直喷式柴油机装置转让专利

申请号 : CN201280044958.X

文献号 : CN103814204B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 中道宪治

申请人 : 三菱重工业株式会社

摘要 :

在将液化天然气(LNG)那样的低温液体燃料作为燃料的直喷式柴油机装置中,有效利用高压低温液体燃料的保有冷能来提高效率。所述直喷式柴油机装置DS将使液化天然气气化而得到的高压天然气作为发动机燃料,利用由增压器(30)升压后的吸入气体使该发动机燃料燃烧,其具备:增压泵(3),其设置在向直喷式柴油机的工作缸内供给喷射高压天然气的燃料用液化天然气供给系统(FS)中,使从LNG箱(1)导入的低压的液化天然气升压;冷能回收热交换器(51),其通过在闭合回路中循环流动的热介质与由增压泵(3)升压后的高压液化天然气的热交换,来对热介质进行冷却;空气冷却热交换器(54),其在冷能回收热交换器(51)的下游侧通过与热介质的热交换,对向增压器(30)导入而成为吸入气体的大气及/或由增压器(30)压缩后的吸入气体进行冷却。

权利要求 :

1.一种直喷式柴油机装置,将使低温液体燃料气化而得到的高压气体作为发动机燃料,利用由增压器升压后的吸入气体使该发动机燃料燃烧,其特征在于,具备:增压泵,其设置在向所述直喷式柴油机装置的工作缸内供给喷射所述高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的所述低温液体燃料升压;

冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由所述增压泵升压而得到的高压低温液体燃料的热交换,对所述热介质进行冷却;

蒸发气再次液化装置,其在所述冷能回收热交换器的下游侧将所述热介质作为冷能源而使所述低温液体燃料的蒸发气再次液化;

空气冷却热交换器,其在所述蒸发气再次液化装置的下游侧通过与所述热介质的热交换,对向所述增压器导入而成为吸入气体的大气及、或由所述增压器压缩后的吸入气体进行冷却。

2.一种直喷式柴油机装置,将使低温液体燃料气化而得到的高压气体作为发动机燃料,利用由增压器升压后的吸入气体使该发动机燃料燃烧,其特征在于,具备:增压泵,其设置在向所述直喷式柴油机装置的工作缸内供给喷射所述高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的所述低温液体燃料升压;

冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由所述增压泵升压而得到的高压低温液体燃料的热交换,对所述热介质进行冷却;

蒸发气再次液化装置,其在所述冷能回收热交换器的下游侧将所述热介质作为冷能源而使所述低温液体燃料的蒸发气再次液化;

热介质与水的热交换器,其在所述蒸发气再次液化装置的下游侧通过所述热介质与在闭合回路中循环流动的水的热交换,对所述水进行冷却;

空气冷却热交换器,其通过与由所述热介质与水的热交换器冷却后的水的热交换,对向所述增压器导入而成为吸入气体的大气及、或由所述增压器压缩后的吸入气体进行冷却。

3.根据权利要求1所述的直喷式柴油机装置,其特征在于,

将由所述冷能回收热交换器冷却后的所述热介质作为冷能源来使用的一个或多个冷能利用设备设置在所述空气冷却热交换器的上游侧。

4.根据权利要求2所述的直喷式柴油机装置,其特征在于,

将由所述热介质与水的热交换器冷却后的所述水作为冷能源来使用的一个或多个冷能利用设备设置在所述空气冷却热交换器的上游侧。

5.根据权利要求1~4中任一项所述的直喷式柴油机装置,其特征在于,在供所述热介质流动的闭合回路或从所述闭合回路分支出的旁通流路设有蓄冷装置。

6.根据权利要求1~4中任一项所述的直喷式柴油机装置,其特征在于,在供所述热介质流动的闭合回路设有消耗剩余冷能的加热器。

7.根据权利要求1~4中任一项所述的直喷式柴油机装置,其特征在于,具备由所述增压器的输出来驱动的增压器驱动发电机。

8.根据权利要求1~4中任一项所述的直喷式柴油机装置,其特征在于,具备:再热器,其对从所述增压器排出的废气进行加热;

排气涡轮,其由通过该再热器而温度上升后的废气来驱动;

涡轮驱动发电机,其由该排气涡轮来驱动。

说明书 :

直喷式柴油机装置

技术领域

[0001] 本发明涉及例如将液化天然气这样的低温液体燃料作为燃料的直喷式柴油机装置,尤其涉及由设于低温液体燃料的燃料供给系统中的增压泵升压而得到的高压低温液体燃料的冷能利用技术。

背景技术

[0002] 目前,柴油机具有直喷方式及预混合方式,采用了直喷方式的直喷式柴油机通常效率高。
[0003] 直喷式柴油机采用向高压的工作缸内直接喷射燃料而使其燃烧的方式,因此需要使燃料的压力比工作缸内的压力高而供给燃料的装置。在近年来的柴油机中,通常使用增压器,原因在于这样也有助于输出提高或排放物(emission)减少。
[0004] 而且,在近年来的柴油机中,从排放物等的优势性出发,正在推进着使用液化天然气(LNG)作为燃料的燃料LNG化。这样的燃料LNG化也存在向例如船舶推进用(船用)或发电机驱动用(工业用)等那样比较大型(大输出)的柴油机扩展的趋势。
[0005] 上述的大型柴油机的燃料LNG化通过向二冲程柴油机的工作缸内直接喷射燃料的高压天然气(CNG)的直喷式柴油机而得以进展。因此,在使用CNG作为直喷式柴油机的燃料的情况下,为了向处于压缩状态而高压的工作缸燃烧室内可靠地喷射供给CNG,要求比燃烧室内的压力高的喷射压力。
[0006] 因而,在从LNG箱向直喷式柴油机供给CNG的燃料供给系统中,为了获得所期望的喷射压力,使从大气压的LNG箱供给的LNG升压成高压LNG,并利用加热器等对该高压LNG进行加热而使其气化,因此设置有LNG升压用的LNG增压泵。
[0007] 在有关内燃机的现有技术中,例如下述的专利文献1所公开的那样,利用二次冷却器对来自排气涡轮增压器的加压空气进行冷却而使其向吸气歧管流动。
[0008] 另外,在下述的专利文献2中公开了如下内容:通过使用蓄积在蓄冷件中的LNG的冷能,由此在外部气体温度高时利用外部气体温度低时的冷却能力,来进行燃气轮机的吸气冷却。
[0009] 另外,在大型涡轮增压器柴油机中,例如下述的专利文献3所公开那样,设置废气锅炉及动力涡轮来进行废气的能量回收。
[0010] 在先技术文献
[0011] 专利文献
[0012] 专利文献1:日本实开昭58-139524号公报
[0013] 专利文献2:日本特开2005-240639号公报
[0014] 专利文献3:日本特表2009-532614号公报

