光伏器件及其制造方法转让专利

申请号 : CN201210524534.5

文献号 : CN103855232B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 曹金波蔡钟佑威廉.H.胡贝尔辛骞骞徐晟

申请人 : 第一太阳能马来西亚有限公司

摘要 :

提出了一种光伏器件。该光伏器件包括第一半导体层、第二半导体层和布置在第一半导体层和第二半导体层之间的夹层,其中,该夹层包括镁。还提出了制造光伏器件的方法。

权利要求 :

1.一种光伏器件,包括:

第一半导体层;

第二半导体层,其中所述第一半导体层是基本透明的,且与所述第二半导体层形成异质结;以及夹层,布置在所述第一半导体层和所述第二半导体层之间,其中,所述夹层包括含有钆的单质金属、金属合金或它们的组合。

2.如权利要求1所述的光伏器件,其中,所述夹层包括GdxMg1-x,其中,x是大于0而小于1的数。

3.如权利要求1所述的光伏器件,其中,所述钆在所述夹层中的平均原子浓度大于约

50%。

4.如权利要求1所述的光伏器件,其中,所述夹层具有在约0.2纳米至约20纳米范围内的厚度。

5.如权利要求1所述的光伏器件,其中,所述第一半导体层包括硫化镉、氧合的硫化镉、硫化锌、硫化镉锌、硒化镉、硒化铟、硫化铟或它们的组合。

6.如权利要求1所述的光伏器件,其中,所述第二半导体层包括碲化镉、碲化镉锌、碲化硫镉、碲化锰镉、碲化镁镉、硫化铜铟、铜铟镓硒化物、铜铟镓硫化物或它们的组合。

7.一种制造光伏器件的方法,包括以下步骤:(a)通过原子层沉积将覆盖层布置在第一半导体层上,其中,所述覆盖层包括含有镁、铝、锌、镍、钆的单质金属、金属合金或它们的组合;

(b)将第二半导体层布置在所述覆盖层上,其中所述第一半导体层是基本透明的,且与所述第二半导体层形成异质结;以及(c)在所述第一半导体层和所述第二半导体层之间形成夹层。

8.如权利要求7所述的方法,还包括热处理含有布置在所述第一半导体层上的覆盖层的半导体组件,其中,在步骤(b)之前实施所述热处理。

9.如权利要求7所述的方法,其中,在所述步骤(b)之前、同时或之后实施所述步骤(c)。

10.一种制造光伏器件的方法,包括以下步骤:(a)将金属覆盖层布置在第一半导体层上,其中,所述金属覆盖层包括含有镁、铝、锌、镍、钆的单质金属、金属合金或它们的组合;

(b)将第二半导体层布置在所述金属覆盖层上,其中所述第一半导体层是基本透明的,且与所述第二半导体层形成异质结;以及(c)在所述第一半导体层和所述第二半导体层之间形成夹层。

11.如权利要求10所述的方法,还包括热处理含有布置在所述第一半导体层上的覆盖层的半导体组件,其中,在步骤(b)之前实施所述热处理。

12.如权利要求10所述的方法,其中,在所述步骤(b)之前、同时或之后实施所述步骤(c)。

13.如权利要求10所述的方法,其中,所述夹层具有在约0.2纳米至约20纳米范围内的厚度。

14.一种光伏器件,包括:

第一半导体层;

第二半导体层,其中所述第一半导体层是基本透明的,且与所述第二半导体层形成异质结;以及夹层,布置在所述第一半导体层和所述第二半导体层之间,其中,所述夹层包括含有镁、铝、锌、镍的单质金属、金属合金或它们的组合。

说明书 :

