锂离子二次电池转让专利

申请号 : CN201180071437.9

文献号 : CN103597638B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 高畑浩二

申请人 : 丰田自动车株式会社

摘要 :

该锂离子二次电池(100),具备:涂布于正极集电体(221)上的正极合剂层(223)、涂布于负极集电体(241)上的负极合剂层(243)、和包含预先确定的浓度的锂离子的电解液。而且,渗入到正极合剂层(223)每1cm3的电解液中的锂离子数X、和渗入到负极合剂层(243)每1cm3的电解液中的锂离子数Y,全都为3.75×1019以上。

权利要求 :

1.一种电源系统,具备:

二次电池;和

电池控制部,其与所述二次电池电连接,控制所述二次电池放电的消耗电荷量,所述二次电池具备:正极集电体;

涂布于所述正极集电体上,至少包含正极活性物质和导电材料的正极合剂层;

负极集电体;

涂布于所述负极集电体上,至少包含负极活性物质的负极合剂层;和包含预先确定的浓度的锂离子的电解液,所述正极合剂层具有所述电解液渗入的孔隙,所述负极合剂层具有所述电解液渗入的孔隙,渗入到所述正极合剂层的所述电解液中的锂离子数X0由下式求得,X0=(所述正极合剂层的孔隙的容积Vb)×(所述电解液的锂离子浓度L)×阿伏伽德罗常数(NA)×1/1000;

渗入到所述负极合剂层的所述电解液中的锂离子数Y0由下式求得,Y0=(所述负极合剂层的孔隙的容积Vd)×(所述电解液的锂离子浓度L)×阿伏伽德罗常数(NA)×1/1000,3

所述孔隙的容积单位为cm,所述锂离子浓度L的单位为摩尔/升,所述消耗电荷量用下式表示,

消耗电荷量=消耗锂离子数Z×基本电荷所述消耗电荷量和基本电荷的单位为库仑,所述电池控制部确定所述消耗电荷量的上限值W,以使一次充电或者放电中消耗的消耗锂离子数Z,小于所述锂离子数X0和所述锂离子数Y0之中小的一者,并且进行控制以使所述二次电池在所述消耗电荷量不超过上限值W的范围进行放电。

2.根据权利要求1所述的电源系统,所述消耗电荷量的上限值W,是在20C以上的高速率下进行所述二次电池的一次充电或放电时的消耗电荷量。

3.根据权利要求1或2所述的电源系统,所述负极合剂层中所含有的所述负极活性物

14

质每单位重量的锂离子数Y1为4.3×10 /g以下。

4.根据权利要求1或2所述的电源系统,所述二次电池是使用多个锂离子二次电池构建的电池组,所述消耗锂离子数Z为构成电池组的多个锂离子二次电池的消耗锂离子数的总和。

3

5.根据权利要求1或2所述的电源系统,所述正极合剂层的密度A1为A1≤1.9g/cm 。

6.根据权利要求1或2所述的电源系统,所述导电材料的体积密度A2为A2≤0.04g/3

cm。

7.根据权利要求1或2所述的电源系统,所述正极合剂层中,所述导电材料相对于所述正极活性物质的重量比例A3为11%以下。

说明书 :

锂离子二次电池

技术领域

[0001] 本发明涉及锂离子二次电池。
[0002] 在此,本说明书中,所谓“二次电池”,一般是指可反复充电的蓄电装置,是包括:锂离子二次电池(lithium-ion secondary battery)、镍氢电池、镍镉电池等所谓的蓄电池以及双电层电容器等的蓄电元件的用语。
[0003] 另外,本说明书中,所谓“锂离子二次电池”,是指利用锂离子作为电解质离子,通过在正负极间的与锂离子相伴的电荷的移动来实现充放电的二次电池。一般称为“锂二次电池”的电池,是本说明书中的锂离子二次电池所包含的典型例。

背景技术

[0004] 例如,在后述的专利文献1中,公开了“使用碳材料作为负极担载体,并使用在作为电解液的有机溶剂中溶解了作为电解质的锂盐的有机电解液而成的锂二次电池”。在专利文献1中,公开了“对于每1克所述碳材料,将电解液中的所述锂盐的量设定为0.5毫摩尔以下”。另外,锂二次电池的其他在先技术文献,例如有专利文献2~6。
[0005] 在先技术文献
[0006] 专利文献1:日本国专利申请公开平成07—288139号公报
[0007] 专利文献2:日本国专利申请公开2001—093573号公报
[0008] 专利文献3:日本国专利申请公开平成05—144469号公报
[0009] 专利文献4:日本国专利申请公开2000—003723号公报
[0010] 专利文献5:日本国专利申请公开2004—296305号公报
[0011] 专利文献6:日本国专利申请公开2005—229103号公报

发明内容

[0012] 锂离子二次电池,例如,有在低温环境下输出特性降低的倾向。特别是在寒冷地带所使用的车辆所搭载的车辆驱动用电池,希望尽可能将低温下的输出特性降低抑制为较小。
[0013] 锂离子二次电池,具备正极集电体、正极合剂层、负极集电体、负极合剂层、电解液和电池壳体。在此,正极合剂层被涂布于正极集电体上,并至少包含正极活性物质和导电材料。负极合剂层被涂布于负极集电体上,并至少包含负极活性物质。电解液包含预先确定的浓度的锂离子。另外,正极合剂层具有电解液渗入的孔隙。另外,负极合剂层具有电解液3
渗入的孔隙。该锂离子二次电池中,渗入到正极合剂层每1cm的电解液中的锂离子数X、和
3 19
渗入到负极合剂层每1cm的电解液中的锂离子数Y,全都为3.75×10 以上。其中,锂离子
3
数X由下式求得,X=(所述正极合剂层每1cm的所述正极合剂层的孔隙的容积Vb)×(所述电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。另外,锂离子数Y由下式
3
求得,Y=(所述负极合剂层每1cm的所述负极合剂层的孔隙的容积Vd)×(所述电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。
[0014] 根据该锂离子二次电池,在正极合剂层中包含适当量的锂离子。因此,能够将低温时输出功率降低抑制为较小。
[0015] 另外,优选锂离子数X和锂离子数Y全都比7.00×1020大。由此能够将低温时的输出功率降低抑制为更小。
[0016] 另外,锂离子数Y进一步除以所述负极合剂层中每1cm3所含有的负极活性物质的14
重量(g)所得的值Y1可以为4.3×10 以下。该情况下,例如,即使在60℃左右的温度环境中,也容易维持锂离子二次电池100的容量。
[0017] 另外,正极合剂层的密度A1可以是A1≤1.9g/cm3。另外,导电材料的体积密度A23
可以是A2≤0.04g/cm。另外,正极合剂层中,导电材料相对于正极活性物质的的重量比例A3可以是11%以下。
[0018] 另外,电源系统具备:二次电池;和电池控制部,其与二次电池电连接,确定二次电池放电时每单位时间的消耗电荷量的上限值W。
[0019] 在此,二次电池具备:正极集电体;涂布于正极集电体上,至少包含正极活性物质和导电材料的正极合剂层;负极集电体;涂布于负极集电体上,至少包含负极活性物质的负极合剂层;和包含预先确定的浓度的锂离子的电解液。
[0020] 另外,正极合剂层具有所述电解液渗入的孔隙,负极合剂层具有电解液渗入的孔3 3
隙。另外,渗入到正极合剂层每1cm的电解液中的锂离子数X、和渗入到负极合剂层每1cm
3
的电解液中的锂离子数Y,全都为正极合剂层每1cm的消耗锂离子数Zx以上。
[0021] 另外,锂离子数X由下式求得,X=(正极合剂层每1cm3的正极合剂层的孔隙的容积Vb)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。另外,锂离子数Y3
由下式求得,Y=(负极合剂层每1cm的负极合剂层的孔隙的容积Vd)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。而且,消耗锂离子数Zx由下式求得,Zx={(所述消耗电荷量的上限值W÷基本电荷)/正极合剂层的体积}。
[0022] 另外,二次电池是使用多个锂离子二次电池构建的电池组,消耗锂离子数Zx,优选为Zx={(消耗电荷量的上限值W÷基本电荷)/(构成电池组1000的锂离子二次电池100的正极合剂层223的体积的总和)}。
[0023] 根据该电源系统,在通过电池控制部控制的范围内,可在各锂离子二次电池的正极合剂层、和负极合剂层中确保各自适当量的锂离子。因此,在通过电池控制部控制的范围内,锂离子二次电池的电阻增加率可被抑制为较低。

附图说明

[0024] 图1是表示锂离子二次电池的结构的一例的图。
[0025] 图2是表示锂离子二次电池的卷绕电极体的图。
[0026] 图3表示图2中的Ⅲ-Ⅲ截面。
[0027] 图4是表示卷绕电极体的未涂布部和电极端子的焊接处的侧面图。
[0028] 图5是表示正极合剂层的结构的截面图。
[0029] 图6是表示负极合剂层的结构的截面图。
[0030] 图7是模式地表示锂离子二次电池充电时的状态的图。
[0031] 图8是模式地表示锂离子二次电池放电时的状态的图。
[0032] 图9是表示在评价试验中使用的18650型单元电池的模式图。
[0033] 图10是对于样品1~11,示出锂离子数X0、锂离子数Y0和在20C的充放电下的电阻增加率(%)的关系的图。
[0034] 图11是表示搭载了车辆驱动用电池的车辆的一例的图。
[0035] 图12是表示本发明的一实施方式涉及的锂离子二次电池的试验结果的图。
[0036] 图13是表示本发明的一实施方式涉及的锂离子二次电池的试验结果的图。
[0037] 图14是表示本发明的一实施方式涉及的电源系统的图。