发明内容

[0015] 发明要解决的课题
[0016] 其中,将LNG作为燃料的直喷式柴油机装置中,在燃料供给系统设置LNG增压泵来使低温的LNG升压为高压液化天然气。该LNG增压泵是使极低温的LNG升压来得到工作流体的泵,因此升压后的高压LNG保有大的冷能量。
[0017] 然而,在将液化天然气作为燃料的直喷式柴油机装置中,尽管高压液化天然气保有大的冷能量,但实际情况是没有有效利用该冷能就废弃掉。
[0018] 另一方面,以液化天然气为燃料的直喷式柴油机装置要求效率的提高,因而,期望有效利用高压液化天然气的保有冷能来使直喷式柴油机装置的效率提高。即,若能在装置内将高压液化天然气的保有冷能有效用于冷却等,则可以期待直喷式柴油机装置的效率的进一步提高。
[0019] 本发明为了解决上述的课题而提出,其目的是在以液化天然气那样的低温液体燃料为燃料的直喷式柴油机装置中,有效利用高压低温液体燃料的保有冷能来提高效率。
[0020] 解决方案
[0021] 本发明为了解决上述课题,而采用了下述的手段。
[0022] 本发明涉及的第一方式的直喷式柴油机装置将使低温液体燃料气化而得到的高压气体作为发动机燃料,利用由增压器升压后的吸入气体使该发动机燃料燃烧,其特征在于,具备:增压泵,其设置在向所述直喷式柴油机的工作缸内供给喷射所述高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的所述低温液体燃料升压;冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由所述增压泵升压而得到的高压低温液体燃料的热交换,对所述热介质进行冷却;空气冷却热交换器,其在所述冷能回收热交换器的下游侧通过与所述热介质的热交换,对向所述增压器导入而成为吸入气体的大气及/或由所述增压器压缩后的吸入气体进行冷却。
[0023] 根据这样的本发明的第一方式,所述直喷式柴油机装置具备:增压泵,其设置在向直喷式柴油机的工作缸内供给喷射高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的低温液体燃料升压;冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由所述增压泵升压而得到的高压低温液体燃料的热交换,对所述热介质进行冷却;空气冷却热交换器,其在冷能回收热交换器的下游侧通过与热介质的热交换,对向增压器导入而成为吸入气体的大气及/或由所述增压器压缩后的吸入气体进行冷却。因此,能够利用高压低温液体燃料所保有的冷能对通过冷能回收热交换器而流动的氮等热介质进行冷却,而且,能够利用低温的热介质对成为吸入气体的大气及/或压缩后的吸入气体进行冷却。
[0024] 即,使低温液体燃料所保有的冷能向热介质移动进行有效利用,由此能够使向增压器吸入的大气的入口温度或由增压器压缩后的吸入气体温度降低,因此能够提高增压器及直喷式柴油机的效率。
[0025] 需要说明的是,作为这种情况下适用的低温液体燃料,已知有例如液化天然气或液化石油气等。
[0026] 本发明涉及的第二方式的直喷式柴油机装置将使低温液体燃料气化而得到的高压气体作为发动机燃料,利用由增压器升压后的吸入气体使该发动机燃料燃烧,其特征在于,具备:增压泵,其设置在向所述直喷式柴油机的工作缸内供给喷射所述高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的所述低温液体燃料升压;冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由所述增压泵升压而得到的高压低温液体燃料的热交换,对所述热介质进行冷却;蒸发气再次液化装置,其在所述冷能回收热交换器的下游侧将所述热介质作为冷能源来使所述低温液体燃料的蒸发气再次液化;空气冷却热交换器,其在所述蒸发气再次液化装置的下游侧通过与所述热介质的热交换,对向所述增压器导入而成为吸入气体的大气及/或由所述增压器压缩后的吸入气体进行冷却。
[0027] 根据这样的本发明的第二方式,所述直喷式柴油机装置具备:增压泵,其设置在向直喷式柴油机的工作缸内供给喷射高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的低温液体燃料升压;冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由增压泵升压而得到的高压低温液体燃料的热交换,对热介质进行冷却;蒸发气再次液化装置,其在冷能回收热交换器的下游侧将热介质作为冷能源来使低温液体燃料的蒸发气再次液化;空气冷却热交换器,其在蒸发气再次液化装置的下游侧通过与热介质的热交换,对向增压器导入而成为吸入气体的大气及/或由所述增压器压缩后的吸入气体进行冷却。因此,能够利用高压低温液体燃料所保有的冷能对通过冷能回收热交换器而流动的氮等热介质进行冷却,而且在蒸发气再次液化装置中将热介质的冷能用于蒸发气的再次液化之后,利用低温的热介质对成为吸入气体的大气及/或压缩后的吸入气体进行冷却。
[0028] 即,使低温液体燃料所保有的冷能向热介质移动进行有效利用,由此能够使蒸发气再次液化,或使向增压器吸入的大气的入口温度或压缩后的吸入气体的温度降低,因此能够提高增压器及直喷式柴油机的效率。这种情况下,将冷能利用于蒸发气的再次液化之后的热介质仍保有足够冷却大气的冷能。
[0029] 需要说明的是,作为这种情况下适用的低温液体燃料,已知有例如液化天然气或液化石油气等。