光伏器件及其制造方法

技术领域

[0001] 本发明大体上涉及光伏器件。更具体地说,本发明涉及包括夹层(interlayer)的光伏器件以及制造该光伏器件的方法。

背景技术

[0002] 薄膜太阳能电池或光伏(PV)器件通常包括多个布置在透明衬底上的半导体层,其中,一个层充当窗口层,第二层充当吸收层。该窗口层允许太阳辐射穿透到吸收层,在吸收层,光能转换为可用的电能。该窗口层还用于与吸收层联合形成异质结(p-n结)。基于碲化镉/硫化镉(CdTe/CdS)异质结的光伏电池是薄膜太阳能电池的一个这样的例子,其中,CdS具有窗口层的功能。
[0003] 然而,薄膜太阳能电池具有低转换效率。因此,在光伏器件领域中的主要焦点之一是提高转换效率。窗口层对光的吸收是限制PV器件的转换效率的现象之一。因此,希望保持窗口层尽可能薄,以帮助减少由吸收引起的光学损失。还希望薄窗口层在随后的器件制造步骤期间维持其结构的完整性,使得吸收层和窗口层之间的界面包含可忽略的界面缺陷态。然而,对于大部分薄膜PV器件而言,如果窗口层太薄,由于低开路电压(VOC)和填充因数(FF),会观测到性能损失。
[0004] 因此,需要改进的薄膜光伏器件构造,以及制造此光伏器件构造的方法。

发明内容

[0005] 本发明包含的实施方式可以满足这些及其它需求。一种实施方式是光伏器件。所述光伏器件包括第一半导体层、第二半导体层和布置在所述第一半导体层和所述第二半导体层之间的夹层,其中,所述夹层包括钆。
[0006] 一种实施方式是方法。所述方法包括(a)通过原子层沉积将覆盖层布置在第一半导体层上,其中,所述覆盖层包括镁、铝、锌、镍、钆或它们的组合;(b)将第二半导体层布置在所述覆盖层上;以及(c)在所述第一半导体层和所述第二半导体层之间形成夹层。
[0007] 一种实施方式是方法。所述方法包括(a)将金属覆盖层布置在第一半导体层上,其中,所述金属覆盖层包括镁、铝、锌、镍、钆或它们的组合;(b)将第二半导体层布置在所述金属覆盖层上;以及(c)在所述第一半导体层和所述第二半导体层之间形成夹层。
[0008] 一种实施方式是光伏器件。所述光伏器件包括第一半导体层、第二半导体层和布置在所述第一半导体层和所述第二半导体层之间的夹层,其中,所述夹层包括含有金属物种(metal species)、硫以及氧的化合物,所述金属物种包括镁、铝、锌、镍、钆或它们的组合。

附图说明

[0009] 当参考附图阅读下面的详细说明书时,本发明的这些和其它特征、方面及优点会变得更好理解,附图中:
[0010] 图1是根据本发明的一个实施方式的光伏器件的示意图;
[0011] 图2是根据本发明的一个实施方式的光伏器件的示意图;
[0012] 图3是根据本发明的一个实施方式的光伏器件的示意图;
[0013] 图4是根据本发明的一个实施方式的半导体组件的示意图;
[0014] 图5示出根据本发明的一个实施方式的光伏器件的性能参数;
[0015] 图6示出根据本发明的一个实施方式的光伏器件的性能参数;
[0016] 图7示出根据本发明的一个实施方式的光伏器件的性能参数;
[0017] 图8示出根据本发明的一个实施方式的光伏器件的扫描电子显微照片;
[0018] 图9示出根据本发明的一个实施方式的光伏器件的x射线光电子能谱(XPS)深度分布;
[0019] 图10示出根据本发明的一个实施方式的光伏器件的x射线光电子能谱(XPS)分布。

