一种进行上行传输的方法、系统和设备转让专利

申请号 : CN201210137904.X

文献号 : CN103384182B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 高秋彬周海军秦飞潘学明鲍炜

申请人 : 电信科学技术研究院

摘要 :

本发明实施例涉及无线通信技术领域,特别涉及一种进行上行传输的方法、系统和设备,用以解决现有技术中存在的上行传输功率受限的情况下,进行上行传输时频谱效率和传输效率比较低的问题。本发明实施例进行上行传输的方法包括:用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数;所述用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;所述用户设备将发送信号在对应的子帧上发送。采用本发明实施例能够提高上行传输功率受限的情况下,进行上行传输的时频谱效率和传输效率。

权利要求 :

1.一种进行上行传输的方法,其特征在于,该方法包括:用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,以使网络侧设备在Q个子帧内的特定时频资源上提取扩频数据序列,并将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列,对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据;

其中该扩频数据序列对应同一个复符号数据,Q是正整数;

所述用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;

所述用户设备将发送信号在对应的子帧上发送。

2.如权利要求1所述的方法,其特征在于,所述用户设备对每个复符号数据进行扩频,包括:针对一个复符号数据,所述用户设备使用该复符号数据对应的扩频码,对该复符号数据进行扩频;

其中,每个复符号数据对应的扩频码全部相同或全不相同或部分相同。

3.如权利要求1所述的方法,其特征在于,所述用户设备对每个复符号数据进行扩频,包括:所述用户设备将所有复符号数据进行分组;

针对一组复符号数据,所述用户设备使用该组对应的扩频码对该组中的所有复符号数据进行扩频;

其中,每组对应的扩频码全不相同。

4.如权利要求2或3所述的方法,所述复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。

5.如权利要求4所述的方法,其特征在于,所述用户设备将所有复符号数据进行分组,包括:所述用户设备顺序选取复符号数据进行分组。

6.如权利要求5所述的方法,其特征在于,针对一组复符号数据,所述用户设备根据下列公式确定该组数据中的复符号数据:其中,xp(n)是第p组的第n个复符号数据; 为第  个复符号数据; 是第p组复符号数据中包括的复符号数据的个数;p是组的编号,p=0,

1,...,P-1,P是分组的数量;n是第p组复符号数据的编号,

7.如权利要求6所述的方法,其特征在于,所述第p组复符号数据中包括的复符号数据的个数 是由接收到的网络侧指示确定,或者由  公式确定;

其中,Msym是复符号数据的数量。

8.如权利要求3所述的方法,其特征在于,所述用户设备将所有复符号数据进行分组,包括:所述用户设备间隔选取复符号数据进行分组。

9.如权利要求8所述的方法,其特征在于,针对一组复符号数据,所述用户设备根据下列公式确定该组数据中的复符号数据:xp(n)=d(p+n×P);

其中,xp(n)是第p组的第n个复符号数据;d(p+n×P)为第p+n×P个复符号数据;p是组的编号,p=0,1,...,P-1,P是分组的数量;n是第p组复符号数据的编号,是第p组复符号 数据中包括的复符号数据的个数, Msym是复符号数据的数量。

10.如权利要求1所述的方法,其特征在于,所述用户设备将每个复符号数据的扩频数据序列映射到Q个子帧上,包括:所述用户设备顺序选取扩频数据序列映射到Q个子帧上。

11.如权利要求10所述的方法,其特征在于,针对一个子帧,所述用户设备根据下列公式确定需要映射到该子帧的扩频数据序列:z(q,k)=y(q×Msf+k);

其中,z(q,k)是映射到子帧q上的第k个扩频数据序列;y(q×Msf+k)为第q×Msf+k个扩频数据序列;q是子帧编号,q=0,1,...,Q-1;k是映射到一个子帧上的扩频数据序列的编号,k=0,1,...,Msf-1,Msf是映射到每个子帧内的扩频数据序列的长度。

12.如权利要求1所述的方法,其特征在于,所述用户设备将每个复符号数据的扩频数据序列映射到Q个子帧上,包括:所述用户设备间隔选取扩频数据序列映射到Q个子帧上。

13.如权利要求12所述的方法,其特征在于,针对一个子帧,所述用户设备根据下列公式确定需要映射到该子帧的扩频数据序列:z(q,k)=y(q+k×Q);

其中,z(q,k)是映射到子帧q上的第k个扩频数据序列;y(q+k×Q)为第q+k×Q个扩频数据序列;q是子帧编号,q=0,1,...,Q-1;k是映射到一个子帧内的扩频数据序列的编号,k=

0,1,...,Msf-1,Msf是映射到每个子帧内的扩频数据序列的长度。

14.如权利要求1所述的方法,其特征在于,所述用户设备将映射到每个 子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号,包括:针对一个子帧的一个扩频数据序列,所述用户设备将所述扩频数据序列映射到时频资源上,并将时频资源上的所述扩频数据序列进行调制生成OFDM符号。

15.如权利要求3所述的方法,其特征在于,所述用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号,包括:针对一个子帧的一个扩频数据序列,所述用户设备将所述扩频数据序列映射到时频资源上,并将时频资源上的所述扩频数据序列进行调制生成OFDM符号;

其中,同一组复符号数据的扩频数据序列映射到不同的时频资源上。

16.如权利要求14或15所述的方法,其特征在于,所述用户设备将所述扩频数据序列映射到时频资源上,包括:所述用户设备将所述扩频数据序列映射到全部或部分时频资源上。

17.如权利要求14或15所述的方法,其特征在于,所述用户设备将所述扩频数据序列映射到时频资源上,包括:所述用户设备采用时域方式,将一个复符号数据对应的扩频数据序列映射到不同OFDM符号的同一个子载波上;或所述用户设备采用频域方式,将一个复符号数据对应的扩频数据序列映射到同一个OFDM符号的多个子载波上;或所述用户设备采用时域和频域结合的方式,将一个复符号数据对应的扩频数据序列映射到多个OFDM符号的多个子载波上。

18.如权利要求14或15所述的方法,其特征在于,所述用户设备将所述扩频数据序列映射到时频资源上之前,还包括:所述用户设备根据传输参数确定每个子帧内占用的时频资源。

19.如权利要求1、2、4~15任一所述的方法,其特征在于,所述用户设备将每个复符号数据的扩频数据序列映射到Q个子帧上之前,还包括:所述用户设备根据传输参数确定Q值。

20.一种进行上行传输的方法,其特征在于,该方法包括:网络侧设备在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;

所述网络侧设备将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;