具体实施方式

[0038] 以下,基于附图说明本发明的一实施方式涉及的二次电池。再者,对发挥相同作用的构件、部位适当地附带相同标记。另外,各附图为模式地描绘,并不一定反映实物。在此,首先说明作为本发明的二次电池的一例的锂离子二次电池的结构例,其后,说明锂离子二次电池的正极合剂层和负极合剂层,进一步说明锂离子二次电池的评价试验。
[0039] 图1表示锂离子二次电池100。该锂离子二次电池100,如图1所示,具备卷绕电极体200和电池壳体300。另外,图2是表示卷绕电极体200的图。图3表示图2中的Ⅲ-Ⅲ截面。
[0040] 卷绕电极体200,如图2所示,具有正极片220、负极片240和隔板262、264。正极片220、负极片240和隔板262、264分别是带状的片材料。
[0041] <正极片220>
[0042] 正极片220,如图2所示,具有带状的正极集电体221(正极芯材)。正极集电体221可合适地使用适合于正极的金属箔。该正极集电体221可使用具有规定宽度的带状的铝箔。另外,正极片220具有未涂布部222和正极合剂层223。未涂布部222沿正极集电体
221的宽度方向一侧的边缘部设定。正极合剂层223是涂布了包含正极活性物质的正极合剂224的层。正极合剂224,除了设定在正极集电体221上的未涂布部222以外,涂布在正极集电体221的两面。
[0043] <正极合剂224、正极活性物质>
[0044] 在此,正极合剂224是混合了正极活性物质、导电材料、粘合剂等的合剂。在正极活性物质中,可以使用可作为锂离子二次电池的正极活性物质使用的物质。如果举出正极活性物质的例子,则可列举LiNiCoMnO2(锂镍钴锰复合氧化物)、LiNiO2(镍酸锂)、LiCoO2(钴酸锂)、LiMn2O4(锰酸锂)、LiFePO4(磷酸铁锂)等的锂过渡金属氧化物。在此,LiMn2O4例如具有尖晶石结构。另外,LiNiO2、LiCoO2具有层状的岩盐结构。另外,LiFePO4例如具有橄榄石结构。橄榄石结构的LiFePO4,有例如纳米等级的粒子。另外,橄榄石结构的LiFePO4还可以用碳膜被覆。
[0045] <导电材料>
[0046] 正极合剂224除了正极活性物质以外,可以根据需要包含导电材料、粘合剂(粘结剂)等的任意成分。作为导电材料,可例示例如碳粉末、碳纤维等的碳材料。可以单独使用从这样的导电材料中选出的一种也可以并用两种以上。作为碳粉末,可以使用各种炭黑(例如,乙炔黑、油炉黑、石墨化炭黑、炭黑、石墨、科琴黑)、石墨粉末等的碳粉末。
[0047] <粘合剂、增粘剂、溶剂>
[0048] 另外,作为粘合剂,可以使用在使用的溶剂中溶解或分散可溶的聚合物。例如,在使用了水性溶剂的正极合剂组合物中,可以优选使用羧甲基纤维素(CMC)、羟丙基甲基纤维素(HPMC)等的纤维素系聚合物(例如聚乙烯醇(PVA)或聚四氟乙烯(PTFE)等)、四氟乙烯-六氟丙烯共聚物(FEP)等的氟系树脂(例如醋酸乙烯酯共聚物或苯乙烯-丁二烯橡胶(SBR)等)、丙烯酸改性SBR树脂(SBR系乳胶)等的橡胶类等的水溶性或水分散性聚合物。另外,在使用了非水溶剂的正极合剂组合物中,可以优选使用聚偏二氟乙烯(PVDF)、聚偏二氯乙烯(PVDC)等的聚合物。再者,上述中例示了的聚合物材料,除了发挥作为粘合剂的功能以外,也可出于发挥作为上述组合物的增粘剂等添加剂的功能的目的来使用。作为溶剂,水性溶剂和非水溶剂的任一种都可以使用。作为非水溶剂的优选例,可列举N-甲基-2-吡咯烷酮(NMP)。
[0049] 正极活性物质在正极合剂全体所占的质量比例,优选为大致50质量%以上(典型的是50~95质量%),通常更优选为大致70~95质量%(例如75~90质量%)。另外,导电材料在正极合剂全体所占的比例,例如可以设为大致2~20质量%,通常优选设为大致2~15质量%。使用粘合剂的组成中,粘合剂在正极合剂全体所占的比例,例如可以设为大致1~10质量%,通常优选设为大致2~5质量%。
[0050] <负极片240>
[0051] 负极片240,如图2所示,具有带状的负极集电体241(负极芯材)。负极集电体241可合适地使用适合于负极的金属箔。该实施方式中,负极集电体241使用具有规定宽度的带状的铜箔。另外,负极片240具有未涂布部242和负极合剂层243。未涂布部242沿负极集电体241的宽度方向一侧的边缘部设定。负极合剂层243是涂布了包含负极活性物质的负极合剂244的层。负极合剂244,除了设定在负极集电体241上的未涂布部242以外,涂布在负极集电体241的两面。
[0052] <负极合剂244>
[0053] 在此,负极合剂244,是混合了负极活性物质、增粘剂、粘合剂等的合剂。在负极活性物质中,可以使用可作为锂离子二次电池的负极活性物质使用的物质。如果举出负极活性物质的例子,则可列举天然石墨、人工石墨、天然石墨和/或人工石墨的无定形碳等的碳系材料、锂过渡金属氧化物、锂过渡金属氮化物等。再者,负极活性物质其本身具有导电性。因此,导电材料可以根据需要添加到负极合剂244中。另外,该例中,如图3所示,在负极合剂层243的表面还形成有耐热层245(HRL:heat-resistant layer)。耐热层245主要由金属氧化物(例如,氧化铝)形成。再者,该锂离子二次电池100中,在负极合剂层243的表面形成有耐热层245。图示省略,但耐热层也可以在例如隔板262、264的表面形成。
[0054] <负极活性物质>
[0055] 另外,作为负极活性物质可以不特别限定地使用自以往就在锂离子二次电池中所使用的材料的一种或两种以上。例如可列举至少一部分包含石墨结构(层状结构)的粒子状的碳材料(碳粒子)。更具体地讲,可以使用所谓的石墨质(石墨)、难石墨化碳质(硬碳)、易石墨化碳质(软碳)、使它们组合了的碳材料。例如,可以使用天然石墨这样的石墨粒子。另外,在负极合剂中,为了维持负极活性物质的分散,负极合剂中混合了适量的增粘剂。在负极合剂中,可以使用与正极合剂所使用的同样的增粘剂、粘合剂、导电材料。
[0056] 虽然没有特别限定,但负极活性物质在负极合剂全体所占的比例可以设为大致80质量%以上(例如80~99质量%)。另外,负极活性物质在负极合剂全体所占的比例,优选为大致90质量%以上(例如,90~99质量%,更优选为95~99质量%)。使用粘合剂的组成中,粘合剂在负极合剂全体所占的比例,例如可以设为大致0.5~10质量%,通常优选设为大致1~5质量%。正极合剂层223、负极合剂层243,通过分别涂布于正极集电体221或者负极集电体241上,使其干燥,进一步轧制来形成。
[0057] 该实施方式中,锂离子二次电池100的制造方法包括合剂准备工序、涂布工序、干燥工序、轧制工序。
[0058] <合剂准备工序>
[0059] 合剂准备工序是准备包含活性物质的合剂的工序。该实施方式中,例如,在溶剂中混合所述的电极活性物质(正极活性物质、负极活性物质)、导电材料、粘合剂、增粘剂等,准备正极合剂224、负极合剂244。在溶剂中混合(混炼)电极活性物质、导电材料、粘合剂、增粘剂等的操作中,例如可以使用适当的混炼机(行星搅拌机、均质分散机、Clair Mix、Fill Mix等)。形成正极合剂224时,首先,可以在少量的溶剂中混合(固混)正极活性物质、导电材料、粘合剂、增粘剂等,其后,用适量的溶剂稀释得到的混炼物。或者,也可以最初在溶剂中混合增粘剂调制增粘剂溶液,在该增粘剂溶液中混合正极活性物质、导电材料、粘合剂。
[0060] <合剂的涂布>
[0061] 另外,涂布工序是在集电体上涂布合剂准备工序中准备的合剂的工序。该实施方式中,正极合剂224、负极合剂244被涂布于片状集电体上。涂布工序,可使用以往公知的适当的涂布装置,例如狭缝涂布机、模具涂布机、逗号涂布机、凹版涂布机等。该情况下,通过使用长带状的片状集电体,可以在集电体上连续地涂布正极合剂224、负极合剂244。
[0062] <干燥工序>
[0063] 另外,干燥工序是使在涂布工序中被涂布于集电体上的合剂干燥的工序。在使涂布于片状集电体的正极合剂、负极合剂干燥时,为防止迁移(migration),优选设定适当的干燥条件。该情况下,使用长带状的片状集电体,通过集电体沿着设置于干燥炉内的行进路线通过,可以使涂布于集电体的正极合剂224、负极合剂244连续地干燥。
[0064] <轧制工序>
[0065] 另外,轧制工序是轧制在干燥工序中得到的合剂层的工序。该实施方式中,通过在厚度方向上压制在干燥工序中干燥了的正极合剂层223、负极合剂层243,得到目标性状的片状正极(正极片)。作为进行上述压制的方法,可以采用以往公知的辊压法、平板压制法等。
[0066] <隔板262、264>
[0067] 隔板262、264是隔开正极片220和负极片240的构件。该例中,隔板262、264由具有多个微小孔的规定宽度的带状的片材料构成。隔板262、264,有例如由多孔质聚烯烃系树脂构成的单层结构的隔板和叠层结构的隔板。该例中,如图2和图3所示,负极合剂层243的宽度b1,比正极合剂层223的宽度a1稍宽。此外,隔板262、264的宽度c1、c2,比负极合剂层243的宽度b1稍宽(c1、c2>b1>a1)。
[0068] <卷绕电极体200>
[0069] 卷绕电极体200的正极片220和负极片240,以使隔板262、264介于其间的状态重叠并且卷绕。
[0070] 该例中,正极片220、负极片240和隔板262、264,如图2所示,使其长度方向一致,以正极片220、隔板262、负极片240、隔板264的顺序重叠。此时,正极合剂层223和负极合剂层243上重叠有隔板262、264。另外,负极合剂层243的宽度比正极合剂层223稍宽,负极合剂层243以覆盖正极合剂层223的方式重叠。由此,充放电时,锂离子(Li)更切实地在正极合剂层223和负极合剂层243之间来往。
[0071] 此外,正极片220的未涂布部222和负极片240的未涂布部242,以在隔板262、264的宽度方向上相互向相反侧伸出的方式重叠。重叠了的片材料(例如,正极片220),绕设定在宽度方向的卷绕轴卷绕。
[0072] 再者,该卷绕电极体200将正极片220、负极片240和隔板262、264以规定顺序重叠并卷绕。该工序中,一边将各片的位置利用EPC(edge position control,边缘位置控制器)那样的位置调整机构控制一边重叠各片。此时,虽然是隔板262、264介于其间的状态,但负极合剂层243以覆盖正极合剂层223的方式重叠。
[0073] <电池壳体300>
[0074] 另外,该例中,电池壳体300如图1所示,是所谓角型的电池壳体,具备容器主体320和盖体340。容器主体320,是具有有底四角筒状,一个侧面(上表面)开口了的扁平箱型的容器。盖体340,是安装在该容器主体320的开口(上表面的开口)上,堵塞该开口的构件。
[0075] 车载用的二次电池中,为了提高燃油效率,希望使重量能效(每单位重量的电池的容量)提高。因此,期待构成电池壳体300的容器主体320和盖体340,采用铝或铝合金等的轻金属(该例中,为铝)。由此,可以提高重量能效。
[0076] 该电池壳体300,作为收容卷绕电极体200的空间,具有扁平的矩形的内部空间。另外,如图1所示,该电池壳体300的扁平的内部空间,横宽比卷绕电极体200稍宽。该实施方式中,在电池壳体300的内部空间中收容有卷绕电极体200。卷绕电极体200,如图1所示,以在与卷绕轴正交的一个方向上被扁平地变形的状态,收容在电池壳体300中。
