薄基片宽带差波束平面喇叭天线转让专利

申请号 : CN201310617490.5

文献号 : CN103594812B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 殷晓星赵洪新王磊

申请人 : 东南大学

摘要 :

薄基片宽带差波束平面喇叭天线涉及一种喇叭天线。该天线包括在介质基板(1)上的微带馈线(2)、喇叭天线(3)和对数周期振子(4),喇叭天线(3)由第一金属平面(7)、第二金属平面(8)和两排金属化过孔喇叭侧壁(9)组成,喇叭天线(3)中有奇数个金属化过孔阵列(11)和偶数个介质填充波导(17),在喇叭天线(3)口径面(10)上每个介质填充波导(17)都接有一个对数周期振子(4),左半天线(15)及所接对数周期振子(4)与右半天线(16)及所接对数周期振子(4)对称。天线辐射场极化方向与基板平行,该天线可使用薄基板制造且频带宽、增益高、大零深、成本低和结构紧凑。

权利要求 :

1.薄基片宽带差波束平面喇叭天线,其特征在于该天线包括设置在介质基板(1)上的微带馈线(2)、基片集成喇叭天线(3)和多个对数周期振子(4);所述微带馈线(2)的第一端口(5)是该天线的输入输出端口,微带馈线(2)的第二端口(6)与基片集成喇叭天线(3)相接;基片集成喇叭天线(3)由位于介质基板(1)一面的第一金属平面(7)、位于介质基板(1)另一面的第二金属平面(8)和穿过介质基板(1)连接第一金属平面(7)和第二金属平面(8)的两排金属化过孔喇叭侧壁(9)组成,基片集成喇叭天线(3)的两排金属化过孔喇叭侧壁(9)之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线(3)的口径面(10);基片集成喇叭天线(3)中有奇数个金属化过孔阵列(11)连接第一金属平面(7)和第二金属平面(8),各个金属化过孔阵列(11)的长度一样,金属化过孔阵列(11)的头端(12)在基片集成喇叭天线(3)内部,金属化过孔阵列(11)的尾端(13)在基片集成喇叭天线(3)的口径面(10)上;在金属化过孔阵列(11)中有一个中间金属化过孔阵列(14)把基片集成喇叭天线(3)分成对称的左半天线(15)和右半天线(16)两部分;相邻的两个金属化过孔阵列(11)、或者是一个金属化过孔阵列(11)与其相邻的一排金属化过孔喇叭侧壁(9),与第一金属平面(7)和第二金属平面(8)构成介质填充波导(17),在口径面(10)外每个介质填充波导(17)接有一个对数周期振子(4);

每个对数周期振子(4)在位于介质基板(1)的两面分别有顶面辐射臂(20)和底面辐射臂(21),对数周期振子(4)的顶面辐射臂(20)与基片集成喇叭天线(3)的第一金属平面(7)相连,对数周期振子(4)的底面辐射臂(21)与基片集成喇叭天线(3)的第二金属平面(8)相连,每个对数周期振子(4)的顶面辐射臂(20)和底面辐射臂(21)各有二个或两个以上的振子,顶面辐射臂(20)和底面辐射臂(21)振子的数量一样,且顶面辐射臂(20)和底面辐射臂(21)上对应的振子向相反的方向伸展。

2.根据权利要求1所述的薄基片宽带差波束平面喇叭天线,其特征在于微带馈线(2)的导带(18)与第一金属平面(7)相接,微带馈线(2)的接地面(19)与第二金属平面(8)相接。

3.根据权利要求1所述的薄基片宽带差波束平面喇叭天线,其特征在于介质填充波导(17)的宽度要使得电磁波可以在其中传播而不被截止,介质填充波导(17)的长度有半个波导波长以上。

4.根据权利要求1所述的薄基片宽带差波束平面喇叭天线,其特征在于左半天线(15)所接的对数周期振子(4)与右半天线(16)所接的对数周期振子(4)是对称的。

5.根据权利要求1所述的薄基片宽带差波束平面喇叭天线,其特征在于所述的金属化过孔喇叭侧壁(9)和金属化过孔阵列(11)中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁(9)和金属化过孔阵列(11)能够等效为电壁。

说明书 :

