移除抗蚀剂掩模11。
[0047] 将作为使p-GaN钝化的惰性元素的Ar注入p型半导体层3中,并且由此,2DEG再次出现在GaN/AlGaN界面处的在位置上与Ar引入区域3a下方的部分相匹配的部分处。由此可以在需要的部分处确保高浓度2DEG,以仅在位置上与栅电极的预定形成部分相匹配的部分处有效地停止2DEG,并且可以实现确定的常断。
[0048] 能够使用以上列举的物质,例如,用Fe代替Ar作为惰性元素。Fe是相对重的元素,并且可以以低的加速度能量确定地仅使p型半导体层3的表面层部分钝化。
[0049] 随后,如图3A所示,形成源电极7和漏电极8。
[0050] 详细地,首先,在源电极和漏电极的预定形成部分处形成电极凹部6a、6b。
[0051] 在化合物半导体层叠结构2的表面上涂覆抗蚀剂。通过光刻法处理抗蚀剂以形成对应于源电极和漏电极的预定形成部分的露出保护绝缘膜4的表面的开口。由此在抗蚀剂处形成具有开口的抗蚀剂掩模。
[0052] 通过使用该抗蚀剂掩模,通过干法蚀刻将保护绝缘膜4及p型半导体层3的源电极和漏电极的预定形成部分移除直到使电子供给层2d的表面露出。由此形成使电子供给层2d的表面的源电极和漏电极的预定形成部分露出的电极凹部6a、6b。作为蚀刻条件,将惰性气体如Ar和氯气如Cl2用作蚀刻气体,并且例如设定为:Cl2的流量为30sccm,压力为2Pa,并且RF输入功率为20W。注意,可以通过蚀刻至比电子供给层2d的表面更深处来形成电极凹部6a、6b。
[0053] 通过抛光工艺、化学溶液处理等移除抗蚀剂掩模。
[0054] 形成抗蚀剂掩模以形成源电极和漏电极。在此,例如,使用适合于气相沉积法和剥离法的檐式结构的双层抗蚀剂。在化合物半导体层叠结构2的表面上涂覆该抗蚀剂,并且形成有使电极凹部6a、6b露出的开口。由此形成具有开口的抗蚀剂掩模。
[0055] 通过使用抗蚀剂掩模通过例如气相沉积法在包括使电极凹部6a、6b露出的开口的内侧的抗蚀剂掩模上沉积例如Ta/Al作为电极材料。Ta的厚度为约30nm,并且Al的厚度为约200nm。通过剥离法移除抗蚀剂掩模和沉积在其上的Ta/Al。之后,例如在氮气氛中、在约400℃至1000℃的温度下例如在约600℃下对Si衬底1进行热处理,并且使保留的Ta/Al与电子供给层2d欧姆接触。存在不需要热处理的情况,只要获得Ta/Al与电子供给层2d的欧姆接触即可。由此形成有其中电极凹部6a、电极凹部6b被电极材料的一部分包埋的源电极7和漏电极8。
[0056] 随后,如图3B所示,形成栅电极9。
[0057] 详细地,首先,在栅电极的预定形成部分处形成电极凹部6c。
[0058] 在化合物半导体层叠结构2的表面上涂覆抗蚀剂。通过光刻法处理抗蚀剂以在抗蚀剂处形成对应于栅电极的预定形成部分的露出保护绝缘膜4的表面的开口。由此形成具有开口的抗蚀剂掩模。
[0059] 通过使用该抗蚀剂掩模通过干法蚀刻移除保护绝缘膜4的预定形成部分直到使p型半导体层3的表面露出。由此在保护绝缘膜4处形成使栅电极的在p型半导体层3的表面处的预定形成部分露出的电极凹部4a。作为蚀刻条件,将惰性气体如Ar和氯气如Cl2用作蚀刻气体,并且例如设定为:Cl2的流量为30sccm,压力为2Pa,并且RF输入功率为20W。
[0060] 通过抛光工艺、化学溶液处理等移除抗蚀剂掩模。
[0061] 形成用于形成栅电极的抗蚀剂掩模。在此,例如,使用适合于气相沉积法和剥离法的檐式结构的双层抗蚀剂。在化合物半导体层叠结构2的表面上涂覆该抗蚀剂,并且形成露出作为p型半导体层3的栅电极的预定形成部分的电极凹部4a的开口。由此形成具有开口的抗蚀剂掩模。
[0062] 通过例如使用抗蚀剂掩模,通过气相沉积法在包括通过开口露出的电极凹部4a的内侧的抗蚀剂掩模上沉积例如Ni/Au作为电极材料。Ni的厚度为约30nm,并且Au的厚度为约400nm。通过剥离法移除抗蚀剂掩模和沉积在其上的Ni/Au。由此在p型半导体层3处的Ar引入区域3a之间的部分上形成栅电极9。使栅电极9与p型半导体层处于肖特基接触。
[0063] 注意,将保护绝缘膜4用作栅极绝缘膜,并且因此,可以经由保护绝缘膜4在p型半导体层3上形成栅电极9而不在保护绝缘膜4处形成电极凹部4a。在这种情况下,形成MIS型AlGaN/GaN·HEMT。