[0077] 该实施方式中,电池壳体300,具备有底四角筒状的容器主体320和堵塞容器主体320的开口的盖体340。在此,容器主体320,可以采用例如深拉深成形或冲击成形来成形。
再者,冲击成形是冷态下的锻造的一种,也称为冲击挤压加工或冲击压制。
[0078] 另外,在电池壳体300的盖体340上安装有电极端子420、440。电极端子420、440贯通电池壳体300(盖体340)向电池壳体300的外部伸出。另外,在盖体340上设有安全阀360。
[0079] 该例中,卷绕电极体200被安装于电极端子420、440上,该电极端子420、440是安装在电池壳体300(该例中,为盖体340)上的。卷绕电极体200,以在与卷绕轴正交的一个方向上被扁平地压弯的状态收纳于电池壳体300中。另外,卷绕电极体200,在隔板262、264的宽度方向上,正极片220的未涂布部222和负极片240的未涂布部242相互向相反侧伸出。其中,一方的电极端子420固定在正极集电体221的未涂布部222上,另一方的电极端子440固定在负极集电体241的未涂布部242上。
[0080] 另外,该例中,如图1所示,盖体340的电极端子420、440延伸至卷绕电极体200的未涂布部222、未涂布部242的中间部分222a、242a。该电极端子420、440的前端部,焊接到未涂布部222、242的各自的中间部分。图4是表示卷绕电极体200的未涂布部222、242和电极端子420、440的焊接处的侧面图。
[0081] 如图4所示,在隔板262、264的两侧,正极集电体221的未涂布部222、负极集电体241的未涂布部242呈螺旋状露出。该实施方式中,将这些未涂布部222、242分别聚集在其中间部分,与电极端子420、440的前端部焊接。此时,由于各自的材质的不同,电极端子420和正极集电体221的焊接可使用例如超声波焊接。另外,电极端子440和负极集电体241的焊接可使用例如电阻焊接。
[0082] 这样,卷绕电极体200,以被扁平地压弯的状态,安装到固定在盖体340上的电极端子420、440上。该卷绕电极体200,收容在容器主体320的扁平的内部空间中。容器主体320,在收容了卷绕电极体200后,由盖体340堵塞。盖体340和容器主体320的接缝322(参照图1),采用例如激光焊接来焊接密封。这样,该例中,卷绕电极体200通过固定在盖体
340(电池壳体300)上的电极端子420、440,在电池壳体300内被定位。
[0083] <电解液>
[0084] 其后,从设置在盖体340上的注液孔向电池壳体300内注入电解液。在该例中,电解液可以使用在碳酸亚乙酯和碳酸二乙酯的混合溶剂(例如体积比1:1左右的混合溶剂)中以约1摩尔/升的浓度含有LiPF6的电解液。其后,在注液孔上安装(例如焊接)金属制的密封帽来密封电池壳体300。再者,作为电解液,可以使用以往锂离子二次电池所使用的非水电解液。
[0085] <脱气路径>
[0086] 另外,该例中,该电池壳体300的扁平的内部空间,比扁平地变形了的卷绕电极体200稍宽。在卷绕电极体200的两侧,在卷绕电极体200和电池壳体300之间设有间隙310、
312。该间隙310、312成为脱气路径。
[0087] 该结构的锂离子二次电池100,在发生过充电的情况下温度变高。如果锂离子二次电池100的温度变高,则电解液分解产生气体。产生了的气体在卷绕电极体200的两侧的卷绕电极体200和电池壳体300的间隙310、312、以及安全阀360通过,顺利地向外部排气。该锂离子二次电池100中,正极集电体221和负极集电体241,通过贯通了电池壳体300的电极端子420、440与外部的装置电连接。
[0088] <其他的电池方式>
[0089] 再者,上述是表示的锂离子二次电池的一例的方式。锂离子二次电池不限定于上述方式。另外,同样地,在金属箔上涂布了电极合剂的电极片,也可以用于其他各种电池方式。例如,作为其他的电池方式,已知圆筒型电池或层压型电池等。圆筒型电池,是将卷绕电极体收容在圆筒型的电池壳体中的电池。另外,层压型电池,是正极片和负极片隔着隔板层叠了的电池。
[0090] 以下,进一步说明正极合剂层223和负极合剂层243。
[0091] 图5是锂离子二次电池100的正极片220的截面图。另外,图6是锂离子二次电池100的负极片240的截面图。再者,图5中,放大地模式表示正极合剂层223中的正极活性物质610、导电材料620和粘合剂630以使正极合剂层223的结构变得明确。另外,图6中,放大地模式表示负极合剂层243中的负极活性物质710和粘合剂730以使负极合剂层243的结构变得明确。在此,图示了负极活性物质710使用所谓的鳞片状(Flake Graphite)石墨的情况,但负极活性物质710并不限定于图示例。该实施方式中,锂离子二次电池100的正极合剂层223的多孔率E1为0.30≤E1,负极合剂层243的多孔率E2为0.30≤E2。
再者,正极活性物质610(图5参照)是添加了W和Zr的、含有镍、钴和锰的锂过渡金属氧化物。
[0092] <正极合剂层223>
[0093] 如图5所示,该实施方式中,正极合剂224分别涂布于正极集电体221的两面。该正极合剂224的层(正极合剂层223)包含正极活性物质610和导电材料620。该实施方式中,正极合剂层223还包含粘合剂630(粘结剂)。
[0094] <正极活性物质610>
[0095] 在此,正极活性物质610是由多个锂过渡金属氧化物的一次粒子(图示省略)聚集而成的二次粒子构成的。该二次粒子的粒径为约3μm~12μm,更优选为约3μm~8μm。再者,在此,粒径采用由粒度分布求得的中径(d50),该粒度分布是基于光散射法通过粒度分布测定器测定的。以下,没有特别说明的情况下,“正极活性物质610”是二次粒子的意思。另外,正极活性物质610优选使用这样多个一次粒子(图示省略)聚集构成二次粒子得到的粒子。
[0096] <导电材料620>
[0097] 另外,导电材料620,可以使用乙炔黑、油炉黑、石墨化炭黑、炭黑、石墨、科琴黑)、石墨粉末等的碳粉末。该情况下,导电材料620也可以将一种或者多种碳粉末以规定比例混合。在此,导电材料620的粒径比正极活性物质610小。导电材料620的粒径,例如,为20nm~80nm。
[0098] <负极合剂层243>
[0099] 如图6所示,负极合剂244分别涂布于负极集电体241的两面。该负极合剂244的层(负极合剂层243)包含负极活性物质710。该实施方式中,负极合剂层243还包含粘合剂730(粘结剂)。再者,负极合剂层243所使用的负极活性物质,不限定于鳞片状石墨。
[0100] <孔隙>
[0101] 在此,正极合剂层223,例如在正极活性物质610和导电材料620的粒子间等,具有也可被称为空洞的微小间隙B。电解液(图示省略)可以渗入到该正极合剂层223的微小间隙中。另外,负极合剂层243,例如在负极活性物质710的粒子间等,具有也可被称为空洞的微小间隙D。电解液(图示省略)可以渗入到该负极合剂层243的微小间隙中。另外,根据正极活性物质610和负极合剂层243的结构,正极活性物质610和负极活性物质710中也可存在空洞。这样,在正极合剂层223和负极合剂层243的内部具有间隙(空洞)。在此,将该间隙(空洞)适当地称为“孔隙”。
[0102] 以下,说明充电时和放电时的锂离子二次电池100的动作。
[0103] <充电时的动作>
[0104] 图7模式地表示该锂离子二次电池100的充电时的状态。在充电时,如图7所示,锂离子二次电池100的电极端子420、440(参照图1)与充电器290连接。通过充电器290的作用,充电时,锂离子(Li)从正极合剂层223中的正极活性物质610(参照图5)释放到电解液280中。另外,电荷从正极活性物质610(参照图5)释放。被释放的电荷,如图7所示,通过导电材料620送向正极集电体221,进一步通过充电器290送向负极。另外,负极中,在积蓄电荷的同时,电解液280中的锂离子(Li)被负极合剂层243中的负极活性物质710(参照图6)吸收并贮藏。
[0105] <放电时的动作>
[0106] 图8模式地表示该锂离子二次电池100的放电时的状态。放电时,如图8所示,电荷从负极向正极运送的同时,贮藏在负极合剂层243中的锂离子(Li离子)释放到电解液280中。另外,在正极中,电解液280中的锂离子(Li)进入到正极合剂层223中的正极活性物质610中。
[0107] 这样,在二次电池100的充放电中,锂离子(Li)介由电解液280,在正极合剂层223和负极合剂层243之间往来。因此,在正极合剂层223中,优选在正极活性物质610(参照图5)的周围存在电解液280能够渗入的所需要的孔隙B。通过该结构,在正极活性物质610的周围可存在足够的电解液。因此,在电解液280和正极活性物质610之间,锂离子(Li)的往来变得顺利。
[0108] 另外,充电时,电荷从正极活性物质610通过导电材料620送向正集集电体221。与此相对,放电时,电荷从正极集电体221通过导电材料620返回到正极活性物质610。这样,正极活性物质610由锂过渡金属氧化物构成,缺乏导电性,因此正极活性物质610和正极集电体221之间的电荷移动主要通过导电材料620进行。
[0109] 这样,认为在充电时,锂离子(Li)的移动和电荷的移动越顺利,就越能够进行高效且快速的充电。另外,认为在放电时,锂离子(Li)的移动和电荷的移动越顺利,电池的电阻就越降低,因此电池的输出功率增加。
[0110] <低温环境下的问题>
[0111] 但是,例如,在-30℃左右的低温环境中,电解液中的锂离子的移动速度变迟缓。因此,在充电时、放电时律速(速率)降低。因此,这样的环境中,锂离子二次电池100的输出功率降低。
[0112] <锂离子二次电池100>
[0113] 该实施方式中,正极合剂层223如图5所示,涂布于正极集电体221上,并至少包含正极活性物质610和导电材料620。负极合剂层243如图6所示,涂布于负极集电体241上,并至少包含负极活性物质710。电解液虽然省略图示,但包含预先确定的浓度的锂离子。另外,正极合剂层223和负极合剂层243,分别具有电解液渗入的孔隙B、D。该锂离子二次
3
电池100中,渗入到正极合剂层223每1cm的电解液中的锂离子数X、和渗入到负极合剂层
3 19
243每1cm的电解液中的锂离子数Y,全都为3.75×10 以上。
[0114] <锂离子数X>
[0115] 在此,锂离子数X是渗入到正极合剂层223每1cm3的电解液中的锂离子数。锂离3
子数X例如可以由下式求得,X=(正极合剂层223每1cm的正极合剂层223的孔隙B的容积Vb)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。
[0116] <锂离子数Y>
[0117] 另外,锂离子数Y是渗入到负极合剂层243每1cm3的电解液中的锂离子数。锂离3
子数Y可以由下式求得,Y=(负极合剂层243每1cm的负极合剂层243的孔隙D的容积Vd)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。