薄基片宽带差波束平面喇叭天线

技术领域

[0001] 本发明涉及一种喇叭天线,尤其是一种薄基片宽带差波束平面喇叭天线。

背景技术

[0002] 喇叭天线在卫星通信、地面微波链路及射电望远镜等系统中有着广泛的应用。但是,三维喇叭天线的巨大几何尺寸制约了其在平面电路中的应用和发展。近年来,基片集成波导技术的提出和发展很好的促进了平面喇叭天线的发展。基片集成波导有尺寸小、重量轻、易于集成和加工制作等优点。基于基片集成波导的平面的基片集成波导平面喇叭天线除了具有喇叭天线的特点外,还很好的实现了喇叭天线的小型化、轻型化,而且易于集成在微波毫米波平面电路中。传统的基片集成波导平面喇叭天线的有一个限制,天线喇叭口基板的厚度要大于十分之一工作波长,天线才能有较好的辐射性能,不然由于反射,天线里的能量辐射不出去。这样就要求天线基板的厚度不能太薄,在L波段等较低频段要满足这个要求更是十分困难,很厚的基板不仅体积和重量很大,抵消了集成的优点,而且还增加了成本。另外这些天线辐射场的极化方向一般都是垂直于介质基板,而有些应用需要辐射场的极化平行于介质基板。已有的一些天线在平面喇叭天线前面加载贴片改善薄基片平面喇叭天线的辐射,但加载的贴片尺寸较大,而且工作频带较窄。通常为了实现差波束,需要采用特别的馈电装置,这些馈电装置或者在平面电路中不易实现,或者是窄带的移相电路。

发明内容

[0003] 技术问题:本发明的目的是提出一种薄基片宽带差波束平面喇叭天线,该天线辐射场的极化方向与介质基板平行,可以使用非常薄的介质基板制造,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,具有较宽的工作频带,增加天线差波束的零深及提高天线差波束的斜率。
[0004] 技术方案:本发明的薄基片宽带差波束平面喇叭天线,其特征在于该天线包括设置在介质基板上的微带馈线、基片集成喇叭天线和多个对数周期振子;所述微带馈线的第一端口是该天线的输入输出端口,微带馈线的第二端口与基片集成喇叭天线相接;基片集成喇叭天线由位于介质基板一面的第一金属平面、位于介质基板另一面的第二金属平面和穿过介质基板连接第一金属平面和第二金属平面的两排金属化过孔喇叭侧壁组成,基片集成喇叭天线的两排金属化过孔喇叭侧壁之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线的口径面;基片集成喇叭天线中有奇数个金属化过孔阵列连接第一金属平面和第二金属平面,各个金属化过孔阵列的长度一样,金属化过孔阵列的头端在基片集成喇叭天线内部,金属化过孔阵列的尾端在基片集成喇叭天线的口径面上;在金属化过孔阵列中有一个中间金属化过孔阵列把基片集成喇叭天线分成对称的左半天线和右半天线两部分;相邻的两个金属化过孔阵列、或者是一个金属化过孔阵列与其相邻的一排金属化过孔喇叭侧壁,与第一金属平面和第二金属平面构成介质填充波导,在口径面外每个介质填充波导接有一个对数周期振子。
[0005] 微带馈线的导带与第一金属平面相接,微带馈线的接地面与第二金属平面相接。
[0006] 介质填充波导的宽度要使得电磁波可以在其中传播而不被截止,介质填充波导的长度有半个波导波长以上。
[0007] 每个对数周期振子在位于介质基板的两面分别有顶面辐射臂和底面辐射臂,对数周期振子的顶面辐射臂与基片集成喇叭天线的第一金属平面相连,对数周期振子的底面辐射臂与基片集成喇叭天线的第二金属平面相连,每个对数周期振子的顶面辐射臂和底面辐射臂各有二个或两个以上的振子,顶面辐射臂和底面辐射臂振子的数量一样,且顶面辐射臂和底面辐射臂上对应的振子向相反的方向伸展。
[0008] 左半天线所接的对数周期振子与右半天线所接的对数周期振子是对称的。
[0009] 金属化过孔喇叭侧壁和金属化过孔阵列中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁和金属化过孔阵列能够等效为电壁。
[0010] 电磁波从微带馈线的一端输入,经过微带馈线的另一端进入基片集成波导喇叭天线,传播一段距离后,遇到金属化过孔阵列,就分别进入各个介质填充波导传输,进入各个介质波导的电磁波通过天线口径面进入对数周期振子辐射,辐射场的极化方向也变成与基板接近平行的水平方向,对称周期振子的工作带宽很宽,因此天线可以宽频带工作。由于左半天线对数周期振子的辐射臂上的振子伸展方向与右半天线对数周期振子的辐射臂上的振子伸展方向是相反的,因此左半天线对数周期振子辐射场的极化方向与右半天线对数周期振子辐射场的极化方向相反,这样就在平行介质基板的方向形成了差波束。
[0011] 由于有多个金属化过孔阵列把天线的口径面分成很多个小的口径面,每个小口径面上接的对数周期振子的尺寸可以做的很小,这样天线的结构紧凑、尺寸也只增加很少。
[0012] 天线从馈电微带线到对数周期振子之间,都是封闭的基片集成波导结构,因此馈电损耗较小。
[0013] 有益效果:本发明薄基片宽带差波束平面喇叭天线的有益效果是,该天线辐射场的极化方向与介质基板平行;该天线可以使用低于百分之二的波长的厚度的介质基板制造,远低于通常平面喇叭天线所要求的十分之一波长的基板厚度,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,例如在6GHz频率,采用环氧树脂材料基板的厚度可以2.5mm减小到0.5mm,从而大大减小尺寸、重量和成本;天线可增加差波束的零深及提高天线差波束的斜率,天线的工作频带宽、结构紧凑、馈电损耗小。