具体实施方式

[0020] 如下详细所述,本发明的一些实施方式包括光伏器件,该光伏器件包括布置在第一半导体层和第二半导体层之间的夹层。
[0021] 正如本说明书和权利要求在这里所使用的,近似类的语言可用于更改任何数量表示,在不导致与数量表示有关的基本功能改变的情况下该数量表示可以变化。因此,由比如“大约”和“大致”等术语修饰的值并不局限于具体指定的精确值。在一些情况下,近似类的语言与用于测量该值的仪器的精度相对应。这里,在说明书和权利要求中,范围限制可以被联合和/或互换,这样的范围被确定,并包括所有包含在其中的子范围,除非文中或语言指示其它情况。
[0022] 在下面的说明书和权利要求中,单数形式“一”及其变体包括复数个所指目标,除非文中清楚地指示其它情况。正如这里所使用的,术语“或者”并不意味着排他的,而是指存在提及部件(例如层)的至少一个,并且包括存在提及部件的组合的情况,除非文中清楚地指示其它情况。
[0023] 这里使用的术语“透明区域”和“透明层”指的是允许平均透射至少70%的入射电磁辐射的区域或层,该入射电磁辐射具有在约350nm至约850nm范围内的波长。
[0024] 这里使用的术语“层”指的是以连续或断续方式布置在下层表面的至少一部分上的材料。此外,术语“层”并非必然意味着所布置材料的均匀厚度,所布置材料可具有均匀或可变的厚度。这里使用的术语“布置在”指的是层直接彼此接触地布置或通过在层之间具有中间层而间接地布置,除非明确指示其它情况。这里使用的术语“邻近的”意味着两个层连续地布置,并彼此直接接触。
[0025] 在本公开中,当层被描述为“在”另一个层或衬底上时,应当理解的是,所述层可彼此直接接触或在所述层之间具有一个(或多个)层或特征。此外,术语“在…上”表示层关于彼此的相对位置,而并非必然意味着“在…顶部”,因为相对位置上面或下面取决于器件关于观察者的方位。而且,使用“顶部”、“底部”、“上面”、“下面”及这些术语的变体是为了方便,并不要求部件的任何特定方位,除非说明其它情况。
[0026] 如下详细所述,本发明的一些实施方式涉及包括夹层的光伏器件。根据本发明的一个实施方式,图1-3示出光伏器件100。如图1-3所示,光伏器件100包括第一半导体层110、第二半导体层120和布置在第一半导体层110和第二半导体层120之间的夹层130。
[0027] 在一些实施方式中,如后所述,第一半导体层110可具有窗口层的功能,第二半导体层120可具有吸收层的功能。这里使用的术语“窗口层”指的是基本透明的、与吸收层120一起形成异质结的半导体层。用于第一半导体层110的非限制示例性材料包括硫化镉(CdS)、硫化铟(In2S3)、硫化锌(ZnS)、碲化锌(ZnTe)、硒化锌(ZnSe)、硒化镉(CdSe)、氧合(oxygenated)的硫化镉(CdS:O)、氧化铜(Cu2O)、ZnO:H(zinc oxihydrate)或它们的组合。在某些实施方式中,第一半导体层110包括硫化镉(CdS)。在某些实施方式中,第一半导体层
110包括氧合的硫化镉(CdS:O)。
[0028] 这里使用的术语“吸收层”指的是在其中吸收太阳辐射的半导体层。在一个实施方式中,第二半导体层120包括p型半导体材料。在一个实施方式中,第二半导体层120具有在每立方厘米约1×1013至每立方厘米约1×1016范围内的有效的载流子密度。这里使用的术语“有效的载流子密度”指的是材料中空穴和电子的平均浓度。
[0029] 在一个实施方式中,光敏材料用于形成第二半导体层120。合适的光敏材料包括碲化镉(CdTe)、碲化锌镉(CdZnTe)、碲化镁镉(CdMgTe)、碲化锰镉(CdMnTe)、碲化硫镉(CdSTe)、碲化锌(ZnTe)、铜铟二硫化物(CIS)、铜铟二硒化物(CISe)、铜铟镓硫化物(CIGS)、铜铟镓二硒化物(CIGSe)、铜铟镓硫硒(CIGSSe)、铜铟镓铝硫硒(Cu(In,Ga,Al)(S,Se)2)、铜锌锡硫化物(CZTS)或它们的组合。上述光敏半导体材料可单独使用或结合使用。此外,这些材料可存在于多个层中,每个层具有不同类型的光敏材料或者在单独的层中具有材料的组合。在某些实施方式中,第二半导体层120包括碲化镉(CdTe)。在某些实施方式中,第二半导体层120包括p型碲化镉(CdTe)。