[0030] 本发明涉及的第三方式的直喷式柴油机装置将使低温液体燃料气化而得到的高压气体作为发动机燃料,利用由增压器升压后的吸入气体使该发动机燃料燃烧,其特征在于,具备:增压泵,其设置在向所述直喷式柴油机的工作缸内供给喷射所述高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的所述低温液体燃料升压;冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由所述增压泵升压而得到的高压低温液体燃料的热交换,对所述热介质进行冷却;蒸发气再次液化装置,其在所述冷能回收热交换器的下游侧将所述热介质作为冷能源来使所述低温液体燃料的蒸发气再次液化;热介质/水热交换器,其在所述蒸发气再次液化装置的下游侧通过所述热介质与在闭合回路中循环流动的水的热交换,对所述水进行冷却;空气冷却热交换器,其通过与由所述热介质/水热交换器冷却后的水的热交换,对向所述增压器导入而成为吸入气体的大气及/或由所述增压器压缩后的吸入气体进行冷却。
[0031] 根据这样的本发明的第三方式,所述直喷式柴油机装置具备:增压泵,其设置在向直喷式柴油机的工作缸内供给喷射高压气体的低温液体燃料供给系统中,使从低温液体燃料箱导入的低压的低温液体燃料升压;冷能回收热交换器,其通过在闭合回路中循环流动的热介质与由增压泵升压而得到的高压低温液体燃料的热交换,对热介质进行冷却;蒸发气再次液化装置,其在冷能回收热交换器的下游侧将热介质作为冷能源来使低温液体燃料的蒸发气再次液化;热介质/水热交换器,其在蒸发气再次液化装置的下游侧通过热介质与在闭合回路中循环流动的水的热交换,对水进行冷却;空气冷却热交换器,其通过与由热介质/水热交换器冷却后的水的热交换,对向增压器导入而成为吸入气体的大气及/或由所述增压器压缩后的吸入气体进行冷却。因此,最初利用高压低温液体燃料所保有的冷能,对通过冷能回收热交换器而流动的氮等热介质进行冷却。接着,将由高压低温液体燃料冷却后的热介质的冷能最初在蒸发气再次液化装置中用于蒸发气的再次液化,之后,用于空气冷却热交换器的作为冷却介质的水的冷却,因此能够利用该冷水对成为吸入气体的大气及/或压缩后的吸入气体进行冷却。
[0032] 即,使低温液体燃料所保有的冷能向热介质移动进行有效利用,由此除了能够使蒸发气再次液化以外,还能够借助水来使向增压器吸入的大气的入口温度或压缩后的吸入气体温度降低,因此能够提高增压器及直喷式柴油机的效率。这种情况下,将冷能利用于蒸发气的再次液化之后的热介质仍保有足够制造出对大气进行冷却的冷水的冷能。
[0033] 需要说明的是,作为这种情况下适用的低温液体燃料,已知有例如液化天然气或液化石油气等。
[0034] 在上述的发明(第一方式及第二方式)中,优选在所述空气冷却热交换器的上游侧设置将在所述冷能回收热交换器中被冷却后的所述热介质作为冷能源来使用的一个或多个冷能利用设备,由此,低温液体燃料所保有的大的冷能量不仅能够用于成为吸入气体的大气的冷却,还能够借助热介质而有效用于一个或多个冷能利用设备。
[0035] 需要说明的是,由于液化天然气这样的低温液体燃料保有大的冷能量,因此从低温液体燃料接受了冷能的热介质即使是在一个或多个冷能利用设备中使用冷能,也能充分地确保燃烧空气的冷却所必需的冷能量。
[0036] 在上述的发明(第三方式)中,优选在所述空气冷却热交换器的上游侧设置将在所述热介质/水热交换器中被冷却后的所述水作为冷能源来使用的一个或多个冷能利用设备,由此,低温液体燃料所保有的大的冷能量不仅能够用于成为吸入气体的大气的冷却,还能够借助热介质而有效用于一个或多个冷能利用设备。
[0037] 这里,作为利用热介质的冷能来进行冷却的适合的冷能利用设备的具体例,可以例示出例如在使低温液体燃料(液化天然气或液化石油气等)的蒸发气再次液化的装置的热交换器中使用的冷能源(第一冷能源)等。
[0038] 另外,作为利用热介质的冷能或在热介质/水热交换器中被冷却后的水的冷能来进行冷却的适合的冷能利用设备的具体例,可以例示出例如在直喷式柴油机的主机冷却、利用直喷式柴油机驱动主发电机进行发电的情况下的主发电机冷却、具备辅助发动机及/或辅助发电机的情况下的辅助发动机冷却或辅助发电机冷却、以及用于使废热回收锅炉的蒸气冷凝的冷却等中使用的冷能源(第二冷能源)。
[0039] 就这样的第一冷能源及第二冷能源来说,不一定非要设置,可以根据装置结构等各种条件而仅设置任一方,或者也可以组合双方来设置。即,例如除了设置第一冷能源以外,作为第二冷能源来说,可以将冷能用于主机冷却及主发电机冷却这双方等,根据装置结构适当选择使用目的地,冷能利用的数量不受限定。
[0040] 在上述的发明中,优选在供所述热介质流动的闭合回路或从所述闭合回路分支出的旁通流路设置蓄冷装置,由此,能够在产生了剩余冷能的情况下蓄积冷能,并且能够根据状况来利用蓄积的冷能。
[0041] 在上述的发明中,优选在供所述热介质流动的闭合回路设置消耗剩余冷能的加热器,由此,能够在产生了必要以上的剩余冷能的情况下强制性地消耗该剩余冷能。这种情况下的加热器例如可以使用水作为加热源。
[0042] 在上述的发明中,优选具备由所述增压器的输出来驱动的增压器驱动发电机,由此,能够有效利用废气的能量从增压器驱动发电机获得电力,因此能够进一步提高直喷式柴油机装置的效率。
[0043] 在上述的发明中,优选具备:再热器,其对从所述增压器排出的废气进行加热;排气涡轮,其由通过该再热器而温度上升后的废气来驱动;涡轮驱动发电机,其由该排气涡轮来驱动。由此,能够进一步有效利用废气的能量从涡轮驱动发电机获得电力,因此能够更进一步提高直喷式柴油机装置的效率。
[0044] 发明效果
[0045] 根据上述的本发明,在将液化天然气等低温液体燃料作为燃料的直喷式柴油机装置中,能够有效利用由对低温液体燃料进行升压的增压泵升压而得到的高压低温液体燃料所保有的冷能,提供效率高且可靠性高的直喷式柴油机装置。

