切削工具转让专利

申请号 : CN201280042027.6

文献号 : CN103813875B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李晃

申请人 : 京瓷株式会社

摘要 :

本发明提供一种即使在高速且断续切削加工中被覆层也难以剥离的长寿命的切削工具。解决手段是一种切削工具(8),其是在超硬合金基体(1)的表面依次层叠TiN层(2)、TiCN层(3)、Al2O3层(5)而成,在辉光放电发射光谱分析(GDS分析)中,TiN层(2)和TiCN层(3)中含有Nb,在厚度方向上TiCN层(3)的中央的Nb的含有比率为0.1质量%以上、并且Al2O3层(5)的中央的Nb的含有比率为0.05质量%以下。

权利要求 :

1.一种切削工具,其是在超硬合金基体的表面依次层叠TiN层、TiCN层、Al2O3层而成,在辉光放电发射光谱分析,即GDS分析中,所述TiN层和所述TiCN层中含有Nb,在厚度方向上所述TiCN层的中央的Nb的含有比率为0.1~0.58质量%,并且所述Al2O3层的中央的Nb的含有比率为0.05质量%以下。

2.根据权利要求1所述的切削工具,其中,在所述基体的表面附近的Nb的含有比率相对于所述基体的内部的含有比率的比率为0.8以下,并且在所述基体的内部,Nb的含有比率按NbC换算量计为1~8质量%。

3.根据权利要求1或2所述的切削工具,其中,在辉光放电发射光谱分析,即GDS分析中,在厚度方向上所述TiCN层的中央的Nb的含有比率为0.1~0.4质量%。

4.根据权利要求1或2所述的切削工具,其中,在辉光放电发射光谱分析,即GDS分析中,C的浓度具有在所述TiCN层的所述Al2O3层侧恒定,而后朝向所述TiN层侧暂时增加后减少的分布。

5.根据权利要求1或2所述的切削工具,其中,所述TiN层的厚度为0.3~0.6μm。

6.根据权利要求1或2所述的切削工具,其中,所述超硬合金的基体具有所述Nb的含有比率恒定的内部区域和所述Nb的含有比率比该内部区域少的表面区域,该表面区域的厚度为5~40μm。

说明书 :

切削工具

技术领域

[0001] 本发明涉及切削工具,特别涉及具备被覆层的切削工具。

背景技术

[0002] 一直以来作为在金属的切削加工中被广泛使用的切削工具,广泛使用在超硬合金等基体的表面附着形成了TiCN层、Al2O3层等多层的被覆层的切削工具。另外,已知在超硬合金中除WC以外使其含有TiC、TaC、NbC等其它的碳化物,能够提高超硬合金的耐热性,但也已知在超硬合金的表面的除WC以外的TiC、TaC、NbC等其它的碳化物、所谓的β相的浓度变低。
[0003] 另一方面,专利文献1中公开了利用CVD(化学气相沉积)法在超硬合金基体的表面依次被覆了TiN层、TiCN层、TiC层、TiCNO层、Al2O3层、TiN层的切削工具,记载了使基体侧的TiN层、TiCN层、TiC层的晶界中扩散含有W和Co。
[0004] 另外,专利文献2中公开了以下方法,即,在形成B-C系皮膜时,利用非平衡磁控溅射法形成Nb等的非晶质膜,缓缓地梯度地增加对含有B和C的靶供给的电力,使向Nb等的金属供给的电力梯度地减少,由此形成使Nb等金属成分梯度分布的中间层的膜。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1:日本特开平08-118108号公报
[0008] 专利文献2:日本专利第4253184号公报