[0030] 在一些实施方式中,第一半导体层110、第二半导体层120或两个层可包含氧。不受任何理论限制,认为将氧引入第一半导体层110(例如硫化镉层)会获得提高的器材性能。在一些实施方式中,氧的数量低于约20原子百分率。在一些情况下,氧的数量在约1原子百分率至约10原子百分率之间。在一些情况下,例如在第二半导体层120中,氧的数量低于约1原子百分率。此外,第一半导体层110中、第二半导体层120中或两个层中的氧浓度基本不变或在各自层的厚度范围内成分梯度化。
[0031] 在一些实施方式中,第一半导体层110和第二半导体层120可掺杂有p型杂质或n型杂质,以形成异质结。如文中所使用,异质结是由不同的半导体材料层形成的半导体结。这些材料通常具有不相等的带隙。作为例子,异质结可通过一种导电型的层或区域与相反导电性的层或区域之间的接触而形成,例如“p-n”结。
[0032] 在一些实施方式中,第一半导体层110包括n型半导体材料。在这样的情况下,第二半导体层120可掺杂成p型,第一半导体层110和第二半导体层120可形成“n-p”异质结。在一些实施方式中,第一半导体层110可掺杂成n型,可通过在第二半导体层120的背部使用p+半导体层使第二半导体层120掺杂而有效地形成n-i-p构造。
[0033] 如前所述,光伏器件100还包括布置在第一半导体层110和第二半导体层120之间的夹层130。不受任何理论限制,认为第一半导体层110和第二半导体层120形成异质结,比如“p-n”结或“n-i-p”结,夹层130定位于第一半导体层110和第二半导体层120之间。
[0034] 在一些实施方式中,夹层130包括金属物种。这里使用的术语“金属物种”指的是单质金属(elemental metal)、金属离子或它们的组合。金属物种包括镁、铝、锌、镍、钆或它们的组合。在一些实施方式中,夹层130可包括多个金属物种。
[0035] 在一些实施方式中,金属物种的至少一部分以单质金属、金属合金、金属化合物或它们的组合的形式存在于夹层130中。在一些实施方式中,金属物种的至少一部分以单质金属的形式存在于夹层130中。在这样的实施方式中,夹层130包括单质镁、单质铝、单质锌、单质镍、单质钆或它们的组合。在某些实施方式中,夹层130包括单质钆。
[0036] 在一些实施方式中,金属物种的至少一部分以金属合金的形式存在于夹层中。在一些实施方式中,夹层130包括镉和金属物种的至少一种的金属合金,例如镉和镁的合金。在夹层130包括两种或多种金属物种的实施方式中,夹层130可包括两种或多种金属物种的金属合金,例如,钆和镁的合金。在某些实施方式中,夹层包括GdxMg1-x,其中x是大于0小于1的数。
[0037] 在一些实施方式中,金属物种的至少一部分以金属化合物的形式存在于夹层130中。这里使用的术语“金属化合物”指的是包括处于定比的、位于确定晶格位置的两种或多种不同元素的原子或离子的宏观均质材料(物质)。例如,金属物种、硫和氧在化合物的晶体结构中具有确定的晶格位置;相反,在氧合金属硫化物中,氧可以是取代地插入硫的位置的杂质,不属于化合物晶格的一部分。在一些实施方式中,金属物种的至少一部分以二元金属化合物、三元金属化合物、四元金属化合物或它们的组合的形式存在于夹层130中。
[0038] 在一些实施方式中,金属物种的至少一部分以二元金属化合物的形式存在于夹层130中,二元金属化合物比如金属氧化物、金属硫化物、金属硒化物、金属碲化物或它们的混合物。因此,在某些实施方式中,例如,夹层可包括氧化镁、硫化镁、氧化钆、硫化钆或它们的混合物。
