半导体器件及其制造方法转让专利

申请号 : CN201210358628.X

文献号 : CN103681508B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张海洋符雅丽

申请人 : 中芯国际集成电路制造(上海)有限公司

摘要 :

本发明公开了一种半导体器件及其制造方法。其中在半导体器件制造方法中,包括提供绝缘层,其中绝缘层覆盖至少一个半导体器件的有源区和栅极,在绝缘层中形成用于有源区的连接孔,以便暴露有源区的至少一部分,其中连接孔包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述连接孔的第一部分邻近于有源区,并且第一宽度小于第二宽度,在所述连接孔中填充金属材料以形成用于所述有源区的接触。从而所形成用于有源区的接触也包括具有第一宽度的第一部分和具有第二宽度的第二部分,从而增加了有源区接触的宽度,改善了沟道应力性能。

权利要求 :

1.一种制造半导体器件的方法,其特征在于:

提供绝缘层,其中绝缘层覆盖至少一个半导体器件的有源区和栅极;

在绝缘层中形成用于所述有源区的连接孔,以便暴露所述有源区的至少一部分,其中所述连接孔包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述连接孔的第一部分邻近于所述有源区,并且第一宽度小于第二宽度;

在所述连接孔中填充金属材料以形成用于所述有源区的接触;

其中在绝缘层中形成用于所述有源区的连接孔,以便暴露所述有源区的至少一部分的步骤包括:对所述绝缘层进行刻蚀以形成具有第一宽度的开口,以便暴露所述有源区的至少一部分;

在所述具有第一宽度的开口内填充底部抗反射层BARC;

对所述绝缘层再次进行刻蚀,以拓宽所述具有第一宽度的开口的一部分;以及去除所述底部抗反射层BARC;

其中所述开口的未拓宽部分作为所述连接孔的第一部分,所述开口的被拓宽部分作为所述连接孔的第二部分;

其中,在形成所述具有第一宽度的开口时,在绝缘层表面涂布具有第一宽度的窗口的光阻层,利用该具有第一宽度的窗口的光阻层刻蚀所述绝缘层,从而形成所述具有第一宽度的开口;

在对所述绝缘层再次进行刻蚀时,拓宽所述光阻层的窗口以使其具有第二宽度,利用该具有第二宽度的窗口的光阻层刻蚀所述绝缘层,从而拓宽所述开口的一部分。

2.根据权利要求1所述的方法,其特征在于,

所述连接孔的第一部分的高度高于所述栅极的高度。

3.根据权利要求1或2所述的方法,其特征在于,所述半导体器件为P-MOS晶体管,所述金属材料为压缩应力型金属材料;或者所述半导体器件为N-MOS晶体管,所述金属材料为拉伸应力型金属材料。

4.根据权利要求1或2所述的方法,其特征在于,所述至少一个半导体器件至少包括第一类型晶体管和第二类型晶体管,其中为所述第一类型晶体管的有源区连接孔填充具有第一应力类型的第一金属材料,以及为所述第二类型晶体管的有源区连接孔填充具有第二应力类型的第二金属材料。

5.根据权利要求4所述的方法,其特征在于,在绝缘层中形成用于所述有源区的连接孔以便暴露所述有源区的至少一部分,在所述连接孔中填充金属材料以形成用于所述有源区的接触的步骤包括:在绝缘层中为所述第一类型晶体管刻蚀形成所述连接孔,并且在所述连接孔中填充第一金属材料并进行化学机械抛光;以及在绝缘层中为所述第二类型晶体管刻蚀形成所述连接孔,并且在所述连接孔中填充第二金属材料并进行化学机械抛光。

6.根据权利要求4所述的方法,其特征在于,在绝缘层中形成用于所述有源区的连接孔以便暴露所述有源区的至少一部分,在所述连接孔中填充金属材料以形成用于所述有源区的接触的步骤包括:在绝缘层中分别为所述第一类型晶体管和所述第二类型晶体管刻蚀形成所述连接孔;

利用掩模遮挡用于所述第二类型晶体管的连接孔,在用于所述第一类型晶体管的连接孔中填充第一金属材料;以及利用掩模遮挡用于所述第一类型晶体管的连接孔,在用于所述第二类型晶体管的连接孔中填充第二金属材料;

进行化学机械抛光以平坦化所形成的半导体器件的表面。

7.根据权利要求4所述的方法,其特征在于,

第一类型晶体管为P-MOS晶体管,第一金属材料为压缩应力型金属材料;第二类型晶体管为N-MOS晶体管,第二金属材料为拉伸应力型金属材料;