附图说明

[0046] 图1是表示本发明涉及的直喷式柴油机装置的第一实施方式的主要部分结构例的系统图。
[0047] 图2是表示本发明涉及的直喷式柴油机装置的第二实施方式的主要部分结构例的系统图。
[0048] 图3是表示本发明涉及的直喷式柴油机装置的第三实施方式的主要部分结构例的系统图。
[0049] 图4是表示本发明涉及的直喷式柴油机装置的第四实施方式的主要部分结构例的系统图。
[0050] 图5是表示本发明涉及的直喷式柴油机装置的第五实施方式的主要部分结构例的系统图。
[0051] 图6是表示本发明涉及的直喷式柴油机装置的第六实施方式的主要部分结构例的系统图。
[0052] 图7是表示本发明涉及的直喷式柴油机装置的第七实施方式的主要部分结构例的系统图。
[0053] 图8是表示本发明涉及的直喷式柴油机装置的第八实施方式的主要部分结构例的系统图。
[0054] 图9是表示本发明涉及的直喷式柴油机装置的第九实施方式的主要部分结构例的系统图。
[0055] 图10是表示本发明涉及的直喷式柴油机装置的第十实施方式的主要部分结构例的系统图。
[0056] 图11是表示本发明涉及的直喷式柴油机装置的第十一实施方式的主要部分结构例的系统图。