[0039] 在一些实施方式中,金属物种的至少一部分以包括金属物种、硫和氧的金属化合物的形式存在于夹层130中。在一些实施方式中,夹层包括金属硫酸盐、金属亚硫酸盐、金属含氧硫酸盐(metal oxysulfate)或它们的组合。在某些实施方式中,夹层130包括钆、硫和氧。在这样的情况下,夹层130可包括硫酸钆、亚硫酸钆、硫酸氧化钆或它们的组合。在某些实施方式中,夹层130包括镁、硫和氧。在这样的情况下,夹层130可包括硫酸镁、亚硫酸镁、硫酸氧化镁(magnesium oxysulfate)或它们的组合。
[0040] 夹层130还可由金属物种在夹层130中的浓度表征。在一些实施方式中,金属物种在夹层130中的平均原子浓度大于约10%。在一些实施方式中,金属物种在夹层130中的平均原子浓度大于约50%。在一些实施方式中,金属物种在夹层130中的平均原子浓度在约10%至约99%范围内。这里使用的术语“原子浓度”指的是每单位体积中原子的平均数量。在一些实施方式中,夹层还可包括镉、硫、碲、氧或它们的组合。
[0041] 夹层130还可由厚度来表征。在一些实施方式中,夹层130具有在约0.2纳米至约20纳米范围内的厚度。在一些实施方式中,夹层130具有在约0.2纳米至约10纳米范围内的厚度。在一些实施方式中,夹层130具有在约1纳米至约5纳米范围内的厚度。在一些实施方式中,希望具有薄夹层,使得在夹层中由于吸收导致的光学损失最小。
[0042] 如前所述,通常希望使光伏器件中的窗口层110的厚度最小,以实现高效率。通过夹层130的存在,可减小第一半导体层110(例如CdS层)的厚度以提高本器件的性能。此外,本器件还实现了成本降低,因为使用了较低数量的CdS。
[0043] 如前所述,夹层130是光伏器件100的部件。在一些实施方式中,光伏器件包括“覆板(superstrate)”构造的层。在这样的实施方式中,如图2所示,光伏器件100还包括支撑件140和布置在支撑件140上的透明导电层150(有时在本领域中指的是前接触层)。如图2所示,在这样的实施方式中,太阳辐射10从支撑件140进入,在穿过透明导电层150、第一半导体层110和夹层130后,进入第二半导体层120,在第二半导体层中,入射光(例如阳光)的电磁能转换为电子-空穴对(即自由电荷)。
[0044] 在一些实施方式中,支撑件140在期望透过支撑件140的波长的范围内是透明的。在一个实施方式中,支撑件140可透过具有在约400nm至约1000nm范围内的波长的可见光。
在一些实施方式中,支撑件140包括能够经受高于约600℃的热处理温度的材料,例如石英或硼硅酸盐玻璃。在一些其它实施方式中,支撑件140包括具有低于600℃的软化温度的材料,例如钠钙玻璃或聚酰亚胺。在一些实施方式中,某些其它层可布置在透明导电层150和支撑件140之间,比如抗反射层或阻挡层(未示出)。
[0045] 在一些实施方式中,透明导电层150包括透明导电氧化物(TCO)。透明导电氧化物的非限制例子包括锡酸镉(CTO)、氧化铟锡(ITO)、掺氟氧化锡(SnO:F或FTO)、掺铟氧化镉、锡酸镉(Cd2SnO4或CTO)、比如掺铝氧化锌(ZnO:Al或AZO)、氧化铟锌(IZO)和氧化锌锡(ZnSnOx)的掺杂氧化锌(ZnO)或它们的组合。根据采用的特定TCO及其薄层电阻,在一个实施方式中,透明导电层150的厚度在约50nm至约600nm的范围内。
[0046] 在一些实施方式中,第一半导体层110直接布置在透明导电层150上(实施方式未示出)。在替代实施方式中,光伏器件100包括介于透明导电层150和第一半导体层110之间的额外的缓冲层160,如图2所示。在一些实施方式中,缓冲层160的厚度在约50nm至约200nm的范围内。用于缓冲层160的合适材料的非限制例子包括二氧化锡(SnO2)、氧化锌锡(锡酸锌(ZTO))、掺锌氧化锡(SnO2:Zn)、氧化锌(ZnO)、氧化铟(In2O3)或它们的组合。