或者,第一类型晶体管为N-MOS晶体管,第一金属材料为拉伸应力型金属材料;第二类型晶体管为P-MOS晶体管,第二金属材料为压缩应力型金属材料。

8.根据权利要求1或2所述的方法,其特征在于,第一宽度的范围为20-50nm;

第二宽度的范围为30-100nm。

9.根据权利要求1或2所述的方法,其特征在于,连接孔的深度为500埃-2000埃。

说明书 :

半导体器件及其制造方法

技术领域

[0001] 本发明涉及半导体器件和用于制造半导体器件的方法。

背景技术

[0002] 目前,在半导体器件的后段(Back-End-of-Line,简称:BEOL)工艺中,在半导体器件层形成后,需要在半导体器件层上覆盖绝缘层,通过在绝缘层中形成用于至少一部分有源区的连接孔,并在连接孔中填充金属材料以形成用于有源区的接触。
[0003] 图1a和图1b描述了现有技术中利用大马士革工艺生成上述接触的方法:
[0004] 首先,对绝缘层101进行刻蚀以形成连接孔102,以便暴露有源区(在图中没有示出),如图1a所示。
[0005] 在连接孔102中填充金属材料以形成有源区的接触103,随后,进行化学机械抛光以平坦化所形成的半导体器件的表面,如图1b所示。
[0006] 其中,附图标记104表示光阻层,附图标记105表示栅极,附图标记106表示层间层。
[0007] 随着半导体制造产业的发展,设计和制造的半导体器件的尺寸越来越小。由此导致了例如有源区接触103的宽度也会进一步缩小。双应力衬垫(Dual Stress Liner,简称:DSL)对沟道应力增强的效果显著降低,从而会导致沟道应力性能恶化。
[0008] 为了克服这一缺陷,目前提出了拉伸沟槽接触(Tensile Trench Contact)以增强用于N-MOS(Negative-Mental-Oxide-Semiconductor,简称:N-金属氧化物半导体)的沟道应力的技术方案。但是该方案的效果并不理想。同时该方案仅适用于N-MOS,并不适用于P-MOS(Positive-Mental-Oxide-Semiconductor,简称:P-金属氧化物半导体)。