发明内容

[0009] 发明要解决的问题
[0010] 但是,在如专利文献1中记载的那样的在被覆层内扩散含有W和Co的切削工具中,基体和被覆层的密合性不充分,存在被覆层由于切削时的冲击而剥离的可能性。另外,如专利文献2那样地具有Nb梯度分布的皮膜作为B-C系皮膜的中间层的切削工具中,基体和被覆层的密合性也不充分。
[0011] 本发明的目的在于提供即使在高速加工且断续切削加工等对刀刃施加大的冲击的加工中也能够抑制被覆层发生剥离,能够发挥优异的耐磨性、耐缺损性的切削工具。
[0012] 解决问题的手段
[0013] 本发明的切削工具是在超硬合金基体的表面依次层叠TiN层、TiCN层、Al2O3层而成,在辉光放电发射光谱分析(GDS分析)中,所述TiN层和所述TiCN层中含有Nb,在厚度方向上所述TiCN层的中央的Nb的含有比率为0.1质量%以上、并且所述Al2O3层的中央的Nb的含有比率为0.05质量%以下。
[0014] 发明效果
[0015] 根据本发明的切削工具,在超硬合金基体的表面被覆的TiN层和TiCN层中含有Nb,在厚度方向的TiCN层的中央的Nb的含有比率为0.1质量%以上,因此能够提高基体和被覆层的密合性,抑制被覆层的剥离,提高切削工具的耐磨性和耐缺损性。另外,由于将在Al2O3层的中央的Nb的含量设置为0.05质量%以下,因此能够提高切削工具的耐磨性。

附图说明

[0016] 图1是合并了关于包括本发明的切削工具的表面的截面的(a)扫描式电子显微镜(SEM)照片和(b)辉光放电发射光谱分析(GDS分析)数据的图。
[0017] 图2是用于观察图1的GDS分析数据的微量成分的分布状态的放大图。
[0018] 图3是用于进一步观察图1、2的GDS分析数据的微量成分的分布状态的进一步放大图。