[0047] 在一些实施方式中,光伏器件100还包括布置在第二半导体层120上的p+型半导体层170,如图2所示。这里使用的术语“p+型半导体层”指的是与第二半导体层120中的p型电荷载流子或空穴密度相比,具有过量可移动的p型载流子或空穴密度的半导体层。在一些实施方式中,p+型半导体层具有在高于每立方厘米约1×1016的范围内的p型载流子密度。在一些实施方式中,p+型半导体层170可用作第二半导体层120和背接触层180之间的界面。
[0048] 在一个实施方式中,p+型半导体层170包括重掺杂的p型材料,包括非晶Si:H、非晶SiC:H、晶体Si、微晶Si:H、微晶SiGe:H、非晶SiGe:H、非晶Ge、微晶Ge、GaAs、BaCuSF、BaCuSeF、BaCuTeF、LaCuOS、LaCuOSe、LaCuOTe、LaSrCuOS、LaCuOSe0.6Te0.4、BiCuOSe、BiCaCuOSe、PrCuOSe、NdCuOS、Sr2Cu2ZnO2S2、Sr2CuGaO3S、(Zn,Co,Ni)Ox或它们的组合。在另一个实施方式中,p+型半导体层170包括p+掺杂材料,该p+掺杂材料包括碲化锌、碲化镁、碲化锰、碲化铍、碲化汞、碲化砷、碲化锑、碲化铜或它们的组合。在一些实施方式中,p+掺杂材料还包括具有铜、金、氮、磷、锑、砷、银、铋、硫、钠或它们的组合的杂质。
[0049] 在一些实施方式中,光伏器件100还包括背接触层180,如图2所示。在一些实施方式中,背接触层180直接布置在第二半导体层120上(实施方式未示出)。在一些其它实施方式中,背接触层180布置在位于第二半导体层120上的p+型半导体层170上,如图2所示。在一些实施方式中,背接触层180包括金、铂、钼、钨、钽、钯、铝、铬、镍、银、石墨或它们的组合。在某些实施方式中,例如铝的另一种金属层(未示出)可布置在金属层180上,以提供向外部电路的横向导电。
[0050] 在替代实施方式中,如图3所示,示出了包括“衬底(substrate)”构造的光伏器件100。光伏器件100包括布置在支撑件190上的背接触层180。此外,第二半导体层120布置在背接触层180上,如前所述的夹层130布置在第二半导体层120上。第一半导体层110布置在夹层130上,透明导电层150进一步布置在第一半导体层110上,如图6所示。如图3所示,在这样的实施方式中,太阳辐射10从透明导电层150进入,在穿过第一半导体层110和夹层130后,进入第二半导体层120,在第二半导体层中,入射光(例如阳光)的电磁能转换为电子-空穴对(即自由电荷)。
[0051] 在一些实施方式中,图3所示层的组成可与上面图2所示的用于覆板构造的组成相同,这些层比如衬底110、透明导电层150、第一半导体层110、夹层130、第二半导体层120和背接触层180。
[0052] 一些实施方式包括制造光伏器件的方法。该方法通常包括将夹层130布置在第一半导体层110和第二半导体层120之间。本领域技术人员应当理解,布置三个层或整个器件的工序可取决于期望的构造,例如器件的“衬底”或“覆板”构造。
[0053] 在某些实施方式中,描述了制造覆板构造的光伏器件的方法。现在参见图4,在一些实施方式中,该方法包括将覆盖层132布置在第一半导体层110上,以形成半导体组件135。覆盖层132包括镁、铝、锌、镍、钆或它们的组合。在一些实施方式中,覆盖层132包括镁、铝、锌、镍、钆的氧化物或它们的组合。在某些实施方式中,覆盖层132包括氧化镁、氧化钆或它们的组合。
[0054] 在一些实施方式中,该方法包括将金属覆盖层132布置在第一半导体层110上。这里使用的术语“金属覆盖层”指的是包括至少一种金属单质的覆盖层。在一些实施方式中,金属覆盖层132包括单质镁、单质铝、单质锌、单质镍、单质钆或它们的组合。在一些实施方式中,金属覆盖层132包括含有镁、铝、锌、镍、钆或它们的组合的金属合金。在某些实施方式中,金属覆盖层132包括镁、钆或它们的组合。