所述网络侧设备对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。

21.如权利要求20所述的方法,其特征在于,所述网络侧设备在Q个子帧内的特定时频资源上提取扩频数据序列,包括:所述网络侧设备采用时域方式,在Q个子帧内的特定时域资源上提取扩频数据序列;或所述网络侧设备采用频域方式,在Q个子帧内的特定频域资源上提取扩频数据序列;或所述网络侧设备采用采用时域和频域结合的方式,在Q个子帧内的特定时域和频域资源上提取扩频数据序列。

22.如权利要求20所述的方法,其特征在于,所述网络侧设备将Q个子帧的扩频数据序列进行组合,包括:所述网络侧设备按子帧顺序将Q个子帧上的扩频数据序列进行组合。

23.如权利要求22所述的方法,其特征在于,所述网络侧设备根据下列公式按子帧顺序将Q个子帧上的扩频数据序列进行组合:x(m)=r(q,k);

其中,x(m)为组合后的第m个扩频数据序列;r(q,k)是子帧q上的第k个扩频数据序列;

k=m-q×Msf,Msf是映射到每个子帧内的扩频数据序列的长度。

24.如权利要求20所述的方法,其特征在于,所述网络侧设备将Q个子帧的扩频数据序列进行组合,包括:所述网络侧设备间隔选取Q个子帧上的扩频数据序列进行组合。

25.如权利要求24所述的方法,其特征在于,所述网络侧设备根据下列公式按子帧顺序将Q个子帧上的扩频数据序列进行组合:x(m)=r(q,k);

其中,x(m)为组合后的第m个扩频数据序列;r(q,k)是子帧q上的第k个扩频数据序列;

q=m-k×Q,Q是子帧个数。

26.如权利要求20~25任一所述的方法,其特征在于,所述网络侧设备对Q个子帧上的扩频数据序列进行解扩频之前,还包括:所述网络侧设备为用户设备配置传输参数。

27.如权利要求26所述的方法,其特征在于,所述传输参数包括下列信息中的一种或多种:Q值、映射到一个子帧上的扩频数据序列的长度和每个子帧内占用的时频资源。

28.如权利要求26所述的方法,其特征在于,所述网络侧设备为所述用户设备配置传输参数,包括:所述网络侧设备通过高层信令半静态,为所述用户设备配置传输参数;或所述网络侧设备通过调度上行传输的控制信令,为所述用户设备配置传输参数。

29.一种进行上行传输的用户设备,其特征在于,该用户设备包括:处理模块,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,以使网络侧设备在Q个子帧内的特定时频资源上提取扩频数据序列,并将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列,对完整 扩频数据序列进行解扩频,得到复符号数据对应的解扩数据;其中该扩频数据序列对应同一个复符号数据,Q是正整数;

调制模块,用于将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;

发送模块,用于将发送信号在对应的子帧上发送。

30.如权利要求29所述的用户设备,其特征在于,所述处理模块具体用于:针对一个复符号数据,使用该复符号数据对应的扩频码,对该复符号数据进行扩频;其中,每个复符号数据对应的扩频码全部相同或全不相同或部分相同。

31.如权利要求29所述的用户设备,其特征在于,所述处理模块具体用于:将所有复符号数据进行分组;针对一组复符号数据,使用该组对应的扩频码对该组中的所有复符号数据进行扩频;其中,每组对应的扩频码全不相同。

32.如权利要求30或31所述的用户设备,所述复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。

33.如权利要求32所述的用户设备,其特征在于,所述处理模块具体用于:顺序选取复符号数据进行分组。

34.如权利要求33所述的用户设备,其特征在于,针对一组复符号数据,所述处理模块根据下列公式确定该组数据中的复符号数据:其中,xp(n)是第p组的第n个复符号数据; 为第  个复符号数据; 是第p组复符号数据中包括的复符号数据的个数;p是组的编号,p=0,

1,...,P-1,P是分组的数量;n是第p组复符号 数据的编号,

35.如权利要求34所述的用户设备,其特征在于,所述第p组复符号数据中包括的复符号数据的个数 是由接收到的网络侧指示确定,或者由  公式确定;

其中,Msym是复符号数据的数量。

36.如权利要求31所述的用户设备,其特征在于,所述处理模块具体用于:间隔选取复符号数据进行分组。

37.如权利要求36所述的用户设备,其特征在于,针对一组复符号数据,所述处理模块根据下列公式确定该组数据中的复符号数据:xp(n)=d(p+n×P);

其中,xp(n)是第p组的第n个复符号数据;d(p+n×P)为第p+n×P个复符号数据;p是组的编号,p=0,1,...,P-1,P是分组的数量;n是第p组复符号数据的编号,是第p组复符号数据中包括的复符号数据的个数, Msym是复符号数据的数量。

38.如权利要求29所述的用户设备,其特征在于,所述处理模块具体用于:顺序选取扩频数据序列映射到Q个子帧上。

39.如权利要求38所述的用户设备,其特征在于,针对一个子帧,所述处理模块根据下列公式确定需要映射到该子帧的扩频数据序列:z(q,k)=y(q×Msf+k);

其中,z(q,k)是映射到子帧q上的第k个扩频数据序列;y(q×Msf+k)为第q×Msf+k个扩频数据序列;q是子帧编号,q=0,1,...,Q-1;k是映 射到一个子帧上的扩频数据序列的编号,k=0,1,...,Msf-1,Msf是映射到每个子帧内的扩频数据序列的长度。

40.如权利要求29所述的用户设备,其特征在于,所述处理模块具体用于:间隔选取扩频数据序列映射到Q个子帧上。

41.如权利要求40所述的用户设备,其特征在于,针对一个子帧,所述处理模块根据下列公式确定需要映射到该子帧的扩频数据序列:z(q,k)=y(q+k×Q);

其中,z(q,k)是映射到子帧q上的第k个扩频数据序列;y(q+k×Q)为第q+k×Q个扩频数据序列;q是子帧编号,q=0,1,...,Q-1;k是映射到一个子帧内的扩频数据序列的编号,k=

0,1,...,Msf-1,Msf是映射到每个子帧内的扩频数据序列的长度。

42.如权利要求29所述的用户设备,其特征在于,所述调制模块具体用于:针对一个子帧的一个扩频数据序列,将所述扩频数据序列映射到时频资源上,并将时频资源上的所述扩频数据序列进行调制生成OFDM符号。

43.如权利要求31所述的用户设备,其特征在于,所述调制模块具体用于:针对一个子帧的一个扩频数据序列,将所述扩频数据序列映射到时频资源上,并将时频资源上的所述扩频数据序列进行调制生成OFDM符号;