[0118] 该锂离子二次电池100的正极合剂层223和负极合剂层243中,每单位体积分别存在充足的锂离子(Li离子)。因此,充放电时,在渗入到正极合剂层223和负极合剂层243的电解液之间,正极活性物质610和负极活性物质710分别吸收、释放锂离子(Li离子)。因此,例如,即使在电解液中的锂离子的移动速度变得相当迟缓的-30℃左右的低温环境中,也能够在正极和负极适当地进行电化学反应。因此,锂离子二次电池100的输出功率降低可以抑制为较小。
[0119] 锂离子数X和锂离子数Y,可以全都比3.75×1019大。该情况下,锂离子二次电池100的正极合剂层223和负极合剂层243中,分别在每单位体积存在更多的锂离子(Li离子)。因此,锂离子二次电池100的输出功率降低可以抑制为更小。
[0120] <容积Vb、Vd>
[0121] 正极合剂层223每1cm3的正极合剂层223的孔隙B的容积Vb,可以基于正极合剂3
层223中孔隙B的比例求得。另外,负极合剂层243每1cm的负极合剂层243的孔隙D的容积Vd,可以基于负极合剂层243中孔隙D的比例求得。
[0122] 在此,正极合剂层223中的孔隙B的比例和负极合剂层243中的孔隙D的比例也称为多孔率、孔隙率。例如,正极合剂层223的多孔率E1,例如,优选为正极合剂层223所包含的孔隙B的容积Vb除以正极合剂层223的表观体积Va(Vb/Va)。另外,负极合剂层243的多孔率E2,优选为负极合剂层243所包含的孔隙D的容积Vd除以负极合剂层243的表观体积Vc(Vd/Vc)。
[0123] 即,正极合剂层223的多孔率E1为多孔率E1=(Vb/Va),负极合剂层243的多孔率E2为多孔率E2=(Vd/Vc)。
[0124] 其中,
[0125] Vb是正极合剂层223所包含的孔隙B的容积;
[0126] Va是正极合剂层223的表观体积;
[0127] Vd是负极合剂层243所包含的孔隙D的容积;
[0128] Vc是负极合剂层243的表观体积。
[0129] <多孔率的定义>
[0130] 在此,“多孔率”是正极合剂层223、负极合剂层243中的孔隙的比例。例如,“正极合剂层223的多孔率E1”,是在正极合剂层223的内部所形成的孔隙(B)的容积Vb、和正极合剂层223的表观体积Va的比(Vb/Va)。另外,“负极合剂层243的多孔率E2”,是在负极合剂层243的内部所形成的孔隙(D)的容积Vd、和正极合剂层223的表观体积Vc的比(Vd/Vc)。
[0131] <多孔率E1(Vb/Va)、多孔率E2(Vd/Vc)的求法>
[0132] 多孔率E1(Vb/Va),例如,优选将正极合剂层223所包含的孔隙的容积Vb除以正极合剂层223的表观体积Va。多孔率E2(Vd/Vc),优选将负极合剂层243所包含的孔隙的容积Vd除以负极合剂层243的表观体积Vc。
[0133] <Va和Vc的测定方法>
[0134] 正极合剂层223的表观体积Va,例如,如图5所示,可以通过正极片220的样品的俯视时的面积Sa1和正极合剂层223的厚度ta(图示省略)的乘积求得(Va=Sa1×ta)。负极合剂层243的表观体积Vc,例如,如图6所示,可以通过负极片240的样品的俯视时的面积Sc1和负极合剂层243的厚度tc(图示省略)的乘积求得(Vc=Sc1×tc)。
[0135] 该实施方式中,正极合剂层223在正极集电体221的两面形成。因此,例如,正极合剂层223的厚度ta,可以由两面的正极合剂层223的厚度ta1、ta2的和求得(ta=ta1+ta2)。另外,作为其他方法,该正极合剂层223的厚度ta,可以由正极片220整体的厚度ha和正极集电体221的厚度he的差(ha-he)的方式求得(ta=ha-he)。另外,正极片220的样品的俯视时的面积Sa1,例如,通过将正极片220的样品切取成正方形或长方形可以容易地求得。
这样,通过求得正极片220的样品的俯视时的面积Sa1和正极合剂层223的厚度ta,可以求得正极合剂层223的表观体积Va。
[0136] 另外,该实施方式中,负极合剂层243在负极集电体241的两面形成。该负极合剂层243的厚度tc,可以由两面的负极合剂层243的厚度tc1、tc2的和的形式求得(tc=tc1+tc2)。另外,该负极合剂层243的厚度tc,可以由负极片240整体的厚度hc和负极集电体241的厚度hf的差(hc-hf)的形式求得(tc=hc-hf)。另外,负极片240的样品的俯视时的面积Sc1,例如,通过将正极片220的样品切取成正方形或长方形可以容易地求得。这样,通过求得负极片240的样品的俯视时的面积Sc1和负极合剂层243的厚度tc,可以求得负极合剂层243的表观体积Vc。
[0137] <Vb和Vd的测定方法>
[0138] 在正极合剂层223的内部所形成的孔隙(B)的容积Vb、和在负极合剂层243的内部所形成的孔隙(D)的容积Vd,例如,可以通过使用水银孔率计(mercury porosimeter)来测定。再者,该测定方法中,“孔隙”意味着向外部开放的孔隙。正极合剂层223和负极合剂层243内封闭的空间,在该方法中不包含在“孔隙”中。水银孔率计是通过压汞法来测定多孔体的细孔分布的装置。水银孔率计中,例如,可以使用株式会社岛津制作所制的オートポアⅢ9410。使用该水银孔率计的情况下,例如,通过用4psi~60,000psi进行测定,可以掌握与50μm~0.003μm的细孔范围相当的孔隙的容积分布。
[0139] 例如,从正极片220切取多个样品。接着,对该样品使用水银孔率计来测量正极合剂层223所包含的孔隙B的容积。水银孔率计是通过压汞法来测定多孔体的细孔分布的装置。在压汞法中,首先,正极片220的样品在抽真空的状态下浸入水银。该状态下,如果对水银施加的压力变高,则水银慢慢渗入到更小的空间。因此,基于渗入到正极合剂层223中的水银量和对水银施加的压力的关系,可以求得正极合剂层223中的孔隙B的大小和其容积分布。通过该压汞法,可以求得正极合剂层223所包含的孔隙B的容积Vb。负极合剂层243所包含的孔隙D的容积Vd,同样也可以通过压汞法来测定。
[0140] <多孔率E1(Vb/Va)、多孔率E2(Vd/Vc)的算出>
[0141] 所述正极合剂层223的多孔率E1(Vb/Va),可以通过如上所述求得的正极合剂层223所包含的孔隙B的容积Vb和正极合剂层223的表观体积Va的比来求得。在此求得的多孔率E1(Vb/Va),表示正极合剂层223中可以渗入电解液的孔隙存在的体积比例。另外,负极合剂层243的多孔率E2(Vd/Vc),可以通过如上所述求得的负极合剂层243所包含的孔隙D的容积Vd和负极合剂层243的表观体积Vc的比(Vd/Vc)来求得。在此求得的多孔率E2(Vd/Vc),表示负极合剂层243中可以渗入电解液的孔隙存在的体积比例。
[0142] <多孔率(孔隙率)的求法(2)>
[0143] 多孔率E1(Vb/Va),例如,可以通过在正极合剂层223的截面样品中,正极合剂层223每单位截面积所包含的孔隙B所占的面积Sb、和正极合剂层223的表观截面积Sa的比(Sb/Sa)来近似。该情况下,优选从正极合剂层223的多个截面样品中求得比(Sb/Sa)。此外,该比(Sb/Sa),例如,在截面SEM图像中,利用被判别为正极合剂层223的孔隙B的区域所包含的像素数Db、和正极合剂层223的区域的像素数Da的比(Db/Da)来近似。该情况下,正极合剂层223的截面样品越多,就可以通过所述比(Sb/Sa)越准确地近似多孔率(Vb/Va)。该情况下,例如,优选沿正极片220的任意一个方向,从与这一个方向正交的多个截面取得截面样品。
[0144] 在此,说明了正极合剂层223的多孔率E1(Vb/Va)的测定方法,但对于负极合剂层243的多孔率E2(Vd/Vd),也可以同样地基于截面样品来测定。该多孔率E2(Vd/Vd),例如,优选通过在负极合剂层243的截面样品中,负极合剂层243每单位截面积所包含的孔隙D所占的面积Sd、和负极合剂层243的表观截面积Sc的比(Sd/Sc)来近似。该情况下,优选从负极合剂层243的多个截面样品求得比(Sd/Sc)。
[0145] 正极合剂层223的截面样品,例如,可以采用CP处理(Cross Section Polisher处理,截面抛光处理)得到正极片220的任意的截面。另外,例如,该截面样品,可以通过电子显微镜得到截面SEM图像(截面照片)。作为电子显微镜,例如,可以使用株式会社日立ハイテクノロジーズ(Hitachi High-Technologies Corporation)制的扫描型电子显微镜(FE-SEM)HITACHI S-4500。根据该正极合剂层223的截面SEM图像,基于色调、明暗的差别,可以判别正极合剂层223的构成物质的截面、在正极合剂层223的内部所形成的孔隙B。该判别可以通过使用了计算机的图像处理技术来进行。
[0146] <容量维持率的降低>
[0147] 如上所述,在所述锂离子数X和锂离子数Y全都为3.75×1019以上的情况下,特别是在-30℃左右的低温环境中,可以将锂离子二次电池100的输出功率降低抑制为较小。但20
是,在所述锂离子数X和锂离子数Y全都为8.6×10 以上的情况下,也出现例如,在60℃左右比较高的温度环境中,容量维持率降低的现象。该现象,例如,在负极合剂层243中锂离子(Li离子)过多的情况下出现。
[0148] 因此,锂离子数Y进一步除以负极合剂层243中每1cm3中所包含的负极活性物质14
710的重量(g)所得的值Y1,也可以为4.3×10 以下。该Y1表示负极合剂层243的负极活性物质每单位重量(在此,为1g)包含何种程度的锂离子(Li离子)。该Y1优选不太高的
14 14
值,例如,Y1可以为4.3×10 以下。在该Y1优选不太高的值,例如,Y1为4.3×10 以下的情况下,该60℃左右的温度环境中基本不出现容量维持率的降低的现象。即使在60℃左右的温度环境中,也容易维持锂离子二次电池100的容量。
[0149] <正极合剂层223的密度A1>
[0150] 另外,正极合剂层223的密度A1可以为1.9g/cm3以下(A1≤1.9g/cm3)。该情况下,正极合剂层223的孔隙B变多,正极合剂层223所包含的电解液的量增加。正极合剂层3 3
223的密度A1优选大致为1.9g/cm以下(A1≤1.9g/cm )。
[0151] 另外,如果降低正极合剂层223的密度A1,则正极合剂层223的电阻增加,有时二次电池100的直流电阻变高。与此相对,如果增多导电材料620,则正极合剂层223的电阻降低,二次电池100的直流电池降低。但是,较多地加入导电材料620,会使锂离子二次电池100的材料成本增加。另外,较多地加入导电材料620,也成为锂离子二次电池100的重量增加的原因。作为车辆驱动用电池,紧凑化、轻量化的要求较高。
[0152] <导电材料620的体积密度A2>
[0153] 因此,通过使用体积密度A2小的导电材料620,可以减轻每一单元电池所使用的导电材料620的量。即,体积密度A2小的导电材料620,与重量相比体积较大。因此,可用更少的量在正极合剂层223中形成适当的导电路径。根据该观点,正极合剂层223的密度3 3
A1为1.9g/cm以下(A1≤1.9g/cm )的情况下,优选导电材料620的体积密度A2大致为