[0055] 可使用合适的沉积技术将覆盖层132布置在第一半导体层110上,合适的沉积技术比如溅射、原子层沉积或它们的组合。在某些实施方式中,该方法包括通过原子层沉积(ALD)将覆盖层132布置在第一半导体层110上。不受任何理论限制,认为与其它沉积方法相比,通过ALD沉积覆盖层132可提供更保形的层。保形层可提供随后的夹层与第一半导体层110和第二半导体层120更均匀地接触。此外,当与使用其它沉积技术来沉积的层相比时,通过ALD沉积覆盖层可提供具有较低针孔数量的夹层130。
[0056] 该方法还包括将第二半导体层120布置在覆盖层132上。在一个实施方式中,可使用合适的方法来沉积第二半导体层120,例如近距离升华(CSS)、气相输送沉积(VTD)、离子辅助物理气相沉积(IAPVD)、射频或脉冲磁控溅射(RFS或PMS)、等离子体增强化学气相沉积(PEVCD)或电化学沉积(ECD)。
[0057] 该方法还包括在第一半导体层110和第二半导体层120之间形成夹层130。夹层的组成和构造如前所述。可以先于、同时或晚于将第二半导体层120布置在覆盖层132上的步骤来实施形成夹层130的步骤。
[0058] 在一些实施方式中,形成夹层130的步骤还包括将夹层金属物种的至少一部分与第一半导体层110材料、第二半导体层120材料或两者材料的至少一部分混合。在一些情况下,该方法可导致在夹层130形成期间形成金属合金。在一些情况下,该方法还导致在夹层130形成期间形成金属物种的氧化物、硫化物、硫酸盐、亚硫酸盐或含氧硫酸盐。不受任何理论限制,认为在退火步骤、CdTe沉积步骤或沉积后处理步骤期间,在夹层130中可发生再结晶和化学变化,并且金属化合物(例如,氧化物、硫酸盐或含氧硫酸盐)可形成在夹层130中。
[0059] 在一些实施方式中,夹层130可在布置第二半导体层120的步骤之前形成。在这样的情况下,该方法还包括热处理包括布置在第一半导体层110上的覆盖层132的半导体组件135的步骤,如图4所示。热处理步骤可包括例如半导体组件135的退火。
[0060] 在一些实施方式中,退火步骤可以在包括惰性气体、氧气、空气或它们的组合的环境中执行。退火可以在处于约1mTorr至约760Torr范围内的合适压力之下执行。在某些情况下,退火压力可在约1Torr至约500Torr的范围内。半导体组件可在处于约500摄氏度至约700摄氏度范围内的温度下进行退火,并且在某些情况下,该温度在约550摄氏度至约650摄氏度范围内。退火可进一步在合适的持续时间内执行,例如,在约10分钟至约30分钟范围内。
[0061] 在一些实施方式中,该方法包括热处理处于面对面构造的多个半导体组件。该方法可包括热处理第一半导体组件和热处理第二半导体组件,该第一半导体组件包括布置在第一半导体层上的夹层,该第二半导体组件包括布置在第一半导体层上的另一夹层。在一个实施方式中,对两个组件同时热处理,并且半导体组件布置成在热处理期间两个夹层彼此面对,且其间存在一间隙。
[0062] 在一些实施方式中,该方法还包括将至少一个隔片布置在这些夹层之间,使得在热处理期间层彼此分开。一般来说,可以使用任何具有能够经受热处理条件(如前所述)的所需结构特性的合适隔片,以分隔第一半导体组件和第二半导体组件,以及维持两个组件之间的期望间隙。
[0063] 在一些其它实施方式中,夹层130可在例如CdTe的高温沉积期间,与布置第二半导体层120的步骤同时形成。在一些实施方式中,夹层130可在例如氯化镉处理步骤期间、在p+型层形成步骤期间、在背接触形成步骤期间或它们的组合期间,在布置第二半导体层120的步骤之后形成。
[0064] 不受任何理论限制,认为在热处理步骤期间或第二半导体120沉积步骤期间,覆盖层132可防止第一半导体层110中的半导体材料升华。在第一半导体层包括CdS的情况下,覆盖层在CdS退火步骤或CdTe沉积步骤期间,可防止CdS材料升华。因此,使用覆盖层132可提供更平滑的CdS层和在CdS和CdTe之间改进的结形成,获得提高的性能参数。此外,该方法可减少生产成本,因为在处理期间较低的CdS损失允许采用薄CdS层。