其中,同一组复符号数据的扩频数据序列映射到不同的时频资源上。

44.如权利要求42或43所述的用户设备,其特征在于,所述调制模块具体用于:将所述扩频数据序列映射到全部或部分时频资源上。

45.如权利要求42或43所述的用户设备,其特征在于,所述调制模块具体用于:采用时域方式,将一个复符号数据对应的扩频数据序列映射到不同OFDM 符号的同一个子载波上;或采用频域方式,将一个复符号数据对应的扩频数据序列映射到同一个OFDM符号的多个子载波上;或采用时域和频域结合的方式,将一个复符号数据对应的扩频数据序列映射到多个OFDM符号的多个子载波上。

46.如权利要求42或43所述的用户设备,其特征在于,所述调制模块还用于:根据传输参数确定每个子帧内占用的时频资源。

47.如权利要求29、30、32~43任一所述的用户设备,其特征在于,所述处理模块还用于:根据传输参数确定Q值。

48.一种进行上行传输的网络侧设备,其特征在于,该网络侧设备包括:提取模块,用于在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;

组合模块,用于将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;

解扩频模块,用于对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。

49.如权利要求48所述的网络侧设备,其特征在于,所述提取模块具体用于:采用时域方式,在Q个子帧内的特定时域资源上提取扩频数据序列;或采用频域方式,在Q个子帧内的特定频域资源上提取扩频数据序列;或采用采用时域和频域结合的方式,在Q个子帧内的特定时域和频域资源上提取扩频数据序列。

50.如权利要求48所述的网络侧设备,其特征在于,所述组合模块具体用于:按子帧顺序将Q个子帧上的扩频数据序列进行组合。

51.如权利要求50所述的网络侧设备,其特征在于,所述组合模块根据 下列公式按子帧顺序将Q个子帧上的扩频数据序列进行组合:x(m)=r(q,k);

其中,x(m)为组合后的第m个扩频数据序列;r(q,k)是子帧q上的第k个扩频数据序列;

k=m-q×Msf,Msf是映射到每个子帧内的扩频数据序列的长度。

52.如权利要求48所述的网络侧设备,其特征在于,所述组合模块具体用于:间隔选取Q个子帧上的扩频数据序列进行组合。

53.如权利要求52所述的网络侧设备,其特征在于,所述组合模块根据下列公式按子帧顺序将Q个子帧上的扩频数据序列进行组合:x(m)=r(q,k);

其中,x(m)为组合后的第m个扩频数据序列;r(q,k)是子帧q上的第k个扩频数据序列;

q=m-k×Q,Q是子帧个数。

54.如权利要求48~53任一所述的网络侧设备,其特征在于,所述网络侧设备还包括:通知模块,用于为用户设备配置传输参数。

55.如权利要求54所述的网络侧设备,其特征在于,所述传输参数包括下列信息中的一种或多种:Q值、映射到一个子帧上的扩频数据序列的长度和每个子帧内占用的时频资源。

56.如权利要求55所述的网络侧设备,其特征在于,所述通知模块具体用于:通过高层信令半静态,为所述用户设备配置传输参数;或通过调度上行传输的控制信令,为所述用户设备配置传输参数。

57.一种进行上行传输的系统,其特征在于,该系统包括:用户设备,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数,将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号,将发送信号在对应的子帧上发送;

网络侧设备,用于在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列,对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。

说明书 :

一种进行上行传输的方法、系统和设备

技术领域

[0001] 本发明涉及无线通信技术领域,特别涉及一种进行上行传输的方法、系统和设备。

背景技术

[0002] 卫星通信等通信场景中,上行传输的信号强度受用户设备发射功率的限制,在路径损耗很大的情况下,传输性能不能保证。以VoIP(Voice over IP,基于IP的语音呼叫)业务为例,每隔20ms会产生一个224比特的数据包,这224比特需要在20ms内传输完成。如果224比特在1个TTI(Transmission Time Interval,传输时间间隔)内传输完成,因编码速率较高,基站的接收信噪比低于该数据包的解调门限,基站无法正确解调。
[0003] 目前有两种解决方案:
[0004] 一、在时域内重复发送该数据包,例如重复发送20次,用户设备发送同一个数据包的总能量增加,基站通过将20次接收到的数据进行合并便可能正确解调出数据。
[0005] 该方案的问题是频谱效率降低,一个用户设备持续占用一个PRB(physical resource block,物理资源块),且不能与其他用户复用。
[0006] 二、将224比特分成20个小数据包,在20个子帧内传输,因为每个子帧内的编码速率相应降低了,基站可以在每个子帧内正确解调出每个小数据包,从而还原出原始数据包。
[0007] 该方案的问题是分散成小数据包后,每个小数据包都会增加额外的开销,如MAC(Medium Access Control,媒体接入控制)头开销,CRC(Cyclic Redundancy Check,循环冗余校验)校验位开销等,总的开销大大增加,传输效率低下。
[0008] 综上所述,目前上行传输功率受限的情况下,进行上行传输时,频谱效率和传输效率比较低。

发明内容

[0009] 本发明实施例提供的一种进行上行传输的方法、系统和设备,用以解决现有技术中存在的上行传输功率受限的情况下,进行上行传输时频谱效率和传输效率比较低的问题。
[0010] 本发明实施例提供的一种进行上行传输的方法,包括:
[0011] 用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数;
[0012] 所述用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;
[0013] 所述用户设备将发送信号在对应的子帧上发送。
[0014] 本发明实施例提供的另一种进行上行传输的方法,包括:
[0015] 网络侧设备在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;
[0016] 所述网络侧设备将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;
[0017] 所述网络侧设备对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。
[0018] 本发明实施例提供的一种进行上行传输的用户设备,包括:
[0019] 处理模块,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数;
[0020] 调制模块,用于将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;
[0021] 发送模块,用于将发送信号在对应的子帧上发送。
[0022] 本发明实施例提供的一种进行上行传输的网络侧设备,包括:
[0023] 提取模块,用于在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;
[0024] 组合模块,用于将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;
[0025] 解扩频模块,用于对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。
[0026] 本发明实施例提供的一种进行上行传输的系统,包括:
[0027] 用户设备,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数,将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号,将发送信号在对应的子帧上发送;
[0028] 网络侧设备,用于在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列,对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。
[0029] 由于本发明实施例将一个数据包的数据映射到多个子帧内传输,通过信号在时域内的扩展增加用户设备的总发射能量,以保证用户设备发射的数据能被正确接收,从而提高了上行传输功率受限的情况下,进行上行传输的时频谱效率和传输效率。