[0064] 之后,通过进行相应的过程如形成连接至源电极7、漏电极8以及栅电极9的布线来形成根据本实施方案的AlGaN/GaN·HEMT。
[0065] 基于与根据比较例的AlGaN/GaN·HEMT的比较,对于根据本实施方案的AlGaN/GaN·HEMT,研究了栅极电压与漏极电流之间的关系。在图4中表示其结果。在根据比较例的AlGaN/GaN·HEMT中,不进行根据本实施方案的惰性元素的引入,并且在通过干法蚀刻图案化的p型半导体层上形成栅电极。对于本实施方案和比较例二者,将制造的AlGaN/GaN·HEMT的多个试样作为对象进行研究。
[0066] 如图4所示,通过比较例中的每个试样证实漏极电流值低并且漏极电流发生了大的变化。另一方面,通过本实施方案中的每个试样证实漏极电流值高于比较例的漏极电流值并且漏极电流很少发生变化。
[0067] 在根据比较例的AlGaN/GaN·HEMT中,p型半导体层的干法蚀刻使电子供给层的AlGaN严重受损,并且由此,漏极电流极大地减小。此外,难以控制p型半导体层的干法蚀刻,并且每一个产品的蚀刻状态(例如,电子供给层的AlGaN的蚀刻量)不同,并且由此,漏极电流发生变化。
[0068] 在根据本实施方案的AlGaN/GaN·HEMT中,通过注入惰性元素来恢复仅必要的2DEG而不进行p型半导体层的干法蚀刻。在惰性元素的注入过程中,可以以期望的浓度将惰性元素准确地注入期望的区域中。因此,可以进行惰性元素的注入而不使电子供给层的AlGaN受损并且每一个产品无任何变化。由此在本实施方案中可以获得其中漏极电流值高并且漏极电流几乎没有任何变化的AlGaN/GaN·HEMT。
[0069] 如上所述,本实施方案中可以实现其中通过确保稳定的和大的漏极电流而无任何变化来改进器件特性并且实现确定的常断的具有高可靠性的AlGaN/GaN·HEMT。
[0070] (修改实施例)
[0071] 在下文中描述第一实施方案的修改实施例。在该修改实施例中,公开了与第一实施方案类似的AlGaN/GaN·HEMT,但是其制造方法与第一实施方案部分地不同。
[0072] 图5A、5B和图6A、6B是示出根据第一实施方案的修改实施例的AlGaN/GaN·HEMT的制造方法中的主要工艺的示意性截面图。注意,使用与第一实施方案相同的附图标记来标明类似的元件等并且不给出其详细描述。
[0073] 在修改实施例中,首先,在通过第一实施方案的图1A的工艺形成化合物半导体层叠结构2和p型半导体层3之后,通过图1C的工艺形成元件隔离结构5。
[0074] 随后,如图5A所示,在p型半导体层3上形成抗蚀剂掩模11。
[0075] 详细地,在p型半导体层3的表面上涂覆抗蚀剂,通过光刻法处理抗蚀剂,并且形成在对应于p型半导体层3的栅电极的预定形成部分两侧的部分处开口的抗蚀剂掩模11。将抗蚀剂掩模11的开口设定为开口11a。
[0076] 随后,如图5B所示,将惰性元素引入到p型半导体层3中。
[0077] 详细地,通过使用抗蚀剂掩模11,将使p-GaN钝化的惰性元素直接注入p型半导体层3中。例如,氩(Ar)、铁(Fe)、磷(P)、氧(O2)或硼(B)或其任意组合,在此,将Ar用作惰性元素。例如,在加速度能量约15keV并且剂量约1×1014/cm2的条件下注入Ar。通过抗蚀剂掩模11仅在p型半导体层3的通过开口11a露出的部分处引入Ar。在上述的注入条件下引入Ar,并且由此,将Ar引入到p型半导体层的表面层部分中,并且在表面层部分下方留有未引入Ar的部分。将p型半导体层3的引入Ar的表面层部分设定为Ar引入区域3a。如上所述形成Ar引入区域3a,并且由此在表面层部分处留有Ar,不到达电子供给层2d,并且防止了由Ar的注入引起的电子供给层2d的受损。
[0078] 通过抛光工艺、化学溶液处理等移除抗蚀剂掩模11。
[0079] 将作为使p-GaN钝化的惰性元素的Ar注入p型半导体层3中,并且由此,2DEG再次出现在GaN/AlGaN界面处的位置上与Ar引入区域3a下方的部分相匹配的部分处。由此能够确保在需要的部分处的高浓度2DEG,以仅在位置上与栅电极的预定形成部分相匹配的部分处有效地停止2DEG,并且可以实现确定的常断。
[0080] 可以使用以上列举的物质,例如,用Fe代替Ar作为惰性元素。Fe是相对重的元素,并且可以以低的加速度能量确定地仅对p型半导体层3的表面层部分钝化。