3
0.04g/cm以下(A2≤0.04g/ml)。在此,导电材料620的体积密度A2,例如,可以按照JIS K6219-2来测定。
[0154] 这样,可以将正极合剂层223的密度A1设为大致1.9g/cm3以下(A1≤1.9g/cm3),3
将导电材料620的体积密度A2设为大致0.04g/cm以下(A2≤0.04g/mL),并且将导电材料620相对于正极活性物质610的重量比例A3设为11%。
[0155] 由本申请所提出的锂离子二次电池100的技术意义,例如,通过以下所述的各种评价试验来表现。
[0156] <评价试验用的电池>
[0157] 图9模式地表示评价试验用的电池800。在此制成的评价试验用的电池800,如图9所示,是被称为所谓的18650型单元电池的圆筒型的锂离子二次电池。其中,评价试验用的电池800的额定容量设定为约300mAh。
[0158] 该评价试验用的电池800,如图9所示,叠层正极片810、负极片820、两枚隔板830、840,卷绕该叠层片,制作在正极片810和负极片820之间隔着隔板830、840的卷绕电极体850。
[0159] 在此,评价试验用的电池800的正极片810和负极片820的截面结构,设为与所述的锂离子二次电池100(参照图1)的正极片220或负极片240大致同样的截面结构。另外,隔板830、840使用了厚度20μm的多孔质聚乙烯片。将该卷绕电极体850与非水电解液(图示省略)一同收容在外装壳体860中,构建评价试验用的电池800(评价试验用的18650型锂离子电池)。
[0160] 另外,该评价试验中,作为正极活性物质610,使用了用Li1.15Ni0.34Co0.33Mn0.33O2表示的组成的活性物质粒子。在此,活性物质粒子的二次粒子的平均粒径(d50)设定为3μm~12μm。另外,该评价试验中,作为导电材料620,使用了乙炔黑(AB)。另外,该评价试验中,作为溶剂使用了N-甲基-2-吡咯烷酮(NMP)。另外,粘合剂630使用了聚偏二氟乙烯(PVDF)。
[0161] 另外,外装壳体860,如图9所示,是大致圆筒形状,在圆筒形状的两侧端部,设定有在内部与正极片810和负极片820连接了的电极端子870、880。另外,该评价试验用的电池800中,作为非水电解液,使用了在以3:3:4的体积比含有EC、DM和EMC的混合溶剂中用1摩尔/升的浓度溶解了LiPF6的组成的非水电解液。
[0162] <调整>
[0163] 接着,对于如上所述构建的评价试验用的电池,依次对调整工序、额定容量的测定、SOC调整进行说明。
[0164] 在此,调整工序,通过后述的步骤1、2来进行。
[0165] 步骤1:以1C的恒流充电达到4.1V后,中止5分钟。
[0166] 步骤2:步骤1之后,以恒压充电充电1.5小时,中止5分钟。
[0167] 在此,1C是电池1小时可以流通的电流值。例如,额定容量是300mAh的电池中,1C是300mA,2C是600mA。另外,额定容量是400mAh的电池中,1C是400mA,2C是800mA。
[0168] <额定容量的测定>
[0169] 接着,额定容量是所述调整工序之后,对于评价试验用的电池,在温度25℃,3.0V~4.1V的电压范围,通过后述的步骤1~3来测定的。
[0170] 步骤1:通过1C的恒流放电达到3.0V后,以恒压放电放电2小时,其后,中止10秒。
[0171] 步骤2:通过1C的恒流充电达到4.1V后,以恒压充电充电2.5小时,其后,中止10秒。
[0172] 步骤3:通过0.5C的恒流放电,到达3.0V后,以恒压放电放电2小时,其后,停止10秒。
[0173] 额定容量:将从步骤3的恒流放电直到恒压放电为止的放电中的放电容量(CCCV放电容量)设为额定容量。
[0174] <SOC调整>
[0175] SOC调整是将所述制作的评价试验用的电池在25℃的温度环境下,通过后述的步骤1、2来进行调整。在此,SOC调整优选在所述调整工序和额定容量的测定之后进行。
[0176] 步骤1:从3V以1C的恒流充电,设为额定容量的大致60%的充电状态(SOC60%)。在此,“SOC”是State of Charge(充电状态)的意思。
[0177] 步骤2:步骤1之后,恒压充电2.5小时。
[0178] 由此,评价试验用的电池800,可以调整为规定的充电状态。
[0179] <低温高速率输入输出试验>
[0180] 在此,低温高速率输入输出试验是将用规定规格制作的评价试验用的电池800在分别不同的充放电速率下改变而反复进行充放电。而且,在反复进行规定次数的充放电后,评价了评价试验用的电池800的电阻发生何种程度的增加。在低温高速率输入输出试验中,在大致0℃的温度环境下,用规定的充放电速率反复进行1000次充放电。另外,分别用恒流进行充放电,充电和放电之间的中止时间分别设定为10分钟。
[0181] 该实施方式中,在充放电速率为15C(电流值:4.5A)、20C(电流值:6.0A)、25C(电流值:7.5A)、30C(电流值:9.0A)设为10秒。
[0182] <充放电速率是15C的情况>
[0183] 该情况下,充放电速率是15C的情况下,用4.5A的电流值进行10秒的充放电。该情况下,在一次充电或者放电中移动的电荷量(消耗电荷量)为45库仑(coulomb)。再者,在此,将放电时消耗的电荷量称为消耗电荷量。如果将该消耗电荷量换算成电子数,则为45÷-19基本电荷(1.60217733×10 ),大致为2.81E+20。在此,锂离子(Li)是一价的阳离子。因此,该电子数和充放电时在正极和负极所吸收、释放的锂离子数(在此,为消耗锂离子数Z)为相同数量。因此,消耗锂离子数Z大致为2.81E+20。在此,消耗锂离子数Z是放电时正极活性物质610所吸收的锂离子数。
[0184] <充放电速率是20C的情况>
[0185] 另外,充放电速率是20C的情况下,用6.0A的电流值进行10秒的充放电。该情况下,在一次充电或者放电中移动的电荷量(消耗电荷量)为60库仑。如果将该消耗电荷-19量换算成电子数,则为60÷基本电荷(1.60217733×10 )。因此,消耗锂离子数Z大致为
3.7E+20。
[0186] <充放电速率是25C的情况>
[0187] 另外,充放电速率是25C的情况下,用7.5A的电流值进行10秒的充放电。该情况下,在一次充电或者放电中移动的电荷量(消耗电荷量)为75库仑。如果换算成电子数,则-19为75÷基本电荷(1.60217733×10 )。因此,消耗锂离子数Z大致为4.7E+20。
[0188] <充放电速率是30C的情况>
[0189] 另外,充放电速率是30C的情况下,用9.0A的电流值进行10秒的充放电。该情况下,在一次充电或者放电中移动的电荷量(消耗电荷量)为90库仑。如果换算成电子数,则-19为90÷基本电荷(1.60217733×10 )。因此,消耗锂离子数Z大致为5.6E+20。
[0190] <电阻增加率>
[0191] 作为电阻增加率,在所述充放电循环的前后评价了评价试验用的电池800的电阻增加了何种程度。即,在此,在进行充放电循环前和进行充放电循环后,分别测定评价试验用的电池800的电阻。将进行了充放电循环后的评价试验用的电池800的电阻R1除以进行充放电循环前的评价试验用的电池800的电阻R2所得的值(R1/R2)设为电阻增加率。因此,该电阻增加率越接近1,表示电阻的增加越小,该电阻增加率越大,表示电阻的增加越大。
[0192] 电阻增加率=(R1/R2)
[0193] R1= 进行了充放电循环后的评价试验用的电池800的电阻
[0194] R2= 进行充放电循环前的评价试验用的电池800的电阻
[0195] <评价试验用的电池800的电阻>
[0196] 在此,评价试验用的电池800的电阻用IV电阻来评价。IV电阻的测定方法是如下那样进行的。即,在大致25℃的温度条件下将各电池恒流放电至3.0V后,用恒流恒压进行充电调整为SOC(state of charge)60%。其后,大致在25℃,以1C、3C和5C的条件交替进行10秒的放电和充电,绘制从放电开始10秒后的电压值,制成各电池的I-V特性图。从该I-V特性图的斜率算出25℃的IV电阻值(mΩ)。
[0197] <样品1~11>
[0198] 表1中,在此,对于样品1~11,示出了正极合剂层223所包含的锂离子数X0、负极合剂层243所包含的锂离子数Y0、电阻增加率、每1g负极活性物质的锂离子数Y1和容量维持率。另外,图10对于样品1~11,示出了所述的锂离子数X0、锂离子数Y0、和在20C的充放电下的电阻增加率(%)。
[0199]
[0200] <正极合剂层223所包含的锂离子数X0>
[0201] 在此,“正极合剂层223所包含的锂离子数X0”,例如,如图5所示,假定为电解液渗入到正极合剂层223的孔隙B,是渗入到该正极合剂层223的电解液中的锂离子数。与此相对,所述“正极合剂层223的锂离子数X”,是渗入到该正极合剂层223每1cm3的电解液中的锂离子数。
[0202] 在此,由下式算出:
[0203] (正极合剂层223的锂离子数X0)=(正极合剂层223的孔隙B的容积Vb)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。
[0204] 另外,也可以由下式算出:
[0205] (正极合剂层223的锂离子数X0)=(正极合剂层223每1cm3的孔隙B的容积Vb)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)×(正极合剂层223的体积3
(cm))。
[0206] 另外,渗入到所述正极合剂层223每1cm3的电解液中的锂离子数X,由下式求得:
[0207] (渗入到正极合剂层223每1cm3的电解液中的锂离子数X)=(正极合剂层223的3
锂离子数X0)÷(正极合剂层223的体积(cm))。
[0208] 另外,正极合剂层223的体积(cm3),通过正极合剂层223涂布于正极片810的面积Sa1、和被涂布的正极合剂层223的厚度(ha-he)来求得。
[0209] <负极合剂层243所包含的锂离子数Y0>
[0210] 在此,“负极合剂层243所包含的锂离子数Y0”,例如,如图6所示,假定为电解液渗入到负极合剂层243的孔隙D,是渗入到该负极合剂层243的电解液中的锂离子数。与此3
相对,所述“负极合剂层243的锂离子数Y”,是渗入到该负极合剂层243每1cm的电解液中的锂离子数。
[0211] 在此,由下式算出:
[0212] (负极合剂层243的锂离子数Y0)=(负极合剂层243的孔隙D的容积Vd)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)。
[0213] 另外,也可以由下式算出:
[0214] (负极合剂层243的锂离子数Y0)=(负极合剂层243每1cm3的孔隙D的容积Vd)×(电解液的锂离子浓度L(摩尔/升))×阿伏伽德罗常数(NA)×(负极合剂层243的体积3
(cm))。
[0215] 另外,渗入到所述负极合剂层243每1cm3的电解液中的锂离子数Y,由下式求得:
[0216] (渗入到负极合剂层243每1cm3的电解液中的锂离子数Y)=(负极合剂层243的3