附图说明

[0030] 图1为本发明实施例信号传输示意图;
[0031] 图2为本发明实施例进行上行传输的系统结构示意图;
[0032] 图3为本发明实施例时域扩频示意图;
[0033] 图4为本发明实施例频域扩频示意图;
[0034] 图5为本发明实施例时域扩频+频域扩频示意图;
[0035] 图6为本发明实施例映射到部分时频资源的示意图;
[0036] 图7为本发明实施例进行上行传输的系统的用户设备结构示意图;
[0037] 图8为本发明实施例进行上行传输的系统的网络侧设备结构示意图;
[0038] 图9为本发明实施例用户设备进行上行传输的方法流程示意图;
[0039] 图10为本发明实施例网络侧设备进行上行传输的方法流程示意图。

具体实施方式

[0040] 本发明实施例用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数;将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;将发送信号在对应的子帧上发送。由于本发明实施例将一个数据包的数据映射到多个子帧内传输,通过信号在时域内的扩展增加用户设备的总发射能量,以保证用户设备发射的数据能被正确接收,从而提高了上行传输功率受限的情况下,进行上行传输的时频谱效率和传输效率。
[0041] 其中,本发明实施例在每个子帧内,可以通过FDMA(Frequency Division Multiple Access,频分多址)+CDMA(Code Division Multiple Access,码分多址)方式或者TDMA(Time Division Multiple Access,时分多址)+CDMA方式支持多个用户设备同时传输,进一步保证系统的频谱效率。
[0042] 如图1所示,本发明实施例信号传输示意图中,上行传输分为6个过程:
[0043] 信道编码、加扰、调制映射、扩频、子帧映射、生成子帧信号。
[0044] 下面结合说明书附图对本发明实施例作进一步详细描述。
[0045] 在下面的说明过程中,先从网络侧和用户设备侧的配合实施进行说明,最后分别从网络侧与用户设备侧的实施进行说明,但这并不意味着二者必须配合实施,实际上,当网络侧与用户设备侧分开实施时,也解决了分别在网络侧、用户设备侧所存在的问题,只是二者结合使用时,会获得更好的技术效果。
[0046] 如图2所示,本发明实施例进行上行传输的系统包括:用户设备10和网络侧设备20。
[0047] 用户设备10,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数,将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号,将发送信号在对应的子帧上发送;
[0048] 网络侧设备20,用于在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。
[0049] 在实施中,Q的取值可以根据需要进行设定,比如是4、8、16、20等;也可以参照下列因素确定:
[0050] a)待传输的数据包大小,数据包越大,相应的需要Q值越大;
[0051] b)用户设备10的链路质量情况,链路质量越好,相应的Q值可以越小;
[0052] c)扩频数据序列的长度,扩频数据序列的长度越大,相应需要的Q值越大。
[0053] Q的取值由接收到的网络侧设备20配置给用户设备10的传输参数确定。或者预先约定的固定大小,或者是由约定的Q的取值与其他参数的映射规则确定。其他参数可以是扩频数据序列的长度,例如扩频数据序列的长度为144,每个子帧内可以传输的扩频数据序列的长度为12,则Q的取值应为144/12=12个。
[0054] 较佳地,用户设备10对每个复符号数据进行扩频的方式有很多种,下面列举两种:
[0055] 扩频方式一、针对一个复符号数据,用户设备10使用该复符号数据对应的扩频码,对该复符号数据进行扩频;
[0056] 其中,每个复符号数据对应的扩频码全部相同或全不相同或部分相同。
[0057] 在实施中,每个复符号数据对应的扩频码可以在协议中规定,也可以由网络侧通知用户设备10。比如可以按照复符号数据在整个需要发送的数据中的位置确定对应的扩频码,即预先设定位置和扩频码的对应关系,然后根据复符号数据的位置确定对应的扩频码。
[0058] 扩频方式二、用户设备10将所有复符号数据进行分组;针对一组复符号数据,使用该组对应的扩频码对该组中的所有复符号数据进行扩频;其中,每组对应的扩频码全不相同。
[0059] 扩频方式二中,用户设备10可以根据设定的顺序将复符号数据进行分组,但是需要保证用户设备10和网络侧设备20对于设定的顺序的理解一致。
[0060] 较佳地,复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。
[0061] 下面列举几个分组方式:
[0062] 分组方式一、用户设备10顺序选取复符号数据进行分组。
[0063] 具体的,用户设备10按照设定的每组中包括的复符号数据的数量,将复符号数据顺序划分为多组。比如有100个复符号数据,每组中包括的复符号数据的数量为10,则将1~10分到一组,11~20分到一组,以此类推。
[0064] 较佳地,针对一组复符号数据,用户设备10根据公式一确定该组数据中的复符号数据:
[0065] ..............公式一;
[0066] 其中,xp(n)是第p组的第n个复符号数据; 为第个复符号数据; 是第p组复符号数据中包括的复符号数据的个数;p是组的编号,p=0,1,...,P-1,P是分组的数量;n是第p组复符号数据的编号,[0067] 较佳地,第p组复符号数据中包括的复符号数据的个数 是由接收到的网络侧指示确定,或者由 公式确定。
[0068] 其中,每组中包括的复符号数据的数量可以根据传输的数据量大小和Q值确定。
[0069] 分组方式二、用户设备10间隔选取复符号数据进行分组。
[0070] 具体的,用户设备10按照每组中包括的复符号数据的间隔数量,将复符号数据顺序划分为多组。比如有30个复符号数据,每组中包括的复符号数据的间隔数量为10,则将1、11、21分到一组,2、12、22分到一组,以此类推。
[0071] 较佳地,针对一组复符号数据,用户设备10根据公式二确定该组数据中的复符号数据:
[0072] xp(n)=d(p+n×P)..............公式二;
[0073] 其中,xp(n)是第p组的第n个复符号数据;d(p+n×P)为第p+n×P个复符号数据;p是组的编号,p=0,1,...,P-1,P是分组的数量;n是第p组复符号数据的编号,是第p组复符号数据中包括的复符号数据的个数, Msym是复符号数据的数量。