具体实施方式

[0057] 以下,参照附图,说明本发明涉及的以低温液体燃料为燃料进行运转的直喷式柴油机装置的一实施方式。
[0058] 需要说明的是,在以下所说明的实施方式中,将低温液体燃料设为液化天然气(LNG),但低温液体燃料并不局限于此,例如也可以适用于液化石油气(LPG)那样的低温液体燃料。
[0059] <第一实施方式>
[0060] 图1所示的直喷式柴油机装置DS是适用于柴油机发电机10的情况的结构例,该柴油机发电机10驱动与直喷式柴油机(以下,称作“主机”)的输出轴连结的主发电机来获得电力。
[0061] 图示的直喷式柴油机装置DS是将使LNG升压及气化而得到的高压天然气(CNG)作为主机的发动机燃料,利用由增压器30增压后的吸入气体使该发动机燃料燃烧来获得输出的装置,例如作为比较大型且具有大输出的紧急用发电设备那样的柴油机发电机10来使用。
[0062] 在以下所说明的实施方式中,驱动主发电机来发电的柴油机发电机10的主机是将使LNG升压及气化而得到的CNG作为燃料来进行运转的直喷式二冲程柴油机。
[0063] 直喷式柴油机装置DS为了向主机的工作缸内供给喷射CNG,具备将贮存在LNG箱1的内部的LNG导向主机的配管系统的燃料用液化天然气供给系统(燃料供给系统)FS。
[0064] 在燃料供给系统FS中设有使由潜液泵2从液化天然气箱(LNG箱)1的内部导入的低压的LNG升压的增压泵3。该增压泵3是为了向被压缩成高压的状态下的主机的工作缸内喷射供给燃料,以使气化的CNG的压力比工作缸内的压力高的方式使LNG升压的泵。需要说明的是,增压泵3例如使用活塞式泵,将由该增压泵3升压后的LNG称作高压LNG。
[0065] 另外,在增压泵3的上游侧设有作为缓冲器发挥功能的吸入筒4,因而,这种情况下,由增压泵3实际上升压的LNG是从吸入筒4导入的。
[0066] 而且,在增压泵3的下游侧根据需要设有例如LNG加热器那样的加热机构(未图示),以使升压后的高压LNG气化而转换成CNG。并且,在该加热机构的上游侧设有冷能回收热交换器51,以利用高压LNG对后述的热介质进行冷却。
[0067] 即,上述的增压泵3是为了向被压缩而处于高压状态的主机的工作缸内可靠地喷射供给发动机燃料的CNG,使低压的LNG升压而成为高压LNG的泵,因此对于使该高压LNG气化而得到的CNG赋予能够向工作缸内喷射供给的高压。燃料的LNG需要升温至常温,但也可以是例如一50℃左右这样的0℃以下。
[0068] 需要说明的是,图中的符号5表示LNG所流动的LNG配管,6表示高压LNG所流动的高压LNG配管。
[0069] 在向上述的主机供给燃烧用空气的吸气系统中设有增压器30。该增压器30具备:以从主机排出的废气为驱动源的涡轮31;与涡轮31同轴地连结的压缩机32。即,增压器30是利用主机的废气所保有的能量使涡轮31旋转,驱动与涡轮31同轴的压缩机32来将大气中的空气导入而对其进行压缩的装置。通过设置这样的增压器30,能够形成压缩了燃烧用空气而得到的吸入气体,因此能够增加向主机供给的燃烧用空气的空气密度。
[0070] 另外,本实施方式的增压器30具备与涡轮31及压缩机32同轴的辅助发电机33。
[0071] 该辅助发电机33是由增压器30的输出来驱动的增压器驱动发电机,能够有效利用废气的能量来获得电力。即,由于利用涡轮31的输出来驱动压缩机32和辅助发电机33进行发电,因此除了由柴油机发电机10的主发电机发出的电力以外,还能获得有效利用了增压器30的输出而得到的电力,在直喷式柴油机装置DS的效率提高上有效。通过将从这样的辅助发电机33得到的电力向例如后述的冷能回收装置50中设置的鼓风机53的电动机等供给,能够减少直喷式柴油机装置DS中的外部电源的使用量。
[0072] 需要说明的是,在图1中,图中的符号34表示吸气导入管,35表示吸气管,36表示排气管。
[0073] 并且,在直喷式柴油机装置DS中设有闭合回路的冷能回收装置50。该冷能回收装置50是使例如氮那样的热介质循环流动的配管流路52,为了压力输送氮气并使其在配管流路52中循环,而设有由未图示的电动机等驱动的鼓风机53。
[0074] 从鼓风机53送出的氮气通过向流动方向下游侧依次配设的冷能回收热交换器51及空气冷却热交换器54而流动之后,再次由鼓风机53吸入,因此一边反复进行热交换所引起的温度变化一边在闭合回路的配管流路52中循环。
[0075] 冷能回收热交换器51是通过使由增压泵3升压得到的高压LNG与氮气进行热交换,来利用高压LNG所保有的冷能对氮气进行冷却的热交换器。换言之,高压LNG通过冷能回收热交换器51来与氮气进行热交换,由此从高温侧的氮气吸热而温度上升。
[0076] 因而,这种情况下的氮气作为使高压LNG温度上升的热源或者使高压LNG的至少一部分气化的热源而使用。
[0077] 其结果是,在使高压LNG气化而形成CNG的LNG加热器等加热源中,能够减少为了使高压LNG气化所需的热量,如果在氮气侧具有充分的热量,则可以不设置LNG加热器。其结果是,能够减少LNG加热器的加热所需的消耗电力,相应地直喷式柴油机装置DS的效率得以提高。
[0078] 空气冷却热交换器54在冷能回收热交换器51的下游侧使在配管流路52中流动的氮气与从大气导入而在吸气导入管34中流动的空气进行热交换,对导入到增压器30中被压缩的吸入的空气进行冷却。在该空气冷却热交换器54中对吸入气体进行了冷却后的氮气因吸入气体侧的散热而温度上升,之后通过配管流路52返回鼓风机53。
[0079] 通过设置该空气冷却热交换器54,能够进行成为主机的燃烧用空气的吸入气体的冷却而使空气密度降低,因此在增压器30的增压效率及主机的运转效率提高上有效。
[0080] 即,若由于设置了空气冷却热交换器54而使增压器30的吸气入口温度降低,则吸入的空气密度降低,因此在同样重量流量的吸入气体流动的情况下体积流量减少。其结果是,在增压器30中,能够减少驱动压缩机32所需的动力,因此增压器30的效率得以改善。
[0081] 换言之,将低温的吸入气体向增压器30导入能够以更少的压缩机32的驱动力高效地将压缩后的高密度的吸入气体向主机供给。因而,涡轮31的剩余输出增加,从而还能够将该剩余输出利用于例如上述的辅助发电机33的发电量增大或增压器30的小型化等。
[0082] 另外,若增压器30的吸气入口温度降低,则对增压器30的构成原料来说,在材料蠕变这方面变得有利,因此寿命得以提高,而且,能够将可运转的转速设定得高,因此也有利于增压器30的性能提高。