发明内容

[0009] 本发明的发明人发现上述现有技术中存在问题,并因此针对所述问题中的至少一个问题提出了一种新的技术方案。
[0010] 根据本发明的一个方面,提供一种制造半导体器件的方法,包括:
[0011] 提供绝缘层,其中绝缘层覆盖至少一个半导体器件的有源区和栅极;在绝缘层中形成用于所述有源区的连接孔,以便暴露所述有源区的至少一部分,其中所述连接孔包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述连接孔的第一部分邻近于所述有源区,并且第一宽度小于第二宽度;在所述连接孔中填充金属材料以形成用于所述有源区的接触。
[0012] 优选的,在绝缘层中形成用于所述有源区的连接孔,以便暴露所述有源区的至少一部分的步骤包括:对所述绝缘层进行刻蚀以形成具有第一宽度的开口,以便暴露所述有源区的至少一部分;在所形成的具有第一宽度的开口基础上,对所述绝缘层再次进行刻蚀,以拓宽所述具有第一宽度的开口的一部分;其中所述开口的未拓宽部分作为所述连接孔的第一部分,所述开口的被拓宽部分作为所述连接孔的第二部分。
[0013] 优选的,在形成所述开口时,在绝缘层表面涂布具有第一宽度的窗口的光阻层,利用该具有第一宽度的窗口的光阻层刻蚀所述绝缘层,从而形成具有第一宽度的开口;在所述具有第一宽度的开口内填充底部抗反射层BARC;拓宽所述光阻层的窗口以使其具有第二宽度,利用该具有第二宽度的窗口的光阻层刻蚀所述绝缘层,从而拓宽所述开口的一部分;去除所述底部抗反射层BARC。
[0014] 优选的,所述连接孔的第一部分的高度高于所述栅极的高度。
[0015] 优选的,所述半导体器件为P-MOS晶体管,所述金属材料为压缩应力型金属材料;或者所述半导体器件为N-MOS晶体管,所述金属材料为拉伸应力型金属材料。
[0016] 优选的,所述至少一个半导体器件至少包括第一类型晶体管和第二类型晶体管,其中为所述第一类型晶体管的有源区连接孔填充具有第一应力类型的第一金属材料,以及为所述第二类型晶体管的有源区连接孔填充具有第二应力类型的第二金属材料。
[0017] 优选的,在绝缘层中形成用于所述有源区的连接孔以便暴露所述有源区的至少一部分,在所述连接孔中填充金属材料以形成用于所述有源区的接触的步骤包括:在绝缘层中为所述第一类型晶体管刻蚀形成所述连接孔,并且在所述连接孔中填充第一金属材料并进行化学机械抛光;以及在绝缘层为所述第二类型晶体管刻蚀形成所述连接孔,并且在所述连接孔中填充第二金属材料并进行化学机械抛光。
[0018] 优选的,在绝缘层中形成用于所述有源区的连接孔以便暴露所述有源区的至少一部分,在所述连接孔中填充金属材料以形成用于所述有源区的接触的步骤包括:在绝缘层中分别为所述第一类型晶体管和所述第二类型晶体管刻蚀形成所述连接孔;利用掩模遮挡用于所述第二类型晶体管的连接孔,在用于所述第一类型晶体管的连接孔中填充第一金属材料;以及利用掩模遮挡用于所述第一类型晶体管的连接孔,在用于所述第二类型晶体管的连接孔中填充第二金属材料;进行化学机械抛光以平坦化所形成的半导体器件的表面。
[0019] 优选的,第一类型晶体管为P-MOS晶体管,第一金属材料为压缩应力型金属材料;第二类型晶体管为N-MOS晶体管,第二金属材料为拉伸应力型金属材料;或者,第一类型晶体管为N-MOS晶体管,第一金属材料为拉伸应力型金属材料;第二类型晶体管为P-MOS晶体管,第二金属材料为压缩应力型金属材料。
[0020] 优选的,第一宽度的范围为20-50nm,第二宽度的范围为30-100nm。
[0021] 优选的,连接孔的深度为500埃-2000埃。
[0022] 根据本发明的另一方面,提供一种半导体器件,包括:绝缘层,其中绝缘层覆盖至少一个半导体器件的有源区和栅极;用于所述有源区的接触,形成在绝缘层中;其中所述接触包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述接触的第一部分邻近于所述半导体器件的有源区,并且第一宽度小于第二宽度。
[0023] 优选的,所述接触的第一部分的高度高于栅极的高度。
[0024] 优选的,至少一个半导体器件至少包括第一类型晶体管和第二类型晶体管,其中为所述第一类型晶体管的有源区连接孔填充具有第一应力类型的第一金属材料,以及为所述第二类型晶体管的有源区连接孔填充具有第二应力类型的第二金属材料。
[0025] 优选的,第一类型晶体管为P-MOS晶体管,第一金属材料为压缩应力型金属材料;第二类型晶体管为N-MOS晶体管,第二金属材料为拉伸应力型金属材料。
[0026] 优选的,第一宽度的范围为20-50nm,第二宽度的范围为30-100nm。
[0027] 优选的,连接孔的深度为500埃-2000埃。
[0028] 通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。

附图说明

[0029] 构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。
[0030] 参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:
[0031] 图1a和图1b为现有技术制造半导体器件的示意图。
[0032] 图2为本发明制造半导体器件方法一个实施例的示意图。
[0033] 图3a-图3g为本发明制造半导体器件一个实施例的工艺图。
[0034] 图4a-图4d为本发明制造半导体器件另一实施例的工艺图。
[0035] 图5a-图5d为本发明制造半导体器件又一实施例的工艺图。