[0074] 较佳地,用户设备10将每个复符号数据的扩频数据序列映射到Q个子帧上的方式有很多种,下面列举两种:
[0075] 映射方式一、用户设备10顺序选取扩频数据序列映射到Q个子帧上。
[0076] 具体的,用户设备10按照设定的映射到一个子帧的扩频数据序列数量,将扩频数据序列顺序划分为多组,每组映射到一个子帧上。比如扩频数据序列长度为100,映射到一个子帧的扩频数据序列长度为10,则将1~10映射到一个子帧上,11~20映射到另一个子帧上,以此类推。
[0077] 其中,映射到一个子帧的扩频数据序列数量可以根据传输的数据量大小和Q值确定。
[0078] 在实施中,针对一个子帧,用户设备10可以根据公式三确定需要映射到该子帧的扩频数据序列:
[0079] z(q,k)=y(q×Msf+k)..............公式三;
[0080] 其中,z(q,k)是映射到子帧q上的第k个扩频数据序列;y(q×Msf+k)为第q×Msf+k个扩频数据序列;q是子帧编号,q=0,1,...,Q-1;k是映射到一个子帧上的扩频数据序列的编号,k=0,1,...,Msf-1,Msf是映射到每个子帧内的扩频数据序列的长度。
[0081] 相应的,网络侧设备20按子帧顺序将Q个子帧上的扩频数据序列进行组合。
[0082] 比如每个子帧的扩频数据序列长度为10,则组合后的数据序列中,第1~10个数据为第1个子帧上的扩频数据序列,第11~20个数据为第2个子帧上的扩频数据序列,以此类推。
[0083] 其中,映射到一个子帧的扩频数据序列数量可以根据扩频数据序列的长度和Q值确定。
[0084] 在实施中,网络侧设备20根据公式四按子帧顺序将Q个子帧上的扩频数据序列进行组合:
[0085] x(m)=r(q,k).............公式四;
[0086] 其中,x(m)为组合后的第m个扩频数据序列;r(q,k)是子帧q上的第k个扩频数据序列; k=m-q×Msf,Msf是映射到每个子帧内的扩频数据序列的长度。
[0087] 映射方式二、用户设备10间隔选取扩频数据序列映射到Q个子帧上。
[0088] 具体的,用户设备10按照设定的间隔个数,将扩频数据序列顺序划分为多组,每组映射到一个子帧上。比如扩频数据序列长度为30,设定的间隔个数为10,则将序列中第1、11、21个扩频数据映射到一个子帧上,第2、12、22个扩频数据映射到另一个子帧上,以此类推。
[0089] 其中,间隔个数可以等于子帧个数Q,或者由网络侧配置的传输参数获得。
[0090] 在实施中,针对一个子帧,用户设备10可以根据公式五确定需要映射到该子帧的扩频数据序列:
[0091] z(q,k)=y(q+k×Q).............公式五;
[0092] 其中,z(q,k)是映射到子帧q上的第k个扩频数据序列;y(q+k×Q)为第q+k×Q个扩频数据序列;q是子帧编号,q=0,1,...,Q-1;k是映射到一个子帧内的扩频数据序列的编号,k=0,1,...,Msf-1,Msf是映射到每个子帧内的扩频数据序列的长度。
[0093] 相应的,网络侧设备20间隔选取Q个子帧上的扩频数据序列进行组合。
[0094] 例如,每个子帧的扩频数据序列长度为30,共有10个子帧,设定的间隔个数为10,则将1~10个子帧的每个子帧第1个扩频数据按照顺序排在组合扩频数据序列的第1位~第10位,第1个子帧~第10个子帧的每个子帧的第2个扩频数据排在组合数据的第11位~第20位,以此类推,最后将排好的扩频数据序列进行组合。
[0095] 在实施中,网络侧设备20根据公式六间隔选取Q个子帧上的扩频数据序列进行组合:
[0096] x(m)=r(q,k).............公式六;
[0097] 其中,x(m)为组合后的第m个扩频数据序列;r(q,k)是子帧q上的第k个扩频数据序列; q=m-k×Q,Q是子帧个数。
[0098] 较佳地,针对一个子帧的一个扩频数据序列,用户设备10将扩频数据序列映射到时频资源上,并将时频资源上的扩频数据序列进行调制生成OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
[0099] 在实施中,映射到每个OFDM符号上的扩频数据序列经过OFDM调制或者DFT-S-OFDM(离散傅立叶变换扩展的正交频分复用)调制,生成OFDM符号。
[0100] 较佳地,用户设备10将扩频数据序列映射到时频资源上的方式有三种,下面分别列举介绍。
[0101] 映射方式一、用户设备10采用时域方式,将一个复符号数据对应的扩频数据序列映射到不同OFDM符号的同一个子载波上,具体可以参见图3。
[0102] 例如,用户设备10的传输带宽范围内有12个数据子载波,一个子帧内有12个OFDM符号用于数据传输,一个数据符号的扩频数据序列映射到一个子帧内的扩频数据序列长度为12,长度为12的扩频数据序列分别映射到12个OFDM符号的同一个数据子载波上。不同数据符号的扩频数据序列映射到不同的数据子载波上,这种情况下,用户设备10在一个子帧内使用一个扩频码最多可以传输12个数据符号,每个子载波传输1个数据符号。在实施中,传输参数中可以包括多个扩频码,这样用户设备10使用多个扩频码,可以增加在每个子帧内传输的数据符号数目。
[0103] 相应的,网络侧设备20采用时域方式,在Q个子帧内的特定时域资源上提取扩频数据序列。
[0104] 映射方式二、用户设备10采用频域方式,将一个复符号数据对应的扩频数据序列映射到同一个OFDM符号的多个子载波上,具体可以参见图4。
[0105] 例如,用户设备10的传输带宽范围内有12个数据子载波,一个子帧内有12个OFDM符号用于数据传输,一个数据符号的扩频数据序列映射到一个子帧内的扩频数据序列长度为12,长度为12的扩频数据序列分别映射到同一个OFDM符号的12个数据子载波上。不同数据符号的扩频数据序列映射到不同的OFDM符号上,这种情况下,用户设备在一个子帧内使用一个扩频码最多可以传输12个数据符号,每个OFDM符号传输1个数据符号。在实施中,传输参数中可以包括多个扩频码,这样用户设备10使用多个扩频码,可以增加在每个子帧内传输的数据符号数目。
[0106] 相应的,网络侧设备20采用频域方式,在Q个子帧内的特定频域资源上提取扩频数据序列。
[0107] 映射方式三、用户设备10采用时域和频域结合的方式,将一个复符号数据对应的扩频数据序列映射到多个OFDM符号的多个子载波上,具体可以参见图5。