具体实施方式

[0019] 对本发明的切削工具进行说明。图1(a)是关于包括上述切削工具的被覆层的截面的扫描式电子显微镜(SEM)照片,图1(b)是表示从被覆层的表面向深度方向的辉光放电发射光谱分析(GDS分析)。此外,图2、3是用于观察图1中的GDS分析数据的微量成分的分布状态的局部放大图。图1~3中确定了根据各元素的分布和电子显微镜照片(SEM)的对应关系决定的各层的构成。1为基体(超硬合金),2为TiN层,3为TiCN层,4为包含TiCO、TiNO、TiCNO或TiAlCNO等的中间层,5为Al2O3层,6为TiCN层或TiN层的表面层,7为由2~6各层的构成所构成的被覆层,8为切削工具。
[0020] 在此,利用GDS分析能够算出各层的厚度,但如果各层的蚀刻速度不同则导致各层的厚度的误差变大。因此在本发明中,对照扫描式电子显微镜(SEM)照片和电子探针微区分析(EPMA)数据(未图示)来确认各层的构成,同时确认GDS分析数据的峰形,确定各层的范围。此外,从图1(a)的SEM照片能够确认,在被覆层7中层厚最厚的是TiCN层3,层厚第二厚的是Al2O3层5,从图1(b)的GDS分析数据的峰形能够确认Al和Ti的分布存在平坦的部分。并且,将各平坦的部分的厚度的正中的中间位置认定为TiCN层的中央L1,Al2O3层的中央L2。
[0021] 在此,基体1的优选例由WC相、结合相、B1型固溶相形成。并且,按以下比率含有:WC为80~94质量%、Co为5~15质量%、Nb按NbC换算量计为0.1~10质量%、选自除Nb以外的周期表第4、5和6族金属的至少1种的碳化物(除WC以外)、氮化物和碳氮化物中的至少1种为0~10质量%。并且,该基体1包含WC相、含Nb的B1型固溶相和以所述Co为主体的结合相。Nb的优选含量是按基体1的内部的NbC换算量计为1~8质量%,特别是1~5质量%。
[0022] 在此,在本实施方式中,基体1具有Nb的含有比率恒定的内部区域和所述Nb的含有比率比该内部区域少的表面区域。并且,在本实施方式中,该表面区域的距表面的深度为5~40μm,该表面区域的中间的深度位置的Nb含量相对于距基体1表面的深度为1000μm以上的内部的深度位置的Nb含量的比率为0.8以下,优选调节至0.2~0.8的范围。由此,能够将被覆层7中的Nb的分布状态容易地调节至规定的范围内。此外,虽然本发明中的基体1的内部区域是指比基体1的表面区域更深的区域,但内部的组成是在1000μm以上深度的位置测定。另外,在表面区域中Co的含有比率处于增加的趋势。
[0023] 另外,在基体1的表面依次层叠有TiN层2、TiCN层3、Al2O3层5的被覆层。此外,作为被覆层可以在TiN层2、TiCN层3、Al2O3层5的层间形成其它的层,例如,优选在TiCN层3和Al2O3层5之间形成TiCNO层、TiCO层、TiNO层、TiAlCNO层等含有氧的中间层4,由此,能够容易地将Al2O3层5的晶体控制为α型晶体结构。进一步,也可以在Al2O3层5的表面形成包含TiCN层或TiN层等的表面层6。
[0024] 在图3中,在TiN层2和TiCN层3中含有Nb,并且Al2O3层5的中央的Nb的含量为0.05质量%以下。由此提高基体1和被覆层7的密合性,即使在高速且强断续切削等施加强冲击的加工中也能够抑制被覆层7的剥离,提高切削工具8的耐磨性和耐缺损性。即,在GDS分析中,TiCN层3的中央(图1~3的L1)的Nb的含有比率为0.1~0.4质量%,由此能够提高基体1和被覆层7的密合性并且提高TiCN层3的耐磨性。并且,Al2O3层5的中央(图1~3的L2)的Nb的含有比率为0.05质量%以下,由此成为Al2O3层5的耐氧化性高、耐磨性高的切削工具8。
[0025] 在此,优选在被覆层7中除Nb以外,在从TiN层2到TiCN层3中含有W和Co,在图3中,为了进一步提高基体1和被覆层7的密合性,优选:W的含有比率在TiCN层3的中央L1为0.2~1.0质量%,Co的含有比率在TiCN层3的中央L1为0.01~0.08质量%。另外,在图3中呈现出下述特别的行为:被覆层7中能够观察到Zr的扩散,但TiN层2中不含有Zr成分,在TiCN层3与中间层4的界面侧Zr成分的含量增加。
[0026] 另外,在GDS分析中,在基体1的表面的B1型固溶相的含有比率少,Nb的含有比率相对于由超硬合金构成的基体1的内部的含有比率低至0.8以下,并且在基体1的内部存在B1型固溶相,在使高温下的抗塑性变形性最优化方面优选基体1的内部的Nb按NbC换算量计的含有比率为1~8质量%,特别是1~5质量%。此外,在GDS分析中,在基体1的表面的Nb的含有比率不足1质量%,特别优选0.08~0.3质量%。此外,在本发明中,基体1的内部是指距超硬合金基体1的表面1000μm的位置。