锂离子数Y0)÷(负极合剂层243的体积(cm))。
[0217] 另外,负极合剂层243的体积(cm3),通过负极合剂层243涂布于负极片820的面积Sc1、和被涂布的负极合剂层243的厚度(hc-hf)来求得(参照图6)。
[0218] <样品的锂离子数>
[0219] 样品1中,如表1所示,正极合剂层223的锂离子数X0为2.9E+20,负极合剂层243的锂离子数Y0为4.1E+20。
[0220] 样品2中,正极合剂层223的锂离子数X0为3.6E+20,负极合剂层243的锂离子数Y0为4.1E+20。
[0221] 样品3中,正极合剂层223的锂离子数X0为4.5E+20,负极合剂层243的锂离子数Y0为4.1E+20。
[0222] 样品4中,正极合剂层223的锂离子数X0为2.9E+20,负极合剂层243的锂离子数Y0为6.5E+20。
[0223] 样品5中,正极合剂层223的锂离子数X0为2.9E+20,负极合剂层243的锂离子数Y0为5.3E+20。
[0224] 样品6中,正极合剂层223的锂离子数X0为2.9E+20,负极合剂层243的锂离子数Y0为2.9E+20。
[0225] 样品7中,正极合剂层223的锂离子数X0为4.5E+20,负极合剂层243的锂离子数Y0为2.9E+20。
[0226] 样品8中,正极合剂层223的锂离子数X0为2.4E+20,负极合剂层243的锂离子数Y0为3.4E+20。
[0227] 样品9中,正极合剂层223的锂离子数X0为3.4E+20,负极合剂层243的锂离子数Y0为4.7E+20。
[0228] 样品10中,正极合剂层223的锂离子数X0为5.3E+20,负极合剂层243的锂离子数Y0为7.6E+20。
[0229] 样品11中,正极合剂层223的锂离子数X0为6.0E+20,负极合剂层243的锂离子数Y0为8.7E+20。
[0230] <消耗锂离子数Z>
[0231] 如表1所示,在充放电速率是15C的情况下,消耗锂离子数Z大致为2.81E+20。另外,在充放电速率是20C的情况下,消耗锂离子数Z大致为3.7E+20。另外,在充放电速率是25C的情况下,消耗锂离子数Z大致为4.7E+20。在充放电速率是30C的情况下,消耗锂离子数Z大致为5.6E+20。
[0232] <电阻增加率的测定结果>
[0233] 对于各样品电阻增加率的测定结果,如表1所示。再者,电阻增加率根据充放电速率有所不同。在表1中,公开了15C、20C、25C、30C的情况。再者,在图10中,对于20C的情况,电阻增加率用涂黑三角“▲”来标记。
[0234] 样品1的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.34,在充放电速率是25C的情况下是1.46,在充放电速率是30C的情况下是1.97。
[0235] 样品2的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.18,在充放电速率是25C的情况下是1.44,在充放电速率是30C的情况下是1.83。
[0236] 样品3的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.04,在充放电速率是25C的情况下是1.39,在充放电速率是30C的情况下是1.80。
[0237] 样品4的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.40,在充放电速率是25C的情况下是1.46,在充放电速率是30C的情况下是1.65。
[0238] 样品5的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.40,在充放电速率是25C的情况下是1.55,在充放电速率是30C的情况下是1.72。
[0239] 样品6的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.39,在充放电速率是25C的情况下是1.50,在充放电速率是30C的情况下是1.66。
[0240] 样品7的电阻增加率,在充放电速率是15C的情况下是1.03,在充放电速率是20C的情况下是1.43,在充放电速率是25C的情况下是1.63,在充放电速率是30C的情况下是1.72。
[0241] 样品8的电阻增加率,在充放电速率是15C的情况下是1.30,在充放电速率是20C的情况下是1.51,在充放电速率是25C的情况下是1.58,在充放电速率是30C的情况下是2.16。
[0242] 样品9的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.25,在充放电速率是25C的情况下是1.34,在充放电速率是30C的情况下是1.44。
[0243] 样品10的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.03,在充放电速率是25C的情况下是1.03,在充放电速率是30C的情况下是1.39。
[0244] 样品11的电阻增加率,在充放电速率是15C的情况下是1.02,在充放电速率是20C的情况下是1.02,在充放电速率是25C的情况下是1.04,在充放电速率是30C的情况下是1.06。
[0245] 如表1所示,正极合剂层223的锂离子数X0和负极合剂层243的锂离子数Y0,在比充放电所消耗的消耗锂离子数Z多的情况下,或者,在相同程度以上的情况下,有电阻增加率被抑制为较低的倾向。相反地,正极合剂层223的锂离子数X0和负极合剂层243的锂离子数Y0之中,任一方比充放电所消耗的消耗锂离子数Z少的情况下,电阻增加率没有抑制为较低(有电阻增加率显著增高的倾向)。
[0246] <样品1>
[0247] 例如,样品1所涉及的评价试验用的电池800,在充放电速率是15C的情况下,正极合剂层223的锂离子数X0和负极合剂层243的锂离子数Y0,比充放电所消耗的消耗锂离子数Z多。该情况下,电阻增加率被抑制为1.02、较低。但是,在充放电速率是20C、25C、30C的情况下,正极合剂层223的锂离子数X0和负极合剂层243的锂离子数Y0之中,任一方比充放电所消耗的消耗锂离子数Z少。该情况下,电阻增加率变为超过1.3左右,电阻增加率没有抑制为较低。
[0248] 即,样品1中,正极合剂层223的锂离子数X0大致为2.9E+20,负极合剂层243的锂离子数Y0大致为4.1E+20。与此相对,充放电速率是15C的情况下,消耗锂离子数Z是2.81E+20左右。因此,充放电速率是15C的情况下,正极合剂层223的锂离子数X0、负极合剂层243的锂离子数Y0比消耗锂离子数Z多。因此,认为电阻增加率被抑制为1.02、较低。
但是,充放电速率是20C、25C、30C的情况下,消耗锂离子数Z变多,正极合剂层223的锂离子数X0、负极合剂层243的锂离子数Y0比消耗锂离子数Z少。因此,认为电阻增加率显著增高。
[0249] <样品3>
[0250] 另外,例如,样品3所涉及的评价试验用的电池800,在充放电速率是15C的情况下,电阻增加率被抑制为1.02、较低。另外,充放电速率是20C的情况下,电阻增加率被抑制为1.04、较低。但是,在充放电速率是25C、30C的情况下,电阻增加率分别超过1.3。
[0251] 即,样品3中,正极合剂层223的锂离子数X0大致为4.5E+20。另外,负极合剂层243的锂离子数Y0大致为4.1E+20。与此相对,充放电速率是15C的情况下,消耗锂离子数Z是2.81E+20左右。另外,充放电速率是20C的情况下,消耗锂离子数Z是3.7E+20左右。
因此,充放电速率是15C、20C的情况,正极合剂层223的锂离子数X0、负极合剂层243的锂离子数Y0比消耗锂离子数Z多。因此,电阻增加率被抑制为较低。但是,充放电速率是25C、
30C的情况下,消耗锂离子数Z变多,正极合剂层223的锂离子数X0、负极合剂层243的锂离子数Y0比消耗锂离子数Z少。因此,认为电阻增加率显著增高。
[0252] <锂离子二次电池100的评价>
[0253] 因此,作为适合于充放电速率特别高的用途的锂离子二次电池100,优选正极合剂层223的锂离子数X0、负极合剂层243的锂离子数Y0,比消耗锂离子数Z多。其中,消耗锂离子数Z根据电池的使用状态而变动。
[0254] 因此,锂离子二次电池100,优选用渗入到所述正极合剂层223每1cm3的电解液中3
的锂离子数X、和渗入到负极合剂层243每1cm的电解液中的锂离子数Y来评价。锂离子
3
二次电池100,认为渗入到所述正极合剂层223每1cm的电解液中的锂离子数X、和渗入到
3
负极合剂层243每1cm的电解液中的锂离子数Y分别越大,电阻增加率就越难以上升。
[0255] 特别是在充放电速率高的用途,例如,混合动力车辆用的电池中,希望即使在充放电速率高的使用状态下,电阻增加率也不上升。另外,车辆有在寒冷地带使用的情形,特别是-30℃那样的环境中,锂离子对于电池内的反应的律速降低,因此有时无法应对充放电速率高的用途。
[0256] 本发明的一实施方式所涉及的锂离子二次电池100,所述锂离子数X和所述锂离19
子数Y,全都为3.75×10 以上。该锂离子二次电池100,正极合剂层223中的锂离子数X、
19
和负极合剂层243中的锂离子数Y,全都较多为3.75×10 以上。因此,通过正极合剂层223中所包含的锂离子和负极合剂层243中所包含的锂离子,充放电中在正极合剂层223、负极合剂层243吸收和释放的锂离子一定程度地被供给。
[0257] 该锂离子二次电池中,即使在消耗锂离子数Z高的用途(换言之,是充放电速率高的用途),锂离子二次电池100的电阻增加率也被抑制为较低。另外,在正极合剂层223和负极合剂层243中,确保了与所需要的充放电速率相对的锂离子数X、锂离子数Y。
[0258] 在-30℃左右的低温环境中,特别是充放电中在正极合剂层223、负极合剂层243吸收和释放锂离子的反应律速显著降低。该锂离子二次电池100,特别是在这样的低温环境中,输出特性的降低可以抑制为较小。因此,如图11所示,可很好地作为在寒冷地带使用的车辆1所搭载的车辆驱动用电池1000。
[0259] 并且,由该见解考虑,锂离子数X和锂离子数Y越多,在消耗锂离子数Z高的用途(充放电速率高的用途)中,锂离子二次电池100的电阻增加率就越难上升。因此,在消耗锂离子数Z高的用途(充放电速率高的用途)中,要将电阻增加率抑制为较低,例如,优选锂离19 19
子数X和锂离子数Y全都大于3.75×10 ,进一步优选大于9.00×10 。
[0260] <容量维持率>
[0261] 另外,作为另一观点,研讨对锂离子二次电池100的容量维持率的影响。在此,作为评价容量维持率(换言之为保存特性)的评价试验,将所述评价试验用的电池800从SOC80%的状态在60℃的温度环境中放置60天,测定电池容量维持的比例(容量维持率(%))。在此,容量维持率(%)是放置了60天后的电池容量除以放置60天前的电池容量所得的值。
[0262] 在此,容量维持率(%),通过在25℃的温度条件下,用1C的恒流充电至4.1V后,用恒压充电直到合计充电时间达到3小时为止的CCCV充电,调整到SOC80%。这些电池在60℃的温度环境下保存了60天后,在25℃的温度条件下用与初期容量测定时相同的条件放电,求得此时的电池容量(高温保存后电池容量Q2)。并且,通过下式:Q2/Q1×100[%],算出容量维持率。
