一种间歇式碳化炉转让专利

申请号 : CN201410016298.5

文献号 : CN103727781B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 戴煜马卫东胡祥龙戴超林

申请人 : 湖南顶立科技有限公司

摘要 :

本发明实施例公开了一种间歇式碳化炉包括炉体,所述炉体内部的腔体为炉膛,所述炉膛内设置有额定电压为380V的整体成型的加热模块。由于该设备使用过程中采用380V电压进行加热,不需要配置升压降压装置进行升压降压,从而能够减少设备的能量损耗,降低了成本。

权利要求 :

1.一种间歇式碳化炉,包括炉体,所述炉体内部的腔体为炉膛,其特征在于,所述炉膛内设置有额定电压为380V的整体成型的加热模块。

2.如权利要求1所述的间歇式碳化炉,其特征在于,所述加热模块包括保温层、加热器和绝缘层,其中,所述绝缘层设置在所述加热器上,所述保温层设置在所述绝缘层上。

3.如权利要求2所述的间歇式碳化炉,其特征在于,所述加热器为悬挂式加热器。

4.如权利要求1所述的间歇式碳化炉,其特征在于,还包括离心风机和导流筒,其中,所述导流筒设置在所述炉膛的马弗真空罐内,所述离心风机与所述炉膛内的马弗真空罐连通。

5.如权利要求4所述的间歇式碳化炉,其特征在于,所述导流筒与所述炉膛内的马弗真空罐的内壁之间形成经气体流动的循环风道。

6.如权利要求5所述的间歇式碳化炉,其特征在于,所述导流筒为波纹马弗管。

7.如权利要求6所述的间歇式碳化炉,其特征在于,所述炉膛内的马弗真空罐内部设置有一进气管,所述进气管一端与所述炉体上的进气口连通,另一端引入至所述离心风机处。

8.如权利要求1所述的间歇式碳化炉,其特征在于,所述炉体包括保温层和马弗真空罐,所述马弗真空罐内部腔体为炉体的炉膛,还包括鼓风机和冷却风道,其中,所述冷却风道设置在所述马弗真空罐外部,并与所述鼓风机相连通。

9.如权利要求8所述的间歇式碳化炉,其特征在于,还包括排气装置,所述排气装置设置在所述炉体的顶部并与所述冷却风道相连通,当为第一状态时,所述排气装置连通外界与所述冷却风道;当为第二状态时,所述排气装置隔断外界与所述冷却风道。

说明书 :

一种间歇式碳化炉

技术领域

[0001] 本发明涉及碳化设备技术领域,更具体地说,涉及一种间歇式碳化炉。

背景技术

[0002] 碳化设备是碳碳、碳陶等制品碳化处理的关键设备,制品在碳化过程中的质量决定了产品的总体质量。而间歇式碳化炉是碳化设备中的一种。
[0003] 现有的间歇式碳化炉设备采用低电压高电流的加热方式,能量损耗大,生产成本高。
[0004] 另外,设备内部温度均匀性单纯的依靠发热体的热量辐射来实现,温度均匀性一般只能控制在±10℃左右,对碳制品的碳化质量产生不利的影响。
[0005] 其冷却系统包括离心风机、换热器和循环风道。快冷阶段,将惰性气体作为冷却介质通入炉内,在离心风机作用下气体将炉内热量带出后进入散热器进行热量交换,再通过离心风机送入循环风道,实现循环快速冷却。此过程中,冷却介质被通入炉体内部,直接与产品接触,惰性气体中残留的少量氧化物会造成产品氧化,影响产品的质量稳定性。另外,该系统结构复杂、操作繁琐,换热器设置在炉体内部,安全性低。
[0006] 综上所述,如何减少设备的能量损耗,成为本领域技术人员亟待解决的技术问题。