具体实施方式

[0036] 现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
[0037] 同时,应当明白,为了便于描述,附图中所示出的各个部分的宽度并不是按照实际的比例关系绘制的。
[0038] 以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
[0039] 对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
[0040] 在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
[0041] 应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
[0042] 正如附图1b所示,随着半导体器件尺寸的减小,可用于形成有源区接触的空间也随之减小。可以想见,在这样的情况下,不得不随之减小有源区接触的尺寸。减小的有源区接触导致了劣化的应力效应。此外,如果保持有源区接触的原有尺寸不变,一方面可能没有足够的空间容纳该接触,另一方面,有源区接触很可能会对栅极105产生影响。过度接近栅极将会导致接触103可能会与栅极105接触,由此导致半导体器件失效。
[0043] 为了解决上述和其他问题,本公开提出了使用变化尺寸的接触的技术方案。具体来说,由于栅极的存在,适应性地减小一部分有源区接触的尺寸,以使得接触适应减小的半导体尺寸。另一方面,如图1b所示,在栅极高度之上,仍然存在着可以使用增大尺寸的接触的空间。由此,增大的接触可以提高沟道应力性能。由此,本公开提高出了使用具有不均匀尺寸(变化尺寸)的有源区接触,从而可以在适应减小的半导体器件尺寸的同时仍然保持良好的沟道应力性能。
[0044] 以下讲述本公开的具体实施方式。
[0045] 图2为本发明制造半导体器件方法一个实施例的示意图。如图2所示,本实施例提供的制造半导体器件方法步骤如下:
[0046] 步骤201,提供绝缘层,其中绝缘层覆盖至少一个半导体器件的有源区和栅极。
[0047] 步骤202,在绝缘层中形成用于所述有源区的连接孔,以便暴露所述有源区的至少一部分,其中所述连接孔包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述连接孔的第一部分邻近于所述有源区,并且第一宽度小于第二宽度。
[0048] 步骤203,在所述连接孔中填充金属材料以形成用于所述有源区的接触。
[0049] 通过图2所示的制造半导体器件的方法,由于在绝缘层中形成的连接孔包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述连接孔的第一部分邻近于所述有源区,并且第一宽度小于第二宽度。从而所形成用于所述有源区的接触也包括具有第一宽度的第一部分和具有第二宽度的第二部分,从而增加了有源区接触的宽度,改善了沟道应力性能。
[0050] 优选的,第一宽度的范围为20-50nm,第二宽度的范围为30-100nm。
[0051] 优选的,连接孔的深度为500埃-2000埃。
[0052] 优选的,上述步骤202具体包括:
[0053] 首先,对所述绝缘层进行刻蚀以形成具有第一宽度的开口,以便暴露所述有源区。
[0054] 其次,在所形成的具有第一宽度的开口基础上,对所述绝缘层再次进行刻蚀,以拓宽所述具有第一宽度的开口的一部分。
[0055] 其中将所述开口的未拓宽部分作为所述连接孔的第一部分,所述开口的被拓宽部分作为所述连接孔的第二部分。
[0056] 优选的,连接孔的第一部分的高度高于栅极的高度。从而可以避免因连接孔的第二部分与栅极接触而导致短路。
[0057] 图3a-图3g为本发明制造半导体器件一个实施例的工艺图。
[0058] 首先,在绝缘层301表面涂布具有第一宽度的窗口303的光阻层302,如图3a所示。
[0059] 其次,利用该具有第一宽度的窗口303的光阻层302刻蚀所述绝缘层301,从而形成具有第一宽度的开口304,以便暴露有源区,如图3b所示。
[0060] 随后,在所述具有第一宽度的开口304内填充底部抗反射层(BARC)305,如图3c所示。
[0061] 拓宽所述光阻层302的窗口以使其具有第二宽度306,如图3d所示。
[0062] 利用该具有第二宽度的窗口306的光阻层刻蚀所述绝缘层301,从而拓宽开口303的一部分,如图3e所示。
[0063] 去除所述底部抗反射层BARC 305,暴露出之下的有源区(未示出),如图3f所示。
[0064] 此时,将所述开口303的未拓宽部分作为所述连接孔的第一部分307,所述开口的被拓宽部分作为所述连接孔的第二部分308。
[0065] 在连接孔中填充金属材料以形成用于所述有源区的接触309,如图3g所示。如图所示,与所述连接孔共形地形成了接触309,其包括具有第一宽度的第一部分(对应于开口部分307)和具有第二宽度的第二部分(对应于开口部分308)。
[0066] 最后进行化学机械抛光以平坦化所形成的半导体器件的表面。
[0067] 其中在图3a-图3g中,附图标记311为栅极,附图标记312为层间层。优选的,层间层312为硅化物层,用以减小有源区的接触电阻。
[0068] 在上述实施例中,半导体器件可以是P-MOS晶体管,也可以是N-MOS晶体管。然而,本公开并不仅限于上述两种类型的半导体器件,本领域技术人员可以理解,本公开所教导的内容完全可以应用于其他需要增加应力的场合。