[0081] 通过抛光工艺、化学溶液处理等移除抗蚀剂掩模11。
[0082] 随后,如图6A所示,形成保护绝缘膜12。
[0083] 详细地,通过等离子体CVD法等在p型半导体层3上沉积绝缘膜例如氮化硅膜(SiN膜)从而以例如约40nm的膜厚度覆盖p型半导体层3。由此形成覆盖p型半导体层3的保护绝缘膜12。作为保护绝缘膜,例如,可以沉积氧化硅膜(SiO2膜)等。
[0084] 之后,通过进行图3A和图3B中的工艺,如图6B所示,形成源电极7、漏电极8以及栅电极9。
[0085] 注意,将保护绝缘膜12用作栅极绝缘膜,并且因此可以经由保护绝缘膜12在p型半导体层3上形成栅电极9而不在保护绝缘膜12处形成电极凹部。在这种情况下,形成MIS型AlGaN/GaN·HEMT。
[0086] 之后,通过进行相应的过程如形成连接至源电极7、漏电极8以及栅电极9的布线来形成根据修改实施例的AlGaN/GaN·HEMT。
[0087] 在修改实施例中,可以实现其中通过确保稳定的和大的漏极电流而无任何变化来改进器件特性并且实现确定的常断的具有高可靠性的AlGaN/GaN·HEMT。
[0088] 将根据第一实施方案或修改实施例的AlGaN/GaN·HEMT应用于所谓的分立封装件。
[0089] 在该分立封装件中,安装有根据第一实施方案或修改实施例的AlGaN/GaN·HEMT芯片。在下文中,举例说明根据第一实施方案或修改实施例的AlGaN/GaN·HEMT芯片的分立封装件(在下文中,称为HEMT芯片)。
[0090] 在图7中示出了HEMT芯片的示意性构造。
[0091] 在HEMT芯片100中,在其表面处设置有:AlGaN/GaN·HEMT晶体管区域101,连接至漏电极的漏电极焊垫102,连接至栅电极的栅电极焊垫103以及连接至源电极的源电极焊垫104。
[0092] 图8是示出分立封装件的示意性俯视图。
[0093] 首先,通过使用管芯粘合剂111如钎料将HEMT芯片100固定至引线框112来制造分立封装件。在引线框112处一体地形成漏极引线112a,并且栅极引线112b和源极引线112c布置成与引线框112分离以作为各个主体。
[0094] 随后,通过使用Al导线113的接合将漏电极焊垫102和漏极引线112a、栅电极焊垫103和栅极引线112b以及源电极焊垫104和源极引线112c中的每一个电连接。
[0095] 之后,通过使用模制树脂114的传递模制法对HEMT芯片100进行树脂密封,并且拆下引线框112。由此形成分立封装件。
[0096] (第二实施方案)
[0097] 在本实施方案中,公开了包括根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT的PFC(功率因子校正)电路。
[0098] 图9是示出PFC电路的接线图。
[0099] PFC电路20通过包括开关元件(晶体管)21、二极管22、扼流圈23、电容器24、电容器25、二极管电桥26以及交流电源(AC)27构成。将根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT应用于开关元件21。
[0100] 在PFC电路20中,开关元件21的漏电极、二极管22的阳极端子以及扼流圈23的一个端子连接。开关元件21的源电极、电容器24的一个端子以及电容器25的一个端子连接。电容器24的另一端子和扼流圈23的另一端子连接。电容器25的另一端子与二极管22的阴极端子连接。AC27经由二极管电桥26连接在电容器24的两个端子之间。直流电源(DC)连接在电容器25的两个端子之间。注意,未示出的PFC控制器连接至开关元件21。
[0101] 在本实施方案中,将根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT应用于PFC电路20。由此实现高可靠性PFC电路。
[0102] (第三实施方案)
[0103] 在本实施方案中,公开了包括根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT的电源装置。
[0104] 图10是示出根据第三实施方案的电源装置的示意性构造的接线图。