[0083] 向该空气冷却热交换器54供给的氮气在冷能回收热交换器51中由使处于通常一160℃左右的低温状态下的LNG升压所得到的高压LNG冷却而温度降低,因此成为对通常的大气温度而言足够进行冷却的低温。
[0084] 另外,空气冷却热交换器54除了进行上述的吸入气体的冷却之外,还能够利用于例如由增压器30的压缩机32压缩了大气而得到的吸入气体的冷却。即,就空气冷却热交换器54而言,可以分别设置增压器入口吸入气体冷却专用或压缩后的吸入气体冷却专用的热交换器,也可以利用同一热交换器实施增压器入口吸入气体冷却及压缩后的吸入气体冷却这双方。
[0085] 这样构成的直喷式柴油机装置DS具备:增压泵3,其设置在向主机(直喷式柴油机)的工作缸内供给喷射CNG的燃料供给系统FS中,使从LNG箱1导入的低压的LNG升压;冷能回收热交换器51,其通过在闭合回路中循环流动的作为热介质的氮气与由增压泵3升压而得到的高压LNG的热交换,来对热介质进行冷却;空气冷却热交换器54,其在冷能回收热交换器51的下游侧通过与氮气的热交换,来对向增压器30导入而成为吸入气体的大气及/或由压缩机30压缩后的作为大气的吸入气体进行冷却,因此,直喷式柴油机装置DS能够利用高压LNG所保有的冷能对通过冷能回收热交换器51流动的氮气进行冷却,进而能够利用低温的氮气对成为吸入气体的大气及/或由增压器30压缩后的吸入气体进行冷却。
[0086] 即,使LNG所保有的冷能向作为热介质的氮气移动而进行有效利用,由此能够使由增压器30吸入的大气的吸气入口温度降低,或者能够使向柴油机发电机10供给的燃烧用空气的温度降低,因此能够提高增压器30及主机的效率。
[0087] 其结果是,在将使例如LNG那样低温的液体燃料气化而得到的气体作为燃料的直喷式柴油机装置DS中,能够有效地利用由对液化天然气进行升压的增压泵升压而得到的高压液化天然气所保有的冷能,从而提供效率高且可靠性高的直喷式柴油机装置。
[0088] <第二实施方式>
[0089] 以下,参照图2,说明本发明涉及的直喷式柴油机装置的第二实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0090] 与上述的实施方式同样,图2所示的直喷式柴油机装置DS1是适用于柴油机发电机10的情况的结构例,该柴油机发电机10驱动与直喷式柴油机即主机的输出轴连结的主发电机来获得电力。
[0091] 在图2所示的冷能回收装置50中,为了将由冷能回收热交换器51冷却后的热介质的氮气作为冷能源来使用,而在空气冷却热交换器54的上游侧串联设有两个冷能利用设备。
[0092] 图示的冷能利用设备例如从上游侧起依次是进行使贮存的LNG的蒸发气(BOG)再次液化的热介质(制冷剂)的冷却的再次液化热交换器55、及进行主机的发动机冷却的套管冷却水冷却器11。
[0093] 再次液化热交换器55是构成用于对LNG的蒸发气进行冷却而使其再次液化的装置的热交换器,作为对用于再次液化的热介质进行冷却的冷能源,使用在冷能回收热交换器51中由高压LNG冷却后的氮气。
[0094] 具体来进行说明,在BOG再次液化装置中,在闭合回路中循环的制冷剂通过与由高压LNG冷却后的低温的氮气的热交换而被冷却从而温度降低,而且,该制冷剂通过BOG的再次液化来夺取冷能而温度上升,因此作为使BOG再次液化的冷能源,使用的是高压LNG的冷能。
[0095] 另外,在套管冷却水冷却器11中,主机的套管冷却水(热介质)通过与在冷能回收热交换器51中由高压LNG冷却后的氮气的热交换而被冷却。这种情况下,向套管冷却水冷却器11供给的氮气是通过再次液化热交换器55而温度上升了的氮气,但由于高压LNG的冷能量大,因此该氮气中仍留有足够进行套管冷却水的冷却的冷却热。
[0096] 并且,通过再次液化热交换器55及套管冷却水冷却器11后的氮气被向空气冷却热交换器54供给来进行吸入气体冷却,由于吸入气体冷却不需要那么大的冷能量,因此该氮气中仍留有能够充分进行冷却的冷能量。
[0097] 这样,即使在冷能回收热交换器51与空气冷却热交换器54之间配设再次液化热交换器55及套管冷却水冷却器11,LNG所保有的大的冷能量也能够不仅用于成为吸入气体的大气的冷却,而且经由热介质而有效用于两个冷能利用设备。
[0098] 其中,在进行上述的套管冷却水的冷却的情况下,可以取代在配管流路52中循环的作为热介质的氮气,而使用空气或氧。即,在套管冷却水冷却器11中,由于空气或氧不会像氮气那样会造成氧浓度减少,因此即使是万一发生了热介质的泄漏,也不会对发动机性能造成恶劣影响。
[0099] 需要说明的是,作为在配管流路52中循环的热介质,还可以采用氦气或氖。
[0100] 这里,例举利用热介质的冷能来进行冷却的适合的冷能利用设备的具体例,即,作为能够利用由LNG的冷能冷却后的氮气的热介质所保有的冷能的冷能利用设备,已知有下述的第一冷能源或第二冷能源。
[0101] 作为第一冷能源,例如在用于使低温液体燃料的蒸发气(BOG)再次液化的BOG再次液化装置中,已知有在热交换器中使用的冷能源。这种情况下的BOG当然是在LNG箱1或吸入筒4那样直喷式柴油机装置DS1的构成设备中产生的,也可以利用于在相邻的装置中产生的BOG再次液化。
[0102] 另外,作为第二冷能源,已知有例如在直喷式柴油机的主机冷却、利用直喷式柴油机驱动主发电机来发电的情况下的主发电机冷却、具备辅助发动机及/或辅助发电机的情况下的辅助发动机冷却或辅助发电机冷却、在具备废热回收锅炉的情况下用于使废热回收锅炉的蒸气冷凝的冷却等中使用的冷能源。
[0103] 就这样的冷能利用设备而言,对上述的第一冷能源与第二冷能源进行比较的话,通常第一冷能源多需要较大的冷能量。因而,在冷能回收装置50中,希望将需要大的冷能量的冷能源、通常为第一冷能源配置在接近冷能回收热交换器51的上游侧。
[0104] 另外,关于这样的第一冷能源及第二冷能源,并不一定要设置,可以根据装置结构等各种条件而仅设置一方,或者也可以组合双方设置。
[0105] 即,将在冷能回收热交换器51中被冷却后的氮气作为冷能源来使用的冷能利用设备可以在空气冷却热交换器54的上游侧设置一个或多个,例如除了第一冷能源以外,作为第二冷能源来说,例如在主机冷却及主发电机冷却这双方中使用冷能等,可以根据装置结构或冷能量等条件适当选择使用目的地,冷能利用的数目不受限定。
[0106] <第三实施方式>