[0027] 还有,为了能够提高TiCN层3的耐缺损性并且提高TiCN层3的密合性,优选在图2所示的GDS分析中,C(碳)的浓度由在TiCN层3的Al2O3层5侧在±0.5质量%以内的范围内恒定,而后在面向TiN层2暂时增加后减少的分布构成。
[0028] 此外,为了调节Nb的含有比率,TiN层2的厚度优选0.2~0.6μm。
[0029] (制造方法)
[0030] 对构成上述本发明的切削工具的超硬合金的制造方法的一例进行说明。首先,按以下比率调配:WC粉末为80~94质量%、金属Co粉末为5~15质量%、作为用于形成B1型固溶相的化合物粉末的NbC粉末为0.1~10质量%、其它用于形成B1型固溶相的化合物粉末为10质量%以下。此时,将作为用于形成B1型固溶相的化合物原料粉末的NbC粉末的平均粒径调节为0.5~2μm,将WC粉末的平均粒径调节为0.5~10μm,将金属Co粉末的平均粒径调节为1.0~2.0μm,并且通过下述混合、烧成工序,能够制作形成本发明的切削工具的超硬合金。
[0031] 向该调配了的粉末中加入溶剂,混合、粉碎规定时间制成浆体。向该浆体中添加粘结剂进一步混合,使用喷雾干燥器等将浆体干燥并进行混合粉末的造粒。接着,使用造粒后的颗粒通过冲压成形来成形为切削工具形状。然后,准备好含有NbC或金属铌(Nb)的溶液,通过喷雾法、浸渗法、涂布法,使该超硬合金基体的表面富含Nb来提高Nb浓度。进而,可以利用烧成炉进行脱脂后,在20~2000Pa的减压气氛中,将烧成炉的温度提升至1380~1480℃的烧成温度烧成1~1.5小时来制作超硬合金。
[0032] 并且,对于制作的超硬合金,根据需要研磨加工超硬合金的表面、在刀刃部实施珩磨加工。
[0033] 接着,在得到的基体的表面通过化学气相沉积(CVD)法形成被覆层2。如果对其成膜条件的一例进行说明,首先根据需要在基体的正上方形成TiN(氮化钛)层。其成膜条件优选使用作为混合气体组成包含如下比率的气体的混合气体:四氯化钛(TiCl4)气体0.5~10体积%、氮气(N2)10~60体积%,其余为氢气(H2),成膜温度为800~940℃,压力为8~50kPa。
[0034] 接着,在TiN层的上层形成TiCN层。其成膜条件可以列举使用作为混合气体组成包含如下比率的气体的混合气体:四氯化钛(TiCl4)气体0.5~10体积%、氮气(N2)1~60体积%、乙腈(CH3CN)气体0.1~3.0体积%,其余为氢气(H2),成膜温度为780~850℃,压力为5~25kPa的条件,根据该条件使包含所谓的柱状晶体的MT(Moderate Temprature)-TiCN层成膜。接着在MT-TiCN层的上层形成包含所谓的粒状晶体的HT(High Temprature)-TiCN层。具体是紧接上述TiCN层更换为如下的成膜条件使HT-TiCN层成膜。即,使用包含如下比率的气体的混合气体:四氯化钛(TiCl4)气体0.1~3体积%、氮气(N2)0~15体积%、甲烷(CH4)气体或乙腈(CH3CN)气体0.1~10体积%,其余为氢气(H2),成膜温度为900~1020℃,压力为5~40kPa。
[0035] 继而,以如下的成膜条件使TiAlCNO层成膜。即,使用包含如下比率的气体的混合气体:四氯化钛(TiCl4)气体0.1~3体积%、氮气(N2)1~15体积%、甲烷(CH4)气体或乙腈(CH3CN)气体0.1~10体积%、一氧化碳(CO)气体0.5~3.0体积%、三氯化铝(AlCl3)0.5~3.0体积%,其余为氢气(H2),成膜温度为900~1020℃,压力为5~40kPa。
[0036] 然后,接着形成α型Al2O3层。作为具体的成膜条件的一例优选使用包含如下比率的气体的混合气体:三氯化铝(AlCl3)气体0.5~5.0体积%、氯化氢(HCl)气体0.5~3.5体积%、二氧化碳(CO2)气体0.5~5.0体积%、硫化氢(H2S)气体0~0.5体积%,其余为氢气(H2),成膜温度为930~1010℃,压力为5~10kPa。
[0037] 随后,根据需要在Al2O3层的表面使TiN层成膜。作为TiN层的成膜条件优选使用作为混合气体组成包含如下比率的气体的混合气体:四氯化钛(TiCl4)气体0.1~10体积%,氮气(N2)1~60体积%,其余为氢气(H2),反应室内的温度为855~1010℃,压力为10~85kPa。
[0038] 并且,被覆层成膜结束后,将成膜室内设定为压力350kPa~850kPa、温度1000~1200℃保持30分钟~120分钟后将室内冷却,由此,使在基体表面存在的Nb向被覆层侧以规定的比率扩散。
[0039] 然后,根据需要至少研磨加工所形成的被覆层的表面的刀刃部。通过该研磨加工,刀刃部被加工平滑,抑制被切削材料的熔敷,进而成为耐缺损性优异的工具。
[0040] 实施例
[0041] (实施例1)