[0105] 根据本实施方案的电源装置通过包括高压一次侧电路31、低压二次侧电路32以及设置在一次侧电路31与二次侧电路32之间的变压器33构成。
[0106] 一次侧电路31包括根据第二实施方案的PFC电路20以及连接在PFC电路20的电容器25的两个端子之间的逆变电路,例如全桥逆变电路30。全桥逆变电路30由多个(在此为四个)开关元件34a、34b、34c以及34d组成。
[0107] 二次侧电路32由多个(在此为三个)开关元件35a、35b以及35c组成。
[0108] 在本实施方案中,组成一次侧电路31的PFC电路是根据第二实施方案的PFC电路20,并且全桥逆变电路30的开关元件34a、34b、34c以及34d是根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT。另一方面,二次侧电路32的开关元件35a、35b以及
35c是使用硅的普通MIS·FET。
[0109] 在本实施方案中,将根据第二实施方案的PFC电路20和根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT应用于作为高压电路的一次侧电路31。由此实现高可靠性和高功率电源装置。
[0110] (第四实施方案)
[0111] 在本实施方案中,公开了包括根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT的高频放大器。
[0112] 图11是示出根据第四实施方案的高频放大器的示意性构造的接线图。
[0113] 根据本实施方案的高频放大器通过包括数字预失真电路41、混频器42a、42b以及功率放大器43构成。
[0114] 数字预失真电路41补偿输入信号的非线性失真。混频器42a将非线性失真已经得到补偿的输入信号与AC信号进行混合。功率放大器43将与AC信号混合的输入信号放大并且包括根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT。注意,在图11中构成为使得可以用混频器42b将在输出端的信号与AC信号进行混合并且通过例如开关的切换来传输至数字预失真电路41。
[0115] 在本实施方案中,将根据从第一实施方案和修改实施例中选出的一种的AlGaN/GaN·HEMT应用于高频放大器。由此实现高可靠性、高耐受电压以及高频放大器。
[0116] (其它实施方案)
[0117] 在第一实施方案和修改实施例中,将AlGaN/GaN·HEMT作为化合物半导体器件进行举例说明。适用于以下的HEMT而不是作为化合物半导体器件的AlGaN/GaN·HEMT。
[0118] 其它器件实施例1
[0119] 在本实施例中,公开了作为化合物半导体器件的InAlN/GaN·HEMT。
[0120] InAlN和GaN是能够通过其组成来接近晶格常数的化合物半导体。在这种情况下,在第一实施方案和修改实施例中,电子传输层由i-GaN形成,中间层由AlN形成,电子供给层由n-InAlN形成,并且p型半导体层由p-GaN形成。此外,在这种情况下很少产生压电极化,并且因此主要通过InAlN的自发极化产生二维电子气。
[0121] 根据本实施例,与上述AlGaN/GaN·HEMT一样,可以实现通过确保稳定的和大的漏极电流而无任何变化来改进器件特性并且实现确定的常断的高可靠性InAlN/GaN·HEMT。
[0122] 其它器件实施例2
[0123] 在本实施例中,公开了作为化合物半导体器件的InAlGaN/GaN·HEMT。
[0124] GaN和InAlGaN是能够通过其组成使后者的晶格常数小于前者的晶格常数的化合物半导体。在这种情况下,在第一实施方案和修改实施例中,电子传输层由i-GaN形成,中间层由i-InAlGaN形成,电子供给层由n-InAlGaN形成,并且p型半导体层由p-GaN形成。
[0125] 根据本实施例,与上述AlGaN/GaN·HEMT一样,可以实现通过确保稳定的和大的漏极电流而无任何变化来改进器件特性的并且实现确定的常断的高可靠性InAlGaN/GaN·HEMT。
[0126] 根据每一个方面,可以实现通过确保稳定的和大的漏极电流而无任何变化来改进器件特性并且实现确定的常断的高可靠性InAlN/GaN·HEMT。