[0107] 以下,参照图3,说明本发明涉及的直喷式柴油机装置的第三实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0108] 图3所示的直喷式柴油机装置DS2具备使LNG箱1内的BOG再次液化的BOG再次液化装置60。向该BOG再次液化装置60供给由上述的辅助发电机33发出的电力。因而,BOG再次液化装置60的运转所需的电力的至少一部分可以利用由辅助发电机33发出的电力,因此通过减少从外部电源接受供给的电量而使直喷式柴油机装置DS2的运转效率提高。
[0109] <第四实施方式>
[0110] 以下,参照图4,说明本发明涉及的直喷式柴油机装置的第四实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0111] 图4所示的直喷式柴油机装置DS3具备:对从增压器30排出的废气进行加热的再热器40;利用通过再热器40而温度上升了的废气来驱动的排气涡轮41;由排气涡轮41驱动的涡轮驱动发电机42,该直喷式柴油机装置DS3将在增压器30的涡轮31中做功后的废气的保有能量进行再次利用。
[0112] 具体进行说明的话,将在涡轮31中做功后的废气导向再热器40进行再次加热。向再热器40导入高温的加热源,利用加热源来加热废气使其温度上升。
[0113] 这样成为高温的废气被导向排气涡轮41,进行使排气涡轮41旋转的做功后被排出。此时,对排出的废气实施环境对策等必要的处理。并且,利用排气涡轮41的输出来驱动涡轮驱动发电机42,并将由涡轮驱动发电机42发出的电力向例如BOG再次液化装置60供给。
[0114] 若这样构成,则能够进一步有效利用从主机排出的废气的能量而从涡轮驱动发电机42也获得电力。因而,若将由涡轮驱动发电机42发出的电力利用于BOG再次液化装置60等中,则直喷式柴油机装置DS3由于从外部电源接受供给的电量的减少而能够进一步提高运转效率。
[0115] <第五实施方式>
[0116] 以下,参照图5,说明本发明涉及的直喷式柴油机装置的第五实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0117] 图5所示的直喷式柴油机装置DS4在冷能回收热交换器51的下游侧具备以热介质为冷能源而使LNG的蒸发气(BOG)再次液化的BOG再次液化装置60。即,图示的BOG再次液化装置60将在冷能回收热交换器51中由LNG冷却后的氮气利用作为使LNG的BOG再次液化的冷能源。
[0118] 并且,在BOG再次液化装置60中使用冷能而温度上升了的氮气与上述的实施方式同样地被导向空气冷却热交换器54,对导入增压器30中成为吸入气体的大气进行冷却。即,在成为闭合回路的氮气的配管流路(循环路径)52A中,在冷能回收热交换器51与空气冷却热交换器54之间配置BOG再次液化装置60,通过BOG再次液化装置60中的冷能使用而温度上升了的氮气在BOG再次液化装置60的下游侧对吸入气体进行冷却。
[0119] 即使是这样构成,由于LNG的保有冷能大,因此也能充分地确保空气冷却热交换器54中的吸入气体的冷却冷能。
[0120] <第六实施方式>
[0121] 以下,参照图6,说明本发明涉及的直喷式柴油机装置的第六实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0122] 图6所示的直喷式柴油机装置DS5不像上述的实施方式那样通过氮气与大气的热交换来对吸入气体进行冷却,而是构成为通过由氮气冷却后的水(冷水)与大气的热交换来对吸入气体进行冷却。
[0123] 即,该实施方式的特征在于构成为具备使水进行循环的闭合回路的水循环流路70。该水循环回路70在闭合回路的配管流路71中具备水泵72、热介质/水热交换器73、空气冷却热交换器54A。
[0124] 水泵72是在闭合回路的配管流路71内形成水的循环流的泵。
[0125] 热介质/水热交换器73是在供作为热介质的氮气循环的配管流路52B中配置于蒸发气再次液化装置60的下游侧的热交换器。该热介质/水热交换器73是将在冷能回收热交换器51中被冷却、之后在BOG再次液化装置60中将冷能用于BOG的再次液化而温度上升的氮气导入的热交换器,通过使氮气与在配管流路71中循环流动的水进行热交换,来使低温侧的氮气从水吸热而对水进行冷却。
[0126] 需要说明的是,由于LNG所保有的冷能量大,因此即使是BOG再次液化后的氮气,也能够将水冷却至足够其进行大气冷却的温度。
[0127] 这样被冷却后的水被导向设于热介质/水热交换器73的下游侧的空气冷却热交换器54A,对向增压器30导入而成为吸入气体的大气进行冷却。即,上述的实施方式的空气冷却热交换器54使用氮气对大气进行冷却,相对于此,本实施方式的空气冷却热交换器54A使用由氮气冷却而得到的冷水来对大气进行冷却。
[0128] 通过使LNG所保有的冷能向氮气移动进行有效利用,除了BOG的再次液化之外,还能借助水来使向增压器30吸入的大气的入口温度降低,因此即使是这样构成,也能够提高增压器30及柴油机发电机10的效率。
[0129] <第七实施方式>
[0130] 以下,参照图7,说明本发明涉及的直喷式柴油机装置的第七实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0131] 图7所示的直喷式柴油机装置DS6的水循环回路70A相对于上述的第六实施方式的水循环回路70的不同之处在于,在热介质/水热交换器73与空气冷却热交换器54A之间将导入到冷能利用设备的套管冷却水冷却器11中的冷水用于柴油机发电机10的冷却。
[0132] 即,在图示的套管冷却水冷却器11中,主机的套管冷却水通过与在水循环回路71A中循环的由热介质/水热交换器73冷却后的水进行热交换而被冷却。
[0133] <第八实施方式>
[0134] 以下,参照图8,说明本发明涉及的直喷式柴油机装置的第八实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0135] 在图8所示的直喷式柴油机装置DS7中,在位于蒸发气再次液化装置60的下游侧的冷能利用设备的套管冷却水冷却器11中,利用氮气的冷能对套管冷却水进行冷却。即,在上述的第五实施方式的基础上,进而在空气冷却热交换器54的上游侧设置套管冷却水冷却器11,使用BOG再次液化后的氮气来对套管冷却水进行冷却。
[0136] 在该实施方式中,若取代在配管流路52A中循环的作为热介质的氮气而使用空气或氧,则由于空气或氧不像氮气那样会使氧浓度减少,因此即使在发生了热介质的泄漏的情况下,也不会对发动机性能造成恶劣影响。
[0137] <第九实施方式>