[0108] 例如,用户设备的传输带宽范围内有12个数据子载波,一个子帧内有12个OFDM符号用于数据传输,一个数据符号的扩频数据序列映射到一个子帧内的扩频数据序列长度为144,一个数据符号的长度为144的扩频数据序列分别映射到12个OFDM符号的12个数据子载波上。这种情况下,用户设备在一个子帧内使用一个扩频码最多可以传输1个数据符号。基站可以配置用户设备使用多个扩频码,增加在每个子帧内传输的数据符号数目。时域+频域扩频可以采用两级扩频的方式实现,即数据符号先采用频域(时域)扩频序列进行第一级扩频,再对扩频后的序列用时域(频域)扩频序列进行第二级扩频,具体可以参见图5。
[0109] 相应的,网络侧设备20采用采用时域和频域结合的方式,在Q个子帧内的特定时域和频域资源上提取扩频数据序列。
[0110] 较佳地,用户设备10将扩频数据序列映射到时频资源上后,还可以将扩频数据序列映射到全部或部分时频资源上。
[0111] 具体的,用户设备10可以通过选择映射到一个子帧内的扩频数据序列的长度,将扩频数据序列映射到全部时频资源上或者只映射到部分时频资源上。对于后者,可以在不同的时频资源上同时传输用户设备的多个数据符号。例如,四个数据符号分别经过扩频映射到四块时频区域,具体可以参见图6。
[0112] 其中,不同的时频区域,还可以分别传输不同的用户设备10的数据符号。
[0113] 在实施中,用户设备10对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列之前还需要进行信道编码、加扰和调制映射,参见图1。具体的:
[0114] 信道编码:源数据块含Nbit比特数据s(0),...,s(Nbit-1),经过信道编码后数据块长度为Mbit比特,b(0),...,b(Mbit-1);
[0115] 加扰:信道编码后的数据块b(0),...,b(Mbit-1)通过加扰,生成加扰后的数据块[0116] 星座图映射:加扰后的数据块 经过星座图映射生成复符号数据块d(0),...,d(Msym-1),包含Msym个复符号数据。具体的映射方式可以是BPSK(Binary phase shift keying,二相相移键控),QPSK(Quadrature Phase Shift Keying,四相相移键控),16QAM(Quadrature Amplitude Modulation,相正交振幅调制),64QAM等。
[0117] 相应的,网络侧设备20得到复符号数据对应的解扩数据后,还需要对解扩数据进行接收处理。具体的,得到复符号数据对应的解扩数据包括:
[0118] 解调制,解扰以及解码处理。
[0119] 其中,用户设备10和网络侧设备20可以根据传输参数进行上述传输过程。
[0120] 传输参数包括但不限于下列信息中的至少一种:
[0121] 绑定的子帧数目(即Q值)、映射到一个子帧上的扩频数据序列长度、每个子帧内占用的时频资源(即告知采用频域、时域、频域和时域结合的方式中的一种)、扩频码、映射到哪个(些)子帧(映射的子帧不连续)、映射的第一个子帧(映射的子帧连续)、映射到子帧的方式、映射到子帧过程中映射到一个子帧的数据符号数量、映射到子帧过程中间隔个数、映射到时频资源的方式、复符号数据的数量、扩频数据序列数量。
[0122] 在实施中,传输参数可以预先在协议中规定,也可以由网络侧设备20进行配置;还可以传输参数中的部分信息由协议规定,部分信息由网络侧设备20进行配置。不管采用哪种方式,只要保证用户设备10和网络侧设备20进行上行传输确定的参数相同即可。
[0123] 如果需要网络侧设备20进行配置,较佳地,网络侧设备20为用户设备10配置传输参数。
[0124] 具体的,网络侧设备20通过高层信令半静态,为用户设备配置传输参数;或通过调度上行传输的控制信令,为用户设备配置传输参数。
[0125] 需要说明的是,本发明实施例并不局限于上述两种配置方式,其他能够为用户设备10配置传输参数的方式都适用本法明实施例。
[0126] 针对网络侧设备20,由于知道用户设备10的传输参数,所以知道用户设备10将数据分别映射到哪些子帧上,相应的,网络侧设备10就可以从对应的子帧上获取来自用户设备的数据进行组后,并对组合后的数据进行解扩处理后,再进行接收处理。
[0127] 其中,本发明实施例的网络侧设备可以是基站(比如宏基站、家庭基站等),也可以是RN(中继)设备,还可以是其它网络侧设备。
[0128] 如图7所示,本发明实施例进行上行传输的系统的用户设备包括:处理模块701、调制模块702和发送模块703。
[0129] 处理模块701,用于分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数;
[0130] 调制模块702,用于将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;
[0131] 发送模块703,用于将发送信号在对应的子帧上发送。
[0132] 较佳地,处理模块701针对一个复符号数据,使用该复符号数据对应的扩频码,对该复符号数据进行扩频;其中,每个复符号数据对应的扩频码全部相同或全不相同或部分相同。
[0133] 较佳地,处理模块701将所有复符号数据进行分组;针对一组复符号数据,使用该组对应的扩频码对该组中的所有复符号数据进行扩频;其中,每组对应的扩频码全不相同。
[0134] 较佳地,复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。
[0135] 较佳地,处理模块701顺序选取复符号数据进行分组。
[0136] 较佳地,针对一组复符号数据,处理模块701根据公式一顺序选取复符号数据进行分组。
[0137] 较佳地,处理模块701间隔选取复符号数据进行分组。
[0138] 较佳地,针对一组复符号数据,处理模块701根据公式二间隔选取复符号数据进行分组。
[0139] 较佳地,处理模块701顺序选取扩频数据序列映射到Q个子帧上。
[0140] 较佳地,针对一个子帧,处理模块701根据公式三顺序选取扩频数据序列映射到Q个子帧上。
[0141] 较佳地,处理模块701间隔选取扩频数据序列映射到Q个子帧上。
[0142] 较佳地,针对一个子帧,处理模块701根据公式五间隔选取扩频数据序列映射到Q个子帧上。
[0143] 较佳地,调制模块702针对一个子帧的一个扩频数据序列,将扩频数据序列映射到时频资源上,并将时频资源上的扩频数据序列进行调制生成OFDM符号。
[0144] 较佳地,调制模块702针对一个子帧的一个扩频数据序列,将扩频数据序列映射到时频资源上,并将时频资源上的扩频数据序列进行调制生成OFDM符号;
[0145] 其中,同一组复符号数据的扩频数据序列映射到不同的时频资源上。
[0146] 较佳地,调制模块702将扩频数据序列映射到全部或部分时频资源上。