发明内容

[0007] 有鉴于此,本发明的目的在于提供一种间歇式碳化炉,以实现提高降低设备能量损耗的目的。
[0008] 为实现上述目的,本发明提供如下技术方案:
[0009] 一种间歇式碳化炉,包括炉体,所述炉体内部的腔体为炉膛,所述炉膛内设置有额定电压为380V的整体成型的加热模块。
[0010] 优选地,上述间歇式碳化炉中,所述加热模块包括保温层、加热器和绝缘层,其中,所述绝缘层设置在所述加热器上,所述保温层设置在所述绝缘层上。
[0011] 优选地,上述间歇式碳化炉中,所述加热器为悬挂式加热器。
[0012] 优选地,上述间歇式碳化炉中,还包括离心风机和导流筒,其中,所述导流筒设置在所述炉膛内的马弗真空罐内,所述离心风机与所述炉膛内的马弗真空罐连通。
[0013] 优选地,上述间歇式碳化炉中,所述导流筒与所述炉膛内的马弗真空罐的内壁之间形成经气体流动的循环风道。
[0014] 优选地,上述间歇式碳化炉中,所述导流筒为波纹马弗管。
[0015] 优选地,上述间歇式碳化炉中,所述炉膛内部设置有一进气管,所述进气管一端与所述炉体上的进气口连通,另一端引入至所述离心风机处。
[0016] 优选地,上述间歇式碳化炉中,所述炉体包括保温层和马弗真空罐,所述马弗真空罐内部腔体为炉体的炉膛,还包括鼓风机和冷却风道,其中,所述冷却风道设置在所述马弗真空罐外部,并与所述鼓风机相连通。
[0017] 优选地,上述间歇式碳化炉中,还包括排气装置,所述排气装置设置在所述炉体的顶部并与所述冷却通道相连通,当为第一状态时,所述排气装置连通外界与所述冷却通道;当为第二状态时,所述排气装置隔断外界与所述冷却通道。
[0018] 从上述方案可以看出,本发明实施例中的间歇式碳化炉包括炉体,所述炉体内部的腔体为炉膛,其特征在于,所述炉膛内设置有额定电压为380V的整体成型的加热模块。由于该设备使用过程中采用380V电压进行加热,不需要配置升压降压装置进行升压降压,从而能够减少设备的能量损耗,降低了成本。
[0019] 另外,由于本发明实施例中的间歇式碳化炉中的离心风机在运行时,炉膛内部空气强制对流,并在导流筒作用下流至炉膛各个部位,与现有技术中单纯采用辐射传热相比,显著提高了设备内部温度的均匀性。
[0020] 鼓风机和冷却风道的设置使得设备在快冷阶段,通过离心鼓风机将外部空气作为冷却介质从炉底通入炉内,冷却介质经风道将炉内热量带出,再通过排气装置高空排放,鼓风机持续鼓风,实现快速冷却。该装置直接冷却密封炉体,冷却介质不与产品接触,不会造成产品氧化,保证了产品的质量稳定性。

附图说明

[0021] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0022] 图1为本发明实施例所提供的一种间歇式碳化炉主视结构示意图;
[0023] 图2为本发明实施例所提供的一种间歇式碳化炉侧视结构示意图;
[0024] 图3为本发明实施例所提供的一种间歇式碳化炉俯视结构示意图;
[0025] 图4为图3中A-A截面的剖视图;
[0026] 图5为图3中B-B截面的剖视图。
[0027] 其中,图1至图5中:
[0028] 11为炉体、111为保温层、112为马弗真空罐、12为炉膛、13为进气口、14为炉门、21为离心风机、22为导流筒、23为循环风道、24为进气管、31为鼓风机、32为缓冲室、33为冷却风道、34为筛板、35为冷却套筒、36为密封盖、37为驱动气缸、4为加热模块。