[0263] <初期容量测定>
[0264] 初期容量的测定,例如,在25℃的温度条件下,用1C(此处为0.2A)的恒流充电直到端子间电压成为4.1V,接着用恒压充电直到合计充电时间达到2.5小时为止(CC-CV充电)。从充电结束中止10分钟以后,在25℃,从4.1V到3.0V用0.33C的恒流放电,接着用恒压放电直到合计放电时间达到4小时为止。将此时的放电容量设为各电池的初期容量Q1[Ah]。
[0265] 其结果,对于所述样品1~10容量维持率大致是80%以上。但是,在样品11中,容量维持率低于80%。研究了其原因后,认为负极合剂层243的锂离子数Y0高是其原因之一。即,所述锂离子二次电池100中,在负极合剂层243的表面,有时形成在负极活性物质的表面上锂离子和电解液等的反应生成物即SEI(SEI:Solid Electrolyte Interphase或Solid Electrolyte Interface)膜。
[0266] 如果负极活性物质的表面上形成SEI膜,则在其影响下电解液中的锂离子的一部分不可逆地进入到SEI膜内。这样不可逆地进入了的锂离子,变得不直接参与到以后的充放电过程中。对于样品11,认为特别是电解液中的锂离子较多地进入SEI膜,成为容量维持率降低的原因之一。
[0267] <负极活性物质每单位重量的锂离子数Y1>
[0268] 因此,调查了负极活性物质每单位重量的锂离子数Y1。负极活性物质每单位重量的锂离子数Y1,在电解液充分地渗入到负极合剂层243的情况下,是该负极合剂层243中所包含的负极活性物质710(参照图6)每单位重量的锂离子数。该锂离子数Y1,是例如,将3 3
渗入到所述负极合剂层243每1cm的电解液中的锂离子数Y除以负极合剂层243中每1cm所包含的负极活性物质710的重量(g)所得的值来求得的。
[0269] 该负极活性物质710每单位重量的锂离子数Y1,如表1所示,与容量维持率的降低有一定程度的相关关系。看出该负极活性物质710每单位重量的锂离子数Y1越大,容量维持率越有降低的倾向。在此,如果负极合剂层243中的负极活性物质710每单位重量(例14
如,1g)所包含的锂离子的数Y1大致为4.3×10 以下,则容量维持率的降低可以在一定程度上抑制为较低。
[0270] <锂离子二次电池100的电阻增加率>
[0271] 如上所述,锂离子二次电池100中,优选渗入到正极合剂层223每1cm3的电解3
液中的锂离子数X、和渗入到负极合剂层243每1cm的电解液中的锂离子数Y,全都为
19
3.75×10 以上(参照图1)。由此,锂离子二次电池100的电阻增加率可以抑制为较小,特别是即使在低温环境下以高充放电速率使用的使用环境中,也可以提供能够维持适当的输出性能的锂离子二次电池100。
[0272] <锂离子二次电池100的容量维持率>
[0273] 另外,在该锂离子二次电池100中,如果负极合剂层243中的负极活性物质每单位14
重量(例如,1g)所包含的锂离子的数Y1大致为4.3×10 以下,则容量维持率的降低可以在一定程度上被抑制为较低。
[0274] 在该锂离子二次电池100中,正极合剂层223的锂离子数X,可以通过在正极合剂层223所形成的孔隙B的比例(多孔率)和电解液的锂离子浓度的关系来调整。另外,负极合剂层243的锂离子数Y,可以通过在负极合剂层243所形成的孔隙D的比例(多孔率)和电解液的锂离子浓度的关系来调整。即,通过增大正极合剂层223的多孔率,提高电解液的锂离子浓度,可以增大正极合剂层223的锂离子数X。另外,通过增大负极合剂层243的多孔率,提高电解液的锂离子浓度,可以增大负极合剂层243的锂离子数Y。
[0275] 再者,如果增高电解液的锂离子浓度,则电解液的粘度增高,电解液渗入到正极合剂层223、负极合剂层243中变得困难。因此,即使在正极合剂层223和负极合剂层243的孔隙D的比例分别增高的同时,增高电解液中的锂离子浓度的情况下,也有时电解液没有充分地渗入到正极合剂层223和负极合剂层243的孔隙B、D中。这样的情况下,锂离子数X和锂离子数Y变少。如果锂离子数X和锂离子数Y变少,则得不到如上所述的效果,不能将锂离子二次电池100的电阻增加率抑制为较小。
[0276] <电解液的粘度高的情况>
[0277] 因此,电解液的粘度在一定程度上较高的情况(换言之,电解液的锂离子浓度增高了的情况)下,注入电解液时,优选反复进行加压和减压来注入液体。由此,电解液更多地渗入到正极合剂层223、负极合剂层243。通过增高电解液的锂离子浓度,电解液的浓度变高的情况下,优选更多地反复进行加压和减压来注入液体。例如,锂离子浓度超过1.2摩尔/升的情况下,注入电解液时反复进行加压和减压的次数,例如,可以是5次以上,更优选是6次以上。在此,所谓加压是提高电池壳体300内的压力,减压是降低电池壳体内的压力。加压和减压,例如,优选在电池壳体300接通泵来进行。
[0278] <导电材料620相对于正极活性物质610的重量比例A3>
[0279] 另外,如上所述,要一定程度地增多正极合剂层223的锂离子数X时,优选增高在正极合剂层223所形成的孔隙B的比例(多孔率)。该情况下,优选降低正极合剂层223的密度。在降低正极合剂层223的密度A1的情况下,有时正极合剂层223的导电性降低。因此,优选增高导电材料620的比例。例如,正极合剂层223中的导电材料620相对于正极活性物质610的重量比例A3优选增多为14%~19%左右。
[0280] 在此,重量比例A3是
[0281] 重量比例A3=(正极合剂层223中的导电材料620的重量)/(正极合剂层223中的正极活性物质610的重量)。
[0282] <导电材料620的分散>
[0283] 另外,在增多正极合剂层223中的导电材料620相对于正极活性物质610的重量比例A3的情况下,优选准备正极合剂时,按规定比例混合正极活性物质610和导电材料620之后,一点点添加溶剂,使固体成分浓度慢慢地降低。此时,优选一边加入溶剂并搅拌一次以使得固体成分浓度例如从60%左右按1%降低,一边设为规定的固体成分浓度。由此,适当地混合正极合剂中的正极活性物质610和导电材料620,可以使导电材料620在正极合剂中适度地分散。
[0284] 按本发明者的见解,例如,直流电阻也根据准备正极合剂时如何调整正极合剂的固体成分浓度而改变。例如,与加入溶剂并搅拌以使得固体成分浓度从60%左右按4%下降,从而设为规定的固体成分浓度相比,加入溶剂并搅拌以使得固体成分浓度例如从60%左右按1%降低,从而设为规定的固体成分浓度时,能够提高锂离子二次电池100的直流电阻。具体而言,即使在将正极合剂层223中的导电材料620相对于正极活性物质610的重量比例A3设定为14%以上的相同程度,并且,正极合剂层223的密度设定为相同程度(例3
如,1.7g/cm)的情况下,直流电阻也根据准备正极合剂时如何调整正极合剂的固体成分浓度而改变。准备正极合剂时,稍微加入溶剂并搅拌正极合剂以使得正极合剂的固体成分浓度从60%左右一点点(例如,按1%)降低,从而慢慢地接近规定的固体成分浓度,这可以提高锂离子二次电池100的直流电阻。
[0285] 另外,在搅拌正极活性物质610、导电材料620和溶剂的工序中,例如,优选使用Fill Mix型的搅拌机。作为Fill Mix型的搅拌机,例如,可以使用PRIMIX公司制的Fill Mix搅拌机。
[0286] <正极合剂层223的密度A1>
[0287] 另外,该锂离子二次电池100中,希望增高正极合剂层223的孔隙B的比例。因此,优选正极合剂层223的密度A1稍低。正极合剂层223的密度A1,例如,可以为A1≤2.1g/3 3 3
cm,更优选为A1≤1.9g/cm。通过将正极合剂层223的密度A1设为A1≤1.9g/cm,可以增多正极合剂层223的锂离子数X。另外,通过将正极合剂层223的密度A1设为A1≤1.9g/
3
cm,可以更加增多正极合剂层223的锂离子数X。另外,在另一观点中,锂离子二次电池100优选将正极合剂层223的孔隙B的比例(多孔率)设为40以上。
[0288] 再者,所述锂离子二次电池100中,正极合剂层223的锂离子数X很多,要实现该目的,正极合剂层223中孔隙B越多越好,从而有正极合剂层223的密度A1降低的倾向。如上所述,正极合剂层223中,正极活性物质610和正极集电体221之间,电荷通过导电材料620移动。此时,如果正极合剂层223的密度A1低,则仅仅在正极合剂层223中孔隙B增加。因此,有必要提高导电材料620的比例。但是,为了轻量化、紧凑化,希望导电材料620的使用量(重量)在一定程度上减少。
[0289] <导电材料620的体积密度A2>
[0290] 因此,该实施方式中,作为正极合剂层223的导电材料620,选择使用体积密度A2在一定程度上较小的材料。由此,一方面导电材料620的使用量(重量)抑制为更少,另一方面正极活性物质610和正极集电体221之间的电荷的移动路径可以更适当地形成。另外,导电材料620的体积密度A2在一定程度上较小的情况下,导电材料620的重量轻,但导电材料620的表观体积大。因此,用重量来评价时即使导电材料的使用量相同,选择体积密度A2小的导电材料620,可以更适当地形成电荷的移动路径。
[0291] 在这样的观点中,正极合剂层223中的导电材料620的体积密度A2,例如,优选为3 3
A2≤0.04g/cm。通过导电材料620的体积密度A2是A2≤0.04g/cm,在正极活性物质610和正极集电体221之间,更容易适当地形成电荷的移动路径。另外,通过这样选择使用导电材料620的体积密度A2在一定程度上小的材料,即使在降低了正极合剂层223的密度的情况下,也可以更适当地形成电荷的移动路径。另外,可以更加减少导电材料620的使用量,可以实现锂离子二次电池100的轻量化。进一步优选正极合剂层223中的导电材料620的
3
体积密度A2,例如,可以是A2≤0.03g/cm。
[0292] 如上所述,本发明的一实施方式所涉及的锂离子二次电池100中,渗入到正极合3 3
剂层223每1cm的电解液中的锂离子数X、和渗入到负极合剂层243每1cm 的电解液中的
19
锂离子数Y,全都为3.75×10 以上。作为该锂离子二次电池100的一优选方式,优选将正
3 3
极合剂层223的密度A1设为1.9g/cm以下(A1≤1.9g/cm )。并且,正极合剂层223中的
3 3
导电材料620,优选选择使用体积密度A2为0.04g/cm以下(A2≤0.04g/cm )的材料。
[0293] 由此,在正极合剂层223的密度A1设定为1.9g/cm3以下的情况,孔隙B可以在正极合剂层223中较多地存在,所以正极合剂层223的锂离子数X变多。并且,正极合剂层3
223的导电材料620的体积密度A2,为A2≤0.04g/cm,所以正极合剂层223中电荷的移动路径可以更合适地形成。由此,能够使锂离子二次电池100的直流电阻大幅降低。另外,该情况下,对于导电材料620相对于正极活性物质610的重量比例A3,可以是11%以下,为7%左右,正极合剂层223中电荷的移动路径可以更合适地形成。