[0147] 较佳地,调制模块702采用时域方式,将一个复符号数据对应的扩频数据序列映射到不同OFDM符号的同一个子载波上;或采用频域方式,将一个复符号数据对应的扩频数据序列映射到同一个OFDM符号的多个子载波上;或采用时域和频域结合的方式,将一个复符号数据对应的扩频数据序列映射到多个OFDM符号的多个子载波上。
[0148] 较佳地,调制模块702根据传输参数确定每个子帧内占用的时频资源。
[0149] 较佳地,处理模块701根据传输参数确定Q值。
[0150] 如图8所示,本发明实施例进行上行传输的系统的网络侧设备包括:提取模块801、组合模块802和解扩频模块803。
[0151] 提取模块801,用于在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;
[0152] 组合模块802,用于将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;
[0153] 解扩频模块803,用于对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。
[0154] 较佳地,提取模块801采用时域方式,在Q个子帧内的特定时域资源上提取扩频数据序列;或采用频域方式,在Q个子帧内的特定频域资源上提取扩频数据序列;或采用采用时域和频域结合的方式,在Q个子帧内的特定时域和频域资源上提取扩频数据序列。
[0155] 较佳地,组合模块802按子帧顺序将Q个子帧上的扩频数据序列进行组合。
[0156] 较佳地,组合模块802根据公式四按子帧顺序将Q个子帧上的扩频数据序列进行组合。
[0157] 较佳地,组合模块802间隔选取Q个子帧上的扩频数据序列进行组合。
[0158] 较佳地,组合模块802根据公式六按子帧顺序将Q个子帧上的扩频数据序列进行组合。
[0159] 较佳地,本发明实施例的设备还可以进一步包括:通知模块804。
[0160] 通知模块804,用于为用户设备配置传输参数。
[0161] 较佳地,传输参数包括下列信息中的一种或多种:
[0162] Q值、映射到一个子帧上的扩频数据序列的长度和每个子帧内占用的时频资源。
[0163] 较佳地,通知模块804通过高层信令半静态,为用户设备配置传输参数;或通过调度上行传输的控制信令,为用户设备配置传输参数。
[0164] 基于同一发明构思,本发明实施例中还提供了一种用户设备进行上行传输的方法以及网络侧设备进行上行传输的方法,由于这些方法解决问题的原理与本发明实施例进行上行传输的系统相似,因此这些方法的实施可以参见系统的实施,重复之处不再赘述。
[0165] 如图9所示,本发明实施例用户设备进行上行传输的方法包括下列步骤:
[0166] 步骤901、用户设备分别对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列,并将每个复符号数据的扩频数据序列映射到Q个子帧上,其中Q是正整数;
[0167] 步骤902、用户设备将映射到每个子帧上的扩频数据序列分别进行调制生成每个子帧对应的发送信号;
[0168] 步骤903、用户设备将发送信号在对应的子帧上发送。
[0169] 较佳地,步骤901中,用户设备对每个复符号数据进行扩频的方式有很多种,下面列举两种:
[0170] 扩频方式一、针对一个复符号数据,用户设备使用该复符号数据对应的扩频码,对该复符号数据进行扩频;
[0171] 其中,每个复符号数据对应的扩频码全部相同或全不相同或部分相同。
[0172] 在实施中,每个复符号数据对应的扩频码可以在协议中规定,也可以由网络侧通知用户设备。比如可以按照复符号数据在整个需要发送的数据中的位置确定对应的扩频码,即预先设定位置和扩频码的对应关系,然后根据复符号数据的位置确定对应的扩频码。
[0173] 扩频方式二、用户设备将所有复符号数据进行分组;针对一组复符号数据,使用该组对应的扩频码对该组中的所有复符号数据进行扩频;其中,每组对应的扩频码全不相同。
[0174] 扩频方式二中,用户设备可以根据设定的顺序将复符号数据进行分组,但是需要保证用户设备和网络侧设备对于设定的顺序的理解一致。
[0175] 较佳地,复符号数据对应的扩频码由接收到的网络侧指示确定,或按照预设规则确定。
[0176] 下面列举几个分组方式:
[0177] 分组方式一、用户设备顺序选取复符号数据进行分组。
[0178] 具体的,用户设备按照设定的每组中包括的复符号数据的数量,将复符号数据顺序划分为多组。
[0179] 较佳地,针对一组复符号数据,用户设备根据公式一确定该组数据中的复符号数据。
[0180] 分组方式二、用户设备间隔选取复符号数据进行分组。
[0181] 具体的,用户设备按照每组中包括的复符号数据的间隔数量,将复符号数据顺序划分为多组。
[0182] 较佳地,针对一组复符号数据,用户设备根据公式二确定该组数据中的复符号数据。
[0183] 较佳地,步骤901中,用户设备将每个复符号数据的扩频数据序列映射到Q个子帧上的方式有很多种,下面列举两种:
[0184] 映射方式一、用户设备顺序选取扩频数据序列映射到Q个子帧上。
[0185] 具体的,用户设备按照设定的映射到一个子帧的扩频数据序列数量,将扩频数据序列顺序划分为多组,每组映射到一个子帧上。
[0186] 其中,映射到一个子帧的扩频数据序列数量可以根据传输的数据量大小和Q值确定。
[0187] 在实施中,针对一个子帧,用户设备可以根据公式三确定需要映射到该子帧的扩频数据序列。
[0188] 映射方式二、用户设备顺序选取扩频数据序列映射到Q个子帧上。
[0189] 具体的,用户设备按照设定的间隔个数,将扩频数据序列顺序划分为多组,每组映射到一个子帧上。
[0190] 其中,间隔个数可以等于子帧个数Q,或者由网络侧配置的传输参数获得。
[0191] 在实施中,针对一个子帧,用户设备可以根据公式五确定需要映射到该子帧的扩频数据序列。
[0192] 较佳地,步骤902中,针对一个子帧的一个扩频数据序列,用户设备10将扩频数据序列映射到时频资源上,并将时频资源上的扩频数据序列进行调制生成OFDM符号。
[0193] 在实施中,映射到每个OFDM符号上的扩频数据序列经过OFDM调制或者DFT-S-OFDM调制,生成OFDM符号。
[0194] 较佳地,用户设备将扩频数据序列映射到时频资源上的方式有三种,下面分别列举介绍。
[0195] 映射方式一、用户设备采用时域方式,将一个复符号数据对应的扩频数据序列映射到不同OFDM符号的同一个子载波上,具体可以参见图3。
[0196] 映射方式二、用户设备采用频域方式,将一个复符号数据对应的扩频数据序列映射到同一个OFDM符号的多个子载波上,具体可以参见图4。