[0069] 当所示的半导体器件为P-MOS晶体管时,所述金属材料为压缩应力型金属材料。或者,当所述半导体器件为N-MOS晶体管时,所述金属材料为拉伸应力型金属材料。
[0070] 优选的,半导体器件还可同时包括第一类型晶体管和第二类型晶体管,其中可以为所述第一类型晶体管的有源区连接孔填充具有第一应力类型的金属材料,为所述第二类型晶体管的有源区连接孔填充具有第二应力类型的金属材料。
[0071] 对于两种不同类型的晶体管,可采用先刻蚀用于第一类型晶体管有源区的连接孔并填充第一类型的金属材料,再刻蚀用于第二类型晶体管有源区的连接孔并填充第二类型的金属材料,由此形成用于有源区的接触。在另一实施例中,也可采用同时刻蚀分别用于第一类型晶体管有源区和第二类型晶体管有源区的连接孔,随后分别填充第一类型的金属材料和第二类型的金属材料,由此形成用于有源区的接触。
[0072] 图4a-图4d为本发明制造半导体器件另一实施例的工艺图。在该实施例中,描述了先刻蚀用于第一类型晶体管有源区的连接孔并填充第一类型的金属材料,再刻蚀用于第二类型晶体管有源区的连接孔的方式并填充第二类型的金属材料。
[0073] 首先,在绝缘层401中为第一类型晶体管41刻蚀形成连接孔403,如图4a所示。
[0074] 优选的,可按照图3a-图3f所示的实施例形成连接孔403。
[0075] 随后,在所述连接孔403中填充具有第一应力类型的金属材料以形成第一类型晶体管41的第一接触404,并进行化学机械抛光,如图4b所示。
[0076] 其次,在绝缘层401中为所述第二类型晶体管42刻蚀形成所述连接孔405,如图4c所示。
[0077] 优选的,可按照图3a-图3f所示的实施例形成连接孔405。
[0078] 最后,在所述连接孔中填充具有第二应力类型的金属材料以形成第二类型晶体管42的第二接触406,并进行化学机械抛光,如图4d所示。
[0079] 在图4a-图4d中,附图标记402为光阻层,附图标记411为栅极,附图标记412为层间层。优选的,层间层412为硅化物层。
[0080] 上述示例性实施例示出了先后为不同半导体器件形成有源区接触的例子。本领域技术人员可以理解,可以采用根据本发明实施例的技术分别为不同类型的半导体器件形成有源区接触。在该实施例中,半导体器件的类型和为特定类型半导体器件形成接触的顺序并不重要。例如,在一个实施例中,代表一个半导体器件的第一晶体管可以是PMOS晶体管,代表另一半导体器件的第二晶体管可以是NMOS晶体管,反之本发明同样成立。在一个实施例中,可以首先为PMOS晶体管形成有源区接触。在另一个实施例中,也可以首先为NMOS晶体管形成有源区接触。
[0081] 对于PMOS晶体管来说,其对应填充的金属是压缩应力型的。对于N-MOS晶体管,其对应填充的金属是拉伸应力型的。
[0082] 图5a-图5d为本发明制造半导体器件又一实施例的工艺图。在该实施例中,描述了同时刻蚀分别用于第一类型晶体管有源区和第二类型晶体管有源区的连接孔的方式。
[0083] 首先,在绝缘层501中分别为第一类型晶体管51和第二类型晶体管52刻蚀形成连接孔503,如图5a所示。
[0084] 其次,利用(示例性示出的)掩模或阻挡物513遮挡用于所述第二类型晶体管52的连接孔,在用于所述第一类型晶体管51的连接孔中填充具有第一应力类型的金属材料,以形成第一类型晶体管51的第一接触504,如图5b所示。
[0085] 随后,利用掩模或阻挡物514遮挡用于所述第一类型晶体管51的连接孔,在用于所述第二类型晶体管52的连接孔中填充具有第二应力类型的金属材料,以形成第二类型晶体管52的第二接触505,如图5c所示。
[0086] 最后进行化学机械抛光以平坦化所形成的半导体器件的表面,如图5d所示。
[0087] 在图5a-图5d中,附图标记502为光阻层,附图标记511为栅极,附图标记512为层间层。优选的,在层间层512上设有硅化物层。
[0088] 在该实施例中,由于所有连接孔可能均具有相同的结构,故此可以直接为所有半导体器件形成了连接孔。随后,再分别为不同的半导体器件填充不同应力类型的金属。
[0089] 为了简明起见,本公开仅仅描述了与其实施方式密切相关的步骤。本领域技术人员应当理解,此处还可能包括在工艺过程中存在的其他工序。
[0090] 通过上述各实施例,得到的半导体器件包括:
[0091] 绝缘层,其中绝缘层覆盖至少一个半导体器件的有源区和栅极;
[0092] 用于所述有源区的接触,形成在绝缘层中;
[0093] 其中所述接触包括具有第一宽度的第一部分和具有第二宽度的第二部分,所述接触的第一部分邻近于所述半导体器件的有源区,并且第一宽度小于第二宽度。
[0094] 由于形成的用于有源区的接触包括具有第一宽度的第一部分和具有第二宽度的第二部分,并且第一宽度小于第二宽度,从而增加了有源区接触的宽度,改善了沟道应力性能。
[0095] 至此,已经详细描述了根据本发明的制造半导体器件的方法和所形成的半导体器件。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
[0096] 虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。例如,对于附图3d中的拓宽光阻层的步骤,可以如上文中所述的进行拓宽,也可以去除具有第一宽度窗口的光阻层,重新施加具有第二宽度窗口的光阻层。这样的实施例也应当被视为落入到本公开的保护范围之内。
[0097] 本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。