具体实施方式

[0029] 有鉴于此,本发明核心是提供一种间歇式碳化炉,以实现提高降低设备能量损耗的目的。以下,参照附图对实施例进行说明。此外,下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
[0030] 如图1至图5所示,该间歇式碳化炉,包括炉体11,炉体11内部的腔体为炉膛12,炉膛12内设置有额定电压为380V的整体成型的加热模块4。由于该设备使用过程中采用380V电压进行加热,不需要配置升压降压装置进行升压降压,从而能够减少设备的能量损耗,降低了成本。
[0031] 加热模块4包括保温层、加热器和绝缘层,其中,绝缘层设置在加热器上,保温层设置在绝缘层上。
[0032] 加热器为悬挂式加热器,悬挂在加热模块内部,采用多点支撑紧固,保证加热器不会因为局部脱落而导致发热体掉落短路,确保了设备的安全性与稳定性。
[0033] 为了优化上述方案,本发明实施例间歇式碳化炉,还包括离心风机21和导流筒22,其中,导流筒22设置在炉膛12内,离心风机21与炉膛12连通。由于本发明实施例中的间歇式碳化炉中的离心风机21在运行时,炉膛12内部空气强制对流,并在导流筒22作用下流至炉膛12各个部位,与现有技术中单纯采用辐射传热相比,显著提高了设备内部温度的均匀性。
[0034] 上述间歇式碳化炉中,导流筒22的作用是对炉膛12内部气体进行导流,将炉膛12内部的气体运行引导为较为规则的运动,避免发生紊流现象。
[0035] 为了加快空气对流,增加循环管道是必要的措施,为了节省材料,导流筒22与炉膛12的内壁之间形成经气体流动的循环风道23。
[0036] 其中,本发明实施例中导流筒22围成筒状结构。上述导流筒22优选的为波纹马弗管。
[0037] 为了进一步优化上述方案,上述间歇式碳化炉中,炉体11上的炉门14为向炉膛12内部凹陷的鼓形结构。鼓形结构的设置能够进一步起到导流的作用。
[0038] 另外,本发明实施例中的炉体11上的进气口13设置在炉体11的底部。为了能够使得进气口13处的空气快速预热。炉膛12内部设置有一进气管24,进气管24一端与进气口13连通,另一端引入至离心风机21处。通过设置在进气管24,能够将进入炉膛12内部的空气引入至离心风机21处,并在离心风机21的作用下,快速搅拌使得,空气快速预热,并通过循环风道23吹至炉膛12各处。
[0039] 另外,该间歇式碳化炉中的炉体11包括保温层111和马弗真空罐112,马弗真空罐112内部腔体为炉体11的炉膛12,还包括鼓风机31和冷却风道33,其中,冷却风道33设置在马弗真空罐112外部,并与鼓风机31相连通。快冷阶段,通过离心鼓风机31将外部空气作为冷却介质从炉底通入炉内,冷却介质经风道将炉内热量带出,再通过排气装置高空排放,鼓风机31持续鼓风,实现快速冷却。该装置直接冷却密封炉体11,冷却介质不与产品接触,不会造成产品氧化,保证了产品的质量稳定性。
[0040] 另外,冷却介质为空气,节约了成本;且结构简单、操作方便、安全性好。
[0041] 为了保证进入冷却通道内的冷却介质更加连续,冷却风道33与鼓风机31之间还设置有缓冲室32。其中,缓冲室32与冷却通道之间设置有筛板,其中,筛板的作用能够使进入缓冲室32内的冷却介质均匀进入到炉膛内的各个角落。
[0042] 上述冷却通道由缠绕在马弗真空罐112上的循环管道围成,或者由套设在马弗真空罐112上的冷却套筒35以及马弗真空罐112所围成,结构类似于夹层结构。冷却介质填充到夹层中,此夹层具体为冷却通道。
[0043] 为了优化上述方案,冷却套筒35与马弗真空罐112之间还设置有筛板34。其中,进入冷却通道内的冷却介质更加稳定。
[0044] 另外,该设备在进行碳化时,为了提高其保温效果,该装置还包括排气装置,排气装置设置在炉体11的顶部并与冷却通道相连通,当为第一状态时,排气装置连通外界与冷却通道;当为第二状态时,排气装置隔断外界与冷却通道。
[0045] 其中,实现第一状态和第二状态间的切换可以采用手动控制,还可以机器控制,具体地,排气装置包括密封冷却通道的密封盖36和驱动密封盖36在第一状态和第二状态切换的驱动机构。
[0046] 上述驱动机构为设置在密封盖36上的驱动气缸37,驱动气缸37的固定端固定在炉体11上,驱动气缸37的自由端固定在密封盖36。
[0047] 上述驱动机构还可为液压缸,液压缸连接形式跟驱动气缸37相同,具体内容可相互参考。
[0048] 另外,本发明实施例中,为了提高冷却效率,鼓风机31设置在炉体11的底部,冷却通道的排气口设置在炉体11的顶部,可以适当延长冷却介质与马弗真空罐112的接触时间,提高换热效率。
[0049] 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。