[0197] 映射方式三、用户设备采用时域和频域结合的方式,将一个复符号数据对应的扩频数据序列映射到多个OFDM符号的多个子载波上,具体可以参见图5。
[0198] 较佳地,用户设备将扩频数据序列映射到时频资源上时,还可以将扩频数据序列映射到全部或部分时频资源上。
[0199] 具体的,用户设备可以通过选择映射到一个子帧内的扩频数据序列的长度,将扩频数据序列映射到全部时频资源上或者只映射到部分时频资源上。对于后者,可以在不同的时频资源上同时传输用户设备的多个数据符号。例如,四个数据符号分别经过扩频映射到四块时频区域,具体可以参见图6。
[0200] 其中,不同的时频区域,还可以分别传输不同的用户设备的数据符号。
[0201] 在实施中,用户设备对每个复符号数据进行扩频得到每个复符号数据的扩频数据序列之前还需要进行信道编码、加扰和调制映射,参见图1。具体的:
[0202] 信道编码:源数据块含Nbit比特数据s(0),...,s(Nbit-1),经过信道编码后数据块长度为Mbit比特,b(0),...,b(Mbit-1);
[0203] 加扰:信道编码后的数据块b(0),...,b(Mbit-1)通过加扰,生成加扰后的数据块[0204] 星座图映射:加扰后的数据块 经过星座图映射生成复符号数据块d(0),...,d(Msym-1),包含Msym个复符号数据。具体的映射方式可以是BPSK,QPSK,
16QAM,64QAM等。
[0205] 其中,用户设备和网络侧设备可以根据传输参数进行上述传输过程。
[0206] 在实施中,传输参数可以预先在协议中规定,也可以由网络侧设备进行配置;还可以传输参数中的部分信息由协议规定,部分信息由网络侧设备进行配置。不管采用哪种方式,只要保证用户设备和网络侧设备进行上行传输确定的参数相同即可。
[0207] 针对网络侧设备,由于知道用户设备的传输参数,所以知道用户设备将数据分别映射到哪些子帧上,相应的,网络侧设备就可以从对应的子帧上获取来自用户设备的数据进行组后,并对组合后的数据进行解扩处理后,再进行接收处理。
[0208] 如图10所示,本发明实施例网络侧设备进行上行传输的方法包括下列步骤:
[0209] 步骤1010、网络侧设备在Q个子帧内的特定时频资源上提取扩频数据序列,其中该扩频数据序列对应同一个复符号数据,Q是正整数;
[0210] 步骤1011、网络侧设备将Q个子帧的扩频数据序列进行组合,得到一个复符号数据的完整扩频数据序列;
[0211] 步骤1012、网络侧设备对完整扩频数据序列进行解扩频,得到复符号数据对应的解扩数据。
[0212] 较佳地,若用户设备顺序选取扩频数据序列映射到Q个子帧上,步骤1011中,网络侧设备按子帧顺序将Q个子帧上的扩频数据序列进行组合。
[0213] 比如每个子帧映射的扩频数据序列长度为10,则组合后的数据序列中,第1~10个数据为第1个子帧上的扩频数据序列,第11~20个数据为第2个子帧上的扩频数据序列,以此类推。
[0214] 其中,映射到一个子帧的扩频数据序列长度可以根据扩频数据序列的长度和Q值确定。
[0215] 在实施中,网络侧设备根据公式四按子帧顺序将Q个子帧上的扩频数据序列进行组合。
[0216] 较佳地,若用户设备间隔选取扩频数据序列映射到Q个子帧上,步骤1011中,网络侧设备间隔选取Q个子帧上的扩频数据序列进行组合。
[0217] 例如,每个子帧映射的扩频数据序列长度为30,共有10个子帧,设定的间隔个数为10,则将1~10个子帧的每个子帧第1个扩频数据按照顺序排在组合扩频数据序列的第1位~第10位,第1个子帧~第10个子帧的每个子帧的第2个扩频数据排在组合数据的第11位~第20位,以此类推,最后将排好的扩频数据序列进行组合。
[0218] 在实施中,网络侧设备根据公式六间隔选取Q个子帧上的扩频数据序列进行组合。
[0219] 较佳地,若用户设备采用时域方式,将一个复符号数据对应的扩频数据序列映射到不同OFDM符号的同一个子载波上,步骤1010中,网络侧设备采用时域方式,在Q个子帧内的特定时域资源上提取扩频数据序列。
[0220] 较佳地,若用户设备采用频域方式,将一个复符号数据对应的扩频数据序列映射到同一个OFDM符号的多个子载波上,步骤1010中,网络侧设备采用频域方式,在Q个子帧内的特定频域资源上提取扩频数据序列。
[0221] 较佳地,若用户设备采用时域和频域结合的方式,将一个复符号数据对应的扩频数据序列映射到多个OFDM符号的多个子载波上,步骤1010中,网络侧设备采用采用时域和频域结合的方式,在Q个子帧内的特定时域和频域资源上提取扩频数据序列。
[0222] 较佳地,网络侧设备得到复符号数据对应的解扩数据后,还需要对解扩数据进行接收处理。具体的,得到复符号数据对应的解扩数据包括:
[0223] 解调制,解扰以及解码处理。
[0224] 其中,用户设备和网络侧设备可以根据传输参数进行上述传输过程。
[0225] 在实施中,传输参数可以预先在协议中规定,也可以由网络侧设备进行配置;还可以传输参数中的部分信息由协议规定,部分信息由网络侧设备进行配置。不管采用哪种方式,只要保证用户设备和网络侧设备进行上行传输确定的参数相同即可。
[0226] 如果需要网络侧设备进行配置,较佳地,网络侧设备为用户设备配置传输参数。
[0227] 具体的,网络侧设备通过高层信令半静态,为用户设备配置传输参数;或通过调度上行传输的控制信令,为用户设备配置传输参数。
[0228] 需要说明的是,本发明实施例并不局限于上述两种配置方式,其他能够为用户设备配置传输参数的方式都适用本法明实施例。
[0229] 针对网络侧设备,由于知道用户设备的传输参数,所以知道用户设备将数据分别映射到哪些子帧上,相应的,网络侧设备就可以从对应的子帧上获取来自用户设备的数据进行组后,并对组合后的数据进行解扩处理后,再进行接收处理。
[0230] 其中,本发明实施例的网络侧设备可以是基站(比如宏基站、家庭基站等),也可以是RN设备,还可以是其它网络侧设备。
[0231] 本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
[0232] 本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
[0233] 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
[0234] 这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
[0235] 尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0236] 显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。