[0138] 以下,参照图9,说明本发明涉及的直喷式柴油机装置的第九实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0139] 在图9所示的直喷式柴油机装置DS8中,在供作为热介质的氮气流动的闭合回路的适当部位设有蓄冷装置80。在图示的结构例中,蓄冷装置80设置在冷能回收热交换器51与BOG再次液化装置60之间,在使BOG再次液化之前的阶段(上游侧)进行蓄冷,但并不局限于此。
[0140] 蓄冷装置80是设有对例如乙二醇一水系等蓄冷剂进行贮存的蓄冷槽的装置,在产生了剩余冷能的情况下,该蓄冷装置80通过向蓄冷槽内导入氮气而能够进行冷能的蓄积。
[0141] 另外,在蓄冷装置80保有冷能的情况下,可以根据情况将蓄积的冷能放出来利用。
[0142] <第十实施方式>
[0143] 以下,参照图10,说明本发明涉及的直喷式柴油机装置的第十实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0144] 在图10所示的直喷式柴油机装置DS9中,在从供作为热介质的氮气流动的闭合回路分支出的旁通流路81上设有蓄冷装置80A。图示的旁通流路81从冷能回收热交换器51与BOG再次液化装置60之间分支出来,并且连接到热介质/水热交换器73与鼓风机53之间。
[0145] 需要说明的是,蓄冷装置80A的基本构成与上述的实施方式的蓄冷装置80实质上相同。
[0146] <第十一实施方式>
[0147] 以下,参照图11,说明本发明涉及的直喷式柴油机装置的第十一实施方式。需要说明的是,对于与上述的实施方式同样的部分标注同一符号,而省略详细的说明。
[0148] 在图11所示的直喷式柴油机装置DS10中,在供作为热介质的氮气流动的闭合回路的配管流路52B中设置消耗剩余冷能的加热器90。
[0149] 加热器90例如利用加热源的水对氮气进行加热,在必要以上地产生了剩余的冷能等情况下,通过氮气与水的热交换而强制性地消耗冷能。即,利用氮气所保有的冷能的剩余量对水进行加热,使水吸收冷能后向氮气循环的系统外放出。
[0150] 因而,通过加热器90所进行的氮气的加热、蓄冷装置80所进行的蓄冷、进而利用冷能的冷能利用设备的选择等,能够调整冷能回收的平衡以实现运转的最佳化。
[0151] 其中,在上述的各实施方式中,在冷能回收装置50的配管流路52中循环的作为热介质的氮气将增压器30的吸气入口温度维持在规定的范围内,因此能够对应于高压LNG的流量变化而进行如下的控制。
[0152] 在要使主机的输出降低的情况下,进行控制以使从增压泵3供给的高压LNG的流量降低,同时使氮气的循环流量也降低。另一方面,在要使主机的输出上升的情况下,进行控制以使从增压泵3供给的高压LNG的流量上升,同时使氮气的循环流量也上升。即,能够对应于成为冷能源的高压LNG的流量变化(冷能量变动),来进行使冷能利用侧的氮气流量也朝着维持平衡的方向变化的控制。
[0153] 另外,在增压器30的吸气入口温度低于规定值的情况下,意味着向空气冷却热交换器54过剩供给了低温的氮气。
[0154] 因此,例如通过以在再次液化热交换器55那样的第一冷能源中消耗大量的冷能量的方式进行控制而使向空气冷却热交换器54供给的氮气温度上升、设置未图示的旁通流路来减少向空气冷却热交换器54供给的氮气量、或者控制鼓风机53的运转来使氮气的循环流量降低等方式,由此能够实现吸气入口温度的最佳化。进而,若设置绕开冷能回收热交换器51的氮气流路来调整旁通流量的话,则能够调整进行循环的氮气的温度。
[0155] 另外,在增压器30的吸气入口温度高于规定值的情况下,意味着处于向空气冷却热交换器54供给的氮气量少或者气体温度高的状况。
[0156] 因此,例如通过以减少在再次液化热交换器55那样的第一冷能源中消耗的冷能量的方式进行控制而使向空气冷却热交换器54供给的氮气温度降低、减少向未图示的旁通流路分流的氮气量来增加向空气冷却热交换器54供给的氮气量、或者控制鼓风机53的运转来增加氮气的循环流量等方式,由此能够实现吸气入口温度的最佳化。
[0157] 在上述的实施方式中,将直喷式柴油机装置DS适用于柴油机发电机10,但也可以适用于例如具备将作为装载货物的LNG以深冷状态贮存的LNG箱的LNG搬运船的推进用主机、或者在船内进行电源供给的发电设备等。
[0158] 这样,根据上述的各实施方式,将液化天然气那样的低温液体燃料作为燃料进行运转的直喷式柴油机装置通过有效地利用高压低温液体燃料的保有冷能,从而能够获得运转效率提高这样显著的效果。
[0159] 尤其在上述的各实施方式中,LNG等低温液体燃料至少经由氮气等热介质来对大气进行冷却,因此与利用例如LNG及水那样的极大的温度差来对大气进行冷却的情况相比,冷能的利用(有效能)效率优越。
[0160] 另外,在上述的各实施方式中,没有使LNG等低温液体燃料与水直接进行热交换,即没有使用通过水来直接从LNG回收冷能的热交换器,因此能够防止因极大的温度差而使水冻结的情况。
[0161] 另外,上述的各实施方式可以根据需要而适用其它的实施方式,当然也可以实施省略了图示或说明的结构。
[0162] 需要说明的是,本发明并不局限于上述的实施方式,可以在不脱离其主旨的范围内进行适当变更。
[0163] 符号说明
[0164] 1        LNG箱
[0165] 3        增压泵
[0166] 4        吸入筒
[0167] 5        LNG配管
[0168] 6        高压LNG配管
[0169] 10       柴油机发电机
[0170] 11       套管冷却水冷却器
[0171] 30       增压器
[0172] 31       涡轮
[0173] 32       压缩机
[0174] 33      辅助发电机
[0175] 40       再热器
[0176] 41       排气涡轮
[0177] 42       涡轮驱动发电机
[0178] 50     冷能回收装置
[0179] 51    冷能回收热交换器
[0180] 52、52A、52B 配管流路
[0181] 53    鼓风机
[0182] 54、54A    空气冷却热交换器
[0183] 55     再次液化热交换器
[0184] 60    BOG再次液化装置
[0185] 70、70A    水循环回路
[0186] 73     热介质/水热交换器
[0187] 80、80A    蓄冷装置
[0188] 90   加热器
[0189] DS、DS1~DS10  直喷式柴油机装置
[0190] FS   燃料用液化天然气供给系统(低温液体燃料供给系统)