[0294] 另外,在另一观点中,作为锂离子二次电池100的一优选方式,可以将正极合剂层223的孔隙B的比例(多孔率)设为40以上。该情况下,优选选择使用体积密度A2为3
A2≤0.04g/cm的材料。该锂离子二次电池100中,孔隙B可以存在于正极合剂层223中。
因此,正极合剂层223的锂离子数X多。并且,正极合剂层223的导电材料620的体积密度
3
A2,是A2≤0.04g/cm,所以在正极合剂层223中电荷的移动路径可以更合适地形成。因此,能够使锂离子二次电池100的直流电阻大幅降低。该情况下,导电材料620相对于正极活性物质610的重量比例A3,可以是11%以下,为7%左右,正极合剂层223中电荷的移动路径可以更合适地形成。
[0295] 本发明者,改变了正极合剂层223(参照图5)的密度A1、正极合剂层223中的导电材料620的体积密度A2、和正极合剂层中正极合剂层223的导电材料620相对于正极活性物质610的重量比例A3准备了多个评价试验用的电池800(参照图9)。各评价试验用的电池800,除了正极合剂层223的密度A1、导电材料620的体积密度A2、和导电材料620相对于正极活性物质610的重量比例A3以外,设为相同的条件。对于该评价试验用的电池800分别测定直流电阻(IV电阻)(mΩ)。图12、图13表示该试验结果。
[0296] 在此准备的评价试验用的电池800,正极合剂层223的密度A1是1.7g/cm3、1.9g/3 3 3 3 3
cm、2.1g/cm和2.3g/cm 。另外,导电材料620的体积密度A2是0.04g/cm和0.15g/cm 。
并且,导电材料620相对于正极活性物质610的重量比例A3是4%、7%和9%。另外,图13是
3
对于正极合剂层223的密度A1是1.7g/cm的情况,导电材料620相对于正极活性物质610的重量比例A3(导电材料620的重量/正极活性物质610的重量)。图12的在各标记的旁边所附带的数值,表示导电材料620相对于正极活性物质610的重量比例A3。图12中的涂黑的标记和图13中涂黑三角“▲”的标记,表示导电材料620的体积密度A2是0.04g/
3
cm的评价试验用的电池800的直流电阻。另外,图12中涂白的标记和图13中涂黑的菱形
3
“◆”的标记,表示导电材料620的体积密度A2是0.15g/cm的评价试验用的电池800的直流电阻。
[0297] 该情况下,如图12所示,随着正极合剂层223的密度A1变小为2.3g/cm3、2.1g/3 3 3
cm、1.9g/cm、1.7g/cm,锂离子二次电池100的直流电阻(IV电阻)增高。另外,在正极合剂层223的密度A1小的情况下,还有导电材料620相对于正极活性物质610的重量比例A3越小,锂离子二次电池100的直流电阻(IV电阻)就越高的倾向。另外,如图13所示,正极
3
合剂层223的密度A1为1.7g/cm时,有导电材料620的体积密度A2较低时,锂离子二次电池100的直流电阻降低的倾向。
[0298] 由此,认为正极合剂层223的密度A1、导电材料620的体积密度A2优选在一定程度上较小,该情况下,导电材料620相对于正极活性物质610的重量比例A3,优选设定在适3
当的范围。按本发明者的见解,例如,正极合剂层的密度A1为A1≤1.9g/cm,导电材料620
3
的体积密度A2为A2≤0.04g/cm的情况下,导电材料620相对于正极活性物质610的重量比例A3,例如,以是7%左右以上即可。另外,在导电材料620的使用量适当地抑制为较少的观点中,导电材料620相对于正极活性物质610的重量比例A3,优选设定在11%左右以下。
该情况下,导电材料620相对于正极活性物质610的重量比例A3的下限值不限定于7%,可以是正极合剂层223中电荷的移动路径可更合适地形成的程度,也可以是6%、5%。
[0299] <电源系统2000>
[0300] 接着,说明本发明的一实施方式所涉及的电源系统。
[0301] 图14表示本发明的一实施方式所涉及的电源系统2000。该电源系统2000,具备作为二次电池的电池组1000、和电池控制部2100。在此,电池组1000组合有多个本发明的一实施方式所涉及的锂离子二次电池100。
[0302] <电池组1000>
[0303] 该电池组1000,如图14所示,是使用多个(典型的是10个以上,优选是10~30个左右,例如20个)锂离子二次电池100构建的。这些锂离子二次电池100(单电池),一面以各自的正极端子420和负极端子440交替配置的方式一个一个使其反转,一面使电池壳体300(参照图1)的宽面相对地排列。在该单电池的排列方向(叠层方向)的两外侧,规定形状的冷却板61以与电池壳体300的宽面紧贴的状态配置。在冷却板61的更外侧,配置有一对端板68、69。这样,在单电池100的叠层方向上排列的包含单电池群和端板68、69的全体(以下也称为“被拘束体”),通过以交联两端板68、69间的方式安装的紧固用的拘束带71,在该被拘束体的叠层方向上,以规定的拘束压P被拘束。更详细地,通过将拘束皮带71的端部用螺丝72紧固固定在端板68上,在所述叠层方向上施加规定的拘束压P。该电池组1000中,在邻接的锂离子二次电池100间,一个正极端子420和另一个负极端子440通过连接件67来电连接。通过这样各单电池100串联连接,构建希望的电压的电池组1000。
[0304] <电池控制部2100>
[0305] 另外,电池控制部2100,如图14所示,与作为二次电池的电池组1000连接。该实施方式中,电池控制部2100,与电池组1000的一个末端的锂离子二次电池100的正极端子420、和另一个末端的锂离子二次电池100的负极端子420连接。电池控制部2100,具有确定电池组1000放电时每单位时间的消耗电荷量的上限值W的功能。
[0306] 该电源系统2000中,所述锂离子二次电池100,根据由电池控制部2100来确定的、电池组1000的放电时每单位时间的消耗电荷量的上限值W来进行选择。
[0307] 即,该实施方式中,电池组1000组合了多个本发明的一实施方式所涉及的锂离子二次电池100。锂离子二次电池100,如图1所示,具备正极集电体221、以及涂布于正极集电体221上并至少包含正极活性物质610(参照图5)和导电材料620的正极合剂层223。并且,锂离子二次电池100,具备负极集电体241、以及涂布于负极集电体241上并至少包含负极活性物质710(参照图6)的负极合剂层243。另外,电池壳体300中,注入包含预定浓度的锂离子的电解液。在此,正极合剂层223具有电解液渗入的孔隙B,负极合剂层243具有电解液渗入的孔隙C。
[0308] 该实施方式中,渗入到正极合剂层223每1cm3的电解液中的锂离子数X、和渗入到3 3
负极合剂层243每1cm的电解液中的锂离子数Y,全都为正极合剂层223每1cm 的消耗锂离子数Zx以上。在此,消耗锂离子数Zx,由Zx={(消耗电荷量的上限值W÷基本电荷)/正极合剂层的体积}来求得。
[0309] 即,消耗锂离子数Zx,以在电池组1000的单一的锂离子二次电池100的正极合剂3
层223每1cm中,在充放电时所消耗的锂离子数的形式求得。该实施方式中,优选将通过电池控制部2100确定的电池组1000放电时每单位时间的消耗电荷量的上限值W除以基本电荷,再除以构成电池组1000的锂离子二次电池100的正极合剂层223的体积的总和。
[0310] 也就是说,电池组1000的情况下,优选进一步将电池组1000作为一个二次电池来考虑。即,电池组1000的情况,消耗锂离子数Zx={(消耗电荷量的上限值W÷基本电荷)/正极合剂层的体积}之中,“正极合剂层的体积”成为“构成电池组1000的锂离子二次电池100的正极合剂层223的体积的总和”。
[0311] 通过该电源系统2000,正极的锂离子数X和负极的锂离子数Y,全都为消耗锂离子数Zx以上。因此,对于通过电池控制部2100确定的电池组1000的放电时每单位时间的消耗电荷量的上限值W,具备正极的锂离子数X、和负极的锂离子数Y合适的锂离子二次电池100。
[0312] 该电源系统2000中,在通过电池控制部2100控制的范围内,在各锂离子二次电池100的正极合剂层223、和负极合剂层243中分别确保了适当量的的锂离子。因此,在通过电池控制部2100控制的范围内,锂离子二次电池100的电阻增加率被抑制为较低。另外,在正极合剂层223和负极合剂层243中,确保了与所需要的充放电速率相对的锂离子数X、锂离子数Y。
[0313] 在-30℃左右的低温环境中,特别是充放电中在正极合剂层223、负极合剂层243吸收释放锂离子的反应的律速显著地降低。该锂离子二次电池100,特别是即使在这样的低温环境下,输出特性的降低也可以抑制为较小。因此,该电源系统2000,如图11所示,适合作为在寒冷地带使用的车辆1所搭载的电池组1000(车辆驱动用电池)的电源系统。
[0314] 以上,对于本发明的一实施方式所涉及的电源系统2000,例示了二次电池为电池组1000的情况。本发明所涉及的电源系统2000中,二次电池不限定于电池组1000,也可以是单一的锂离子二次电池100。另外,电源系统2000所使用的锂离子二次电池100,可以合适地适用本发明的各种方式的锂离子二次电池100。
[0315] 以上,说明了本发明的一实施方式涉及的锂离子二次电池100和电源系统2000。本发明涉及的锂离子二次电池和电源系统,只要没有特别提及,就不限定于上述的任一实施方式。
[0316] 附图标记说明
[0317] 1 车辆
[0318] 61 冷却板
[0319] 67 连接件
[0320] 68、69 端板
[0321] 71 拘束带
[0322] 72 螺丝
[0323] 100 锂离子二次电池
[0324] 200 卷绕电极体
[0325] 220 正极片
[0326] 221 正极集电体
[0327] 222 未涂布部
[0328] 222a 中间部分
[0329] 223 正极合剂层
[0330] 224 正极合剂
[0331] 240 负极片
[0332] 241 负极集电体
[0333] 242 未涂布部
[0334] 242a 中间部分
[0335] 243 负极合剂层
[0336] 244 负极合剂
[0337] 245 耐热层
[0338] 262、264 隔板
[0339] 280 电解液
[0340] 290 充电器
[0341] 300 电池壳体
[0342] 310 间隙
[0343] 320 容器主体
[0344] 322 盖体和容器主体的接缝
[0345] 340 盖体
[0346] 360 安全阀
[0347] 420 正极端子(电极端子)
[0348] 440 负极端子(电极端子)
[0349] 610 正极活性物质
[0350] 620 导电材料
[0351] 630 粘合剂
[0352] 710 负极活性物质
[0353] 730 粘合剂
[0354] 800 评价试验用的电池
[0355] 810 正极片
[0356] 820 负极片
[0357] 830、840 隔板
[0358] 850 卷绕电极体
[0359] 860 外装壳体
[0360] 870 电极端子
[0361] 1000 电池组(车辆驱动用电池)
[0362] 2000 电源系统
[0363] 2100 电池控制部