附图说明

[0014] 下面结合附图对本发明进一步说明。
[0015] 图1为本发明薄基片宽带差波束平面喇叭天线的结构示意图。
[0016] 图中有:介质基板1、微带馈线2、基片集成喇叭天线3、对数周期振子阵列4;微带馈线2的第一端口5、微带馈线2的第二端口6、介质基板1的第一金属平面7、介质基板1的第二金属平面8、金属化过孔喇叭侧壁9、天线3的口径面10、金属化过孔阵列11、金属化过孔阵列11的头端12、金属化过孔阵列11的尾端13、中间金属化过孔阵列14、左半天线15、右半天线16、介质填充波导17、微带馈线2的导带18、微带馈线2的接地面19、对数周期振子4的顶面辐射臂20和对数周期振子4的底面辐射臂21。

具体实施方式

[0017] 本发明所采用的实施方案是:薄基片宽带差波束平面喇叭天线包括设置在介质基板1上的微带馈线2、基片集成喇叭天线3和多个对数周期振子4;所述微带馈线2的第一端口5是该天线的输入输出端口,微带馈线2的第二端口6与基片集成喇叭天线3相接;基片集成喇叭天线3由位于介质基板1一面的第一金属平面7、位于介质基板1另一面的第二金属平面8和穿过介质基板1连接第一金属平面7和第二金属平面8的两排金属化过孔喇叭侧壁9组成,基片集成喇叭天线3的两排金属化过孔喇叭侧壁9之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线3的口径面10;基片集成喇叭天线3中有奇数个金属化过孔阵列11连接第一金属平面7和第二金属平面8,各个金属化过孔阵列11的长度一样,金属化过孔阵列11的头端12在基片集成喇叭天线3内部,金属化过孔阵列11的尾端13在基片集成喇叭天线3的口径面10上;在金属化过孔阵列11中有一个中间金属化过孔阵列14把基片集成喇叭天线3分成对称的左半天线15和右半天线16两部分;相邻的两个金属化过孔阵列11、或者是一个金属化过孔阵列11与其相邻的一排金属化过孔喇叭侧壁9,与第一金属平面7和第二金属平面8构成介质填充波导17,在口径面10外每个介质填充波导17接有一个对数周期振子4。
[0018] 微带馈线2的导带18与第一金属平面7相接,微带馈线2的接地面19与第二金属平面8相接。
[0019] 介质填充波导17的宽度要使得电磁波可以在其中传播而不被截止,介质填充波导17的长度有半个波导波长以上。
[0020] 每个对数周期振子4在位于介质基板1的两面分别有顶面辐射臂20和底面辐射臂21,对数周期振子4的顶面辐射臂20与基片集成喇叭天线3的第一金属平面7相连,对数周期振子4的底面辐射臂21与基片集成喇叭天线3的第二金属平面8相连,每个对数周期振子4的顶面辐射臂20和底面辐射臂21各有二个或两个以上的振子,顶面辐射臂20和底面辐射臂21振子的数量一样,且顶面辐射臂20和底面辐射臂21上对应的振子向相反的方向伸展。
[0021] 左半天线15所接的对数周期振子4与右半天线16所接的对数周期振子4是对称的。
[0022] 金属化过孔喇叭侧壁9和金属化过孔阵列11中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁9和金属化过孔阵列11能够等效为电壁。
[0023] 在设计时,金属化过孔阵列11的长度一般要使得介质填充波导17的长度有半个波导波长以上才能使天线有较大的增益。
[0024] 在工艺上,薄基片宽带差波束平面喇叭天线既可以采用普通的印刷电路板(PCB)工艺,也可以采用低温共烧陶瓷(LTCC)工艺或者CMOS、Si基片等集成电路工艺实现。其中金属化过孔可以是空心金属通孔也可以是实心金属孔,也可以是连续的金属化壁,金属通孔的形状可以是圆形,也可以是方形或者其他形状的。
[0025] 在结构上,依据同样的原理,可以增加或者减少金属化过孔阵列11的数量,进而改变对数周期振子4的数量和尺寸,只要保证介质填充波导17能够传输主模。
[0026] 根据以上所述,便可实现本发明。