[0065] 如前所述,光伏器件还可包括一个或多个额外层,例如支撑件140、透明导电层150、缓冲层160、p+型半导体层170和背接触层180,如图2所示。在一些实施方式中,该方法还包括将第一半导体层110布置在透明导电层150上的步骤。用于窗口层150的沉积方法的非限制例子包括近距离升华(CSS)、气相输送沉积(VTD)、溅射(例如,直流脉冲溅射(DCP))、电化学沉积(ECD)和化学浴沉积(CBD)中的一种或多种。
[0066] 在一些实施方式中,该方法还包括将透明导电层150布置在支撑件140上,如图2所示。透明导电层150可通过任何合适的技术而布置在支撑件140上,比如溅射、化学气相沉积、旋涂、喷涂或浸涂。参见图2,在一些实施方式中,使用溅射将可选的缓冲层160沉积在透明导电层150上。
[0067] 再次参见图2,在一个实施方式中,通过使用比如PECVD的任何合适技术沉积p+型材料来将p+型半导体层170进一步布置在第二半导体层120上。在替代实施方式中,p+型半导体层170可通过化学处理第二半导体层120而布置在第二半导体层120上,以增加第二半导体层120的背侧(与金属层接触、且与窗口层相反的侧)上的载流子密度。在一个实施例中,光伏器件100通过将例如金属层180的背接触层沉积在p+型半导体层170上而完成。
[0068] 第一半导体层110、第二半导体层120、背接触层180或p+型层170(可选择的)中的一个或多个在沉积之后可进一步被加热或随后进行处理(例如退火),以制造光伏器件100。
[0069] 在一些实施方式中,其它部件(未示出)可包含在示例性光伏器件100中,比如汇流条、外部配线、激光刻蚀等。例如,当器件100形成光伏模块的光伏电池时,多个光伏电池可经由比如电线连接而串联连接以获得期望的电压。串联连接的电池的每一端可连接到例如电线或汇流条的合适导体,以将产生的电流引导至用于连接到使用产生的电流的器件或其它系统的方便位置。在一些实施方式中,可使用激光对光伏器件100的沉积层划线,以把器件分成多个串联连接的电池。
[0070] 示例
[0071] 比较示例1制造不具有夹层的碲化镉光伏器件的方法
[0072] 碲化镉光伏器件通过将几个层沉积在涂覆有锡酸镉(CTO)透明导电氧化物的衬底上而制成。该衬底是1.3毫米厚的CIPV065玻璃,其涂覆有CTO透明导电层和薄高阻抗透明氧化锌锡(ZTO)缓冲层。包含硫化镉(Cd:O,在CdS层中5摩尔百分率的氧)的窗口层随后通过直流溅射沉积在ZTO层上,然后在550℃下沉积碲化镉(CdTe),并形成背接触。
[0073] 示例1制造包括通过原子层沉积而沉积的含镁夹层的碲化镉光伏器件的方法
[0074] 该制作光伏器件的方法与比较示例1类似,除了4纳米厚的氧化镁(MgO)覆盖层在CdTe层沉积之前通过原子层沉积(ALD)而沉积在CdS层上。
[0075] 示例2制造包括通过溅射而沉积的含镁夹层的碲化镉光伏器件的方法
[0076] 该制作光伏器件的方法与比较示例1类似,除了6纳米厚的单质镁(Mg)覆盖层在CdTe层沉积之前通过溅射而沉积在CdS层上。
[0077] 示例3制造包括含钆夹层的碲化镉光伏器件的方法
[0078] 该制作光伏器件的方法与比较示例1类似,除了3纳米厚的单质钆(Gd)覆盖层在CdTe层沉积之前通过溅射而沉积在CdS层上。
[0079] 如图5-7所示,与不具有夹层的器件(比较示例1)相比,具有夹层的器件(示例1-3)的器件性能参数(相对于比较示例被归一化)得到提高。此外,与不具有夹层的器件(比较示例1)相比,具有通过ALD沉积的夹层的器件(示例1)显示出高于20%的效率增加。与包括溅射的夹层的器件(示例2)相比,包括通过ALD沉积的夹层的光伏器件(示例1)还显示出较高的效率和提高的性能参数。
[0080] 图8示出具有和不具有夹层的光伏器件的扫描电子显微照片。如图8所示,不具有夹层的光伏器件(比较示例1)的显微照片示出不均匀的CdS层结构