[0042] 相对于平均粒径5μm的WC粉末,按如下比率调配、添加:平均粒径1.5μm的金属Co粉末8质量%、平均粒径1.0μm的TiC粉末0.8质量%、平均粒径1.0μm的NbC粉末3.5质量%、平均粒径2.0μm的ZrC粉末0.3质量%,向其中加入有机溶剂混合、粉碎后添加保形剂并进一步混合,将形成的浆体投入喷雾干燥器中制作造粒粉末。接着,使用该造粒粉末通过冲压成形以切削工具形状(CNMG120408PS)进行成形,利用烧成炉在450℃进行3小时脱脂后,在1450℃烧成1小时制作超硬合金。此外,对该超硬合金基体利用扫描式电子显微镜(SEM)中的电子探针微区分析(EPMA)测定后可知,存在距表面的厚度为30μm的表面区域。另外,在同一分析中可知,表面区域的中间的深度位置的Nb的含量相对于距所述超硬合金基体的表面的深度为1000μm以上的内部的深度位置的Nb的含量的比率为0.65。
[0043] 并且,磨削加工上述超硬合金制成CNMG120408PS的大致平板形状后,对该基体的表面在刀刃部进一步实施珩磨加工。接着使用含有NbC的浆体用表1的方法进行提高基体表面的Nb浓度的处理,从而实施表1的基体表面处理,提高了基体的表面的Nb的含有比率。
[0044] 还有,在该加工了的超硬合金的表面通过化学气相沉积(CVD)法使表1的构成的被覆层依次成膜。成膜后经过将室内设定为500kPa、在表1所示温度保持60分钟的成膜后高温保持工序之后将室内冷却。此外,各层的厚度是用扫描式电子显微镜观察被覆层的截面而确认的。
[0045] [表1]
[0046]
[0047] 对得到的切削工具,对从表面向深度方向的组成变化进行GDS分析(堀场制作所公司制GD-PROFTLER,分析条件:功率20W,Ar压力600Pa,放电范围2mmφ,采样时间0.3sec/point),确认TiCN层和Al2O3层的中央的各元素的分布,各元素的浓度示于表1中。
另外,对切削工具的截面进行SEM观察。
[0048] 并且,使用该工具通过下述的条件进行连续切削试验和强断续切削试验,评价耐磨性和耐缺损性。
[0049] (磨耗评价条件)
[0050] 被切削材料:SCM435
[0051] 工具形状:CNMG120408PS
[0052] 切削速度:300m/分钟
[0053] 进给速度:0.3mm/rev
[0054] 进给量:2.0mm(每3秒钟切削的进给位移)
[0055] 切削时间:15分钟
[0056] 切削液:乳化液15%+水85%混合液
[0057] 评价项目:利用显微镜观察刀刃,测定后刀面磨耗量、前刀面磨耗量[0058] (强断续切削条件)
[0059] 被切削材料:SCM440 4槽材料
[0060] 工具形状:CNMG120408PS
[0061] 切削速度:300m/分钟
[0062] 进给速度:0.35mm/rev
[0063] 进给量:1.5mm
[0064] 切削液:乳化液15%+水85%混合液
[0065] 评价项目:直至缺损的冲击次数
[0066] 冲击次数1000次时利用显微镜观察刀刃的状态
[0067] 结果示于表2中。
[0068] [表2]
[0069]
[0070] 通过表1、2中所示的结果可知,在基体的表面未形成TiN层的试样No.5和TiCN层的中央的Nb的含有比率少于0.1质量%的试样No.6、8中,被覆层从基体剥离,任意一个的磨耗试验和强断续试验均是差的测试结果。另外,在Al2O3层的中央的Nb的含有比率超过0.05质量%的试样No.7中,被覆层的耐磨性降低。
[0071] 与此相对,依次层叠TiN层、TiCN层、Al2O3层、在GDS分析中TiCN层的中央的Nb的含有比率为0.1质量%以上、Al2O3层的中央的Nb的含有比率为0.05质量%以下的试样No.1~4中,任意一个的被覆层的密合力均高,是具有耐磨性和耐缺损性均优异的切削性能的试样。此外,试样No.1~4的任意一个的试样如图2、3所示,在基体的表面附近的Nb的含有比率降低,相对于基体的内部的含有比率为0.8以下。
[0072] (实施例2)
[0073] 对于实施例1的试样No.3,除将超硬合金基体的组成改变为表3的组成以外,用与实施例1相同的条件制作表3的试样,与实施例1同样地进行评价。结果示于表3、4中。
[0074] [表3]
[0075]
[0076] 【表4】
[0077]
[0078] 从表3、4可以明确,基体1由按NbC换算量计以0.1~10质量%的比率含有Nb的超硬合金构成,在规定的成膜条件下使被覆层成膜了的试样No.9~12中,被覆层中的Nb的含量被控制在规定的范围内,任意一个均是被覆层的密合力高、具有耐磨性和耐缺损性均优异的切削性能的试样。
[0079] 符号说明
[0080] 1 基体(超硬合金)
[0081] 2 TiN层
[0082] 3 TiCN层
[0083] 4 中间层
[0084] 5 Al2O3层
[0085] 6 表面层
[0086] 7 被覆层
[0087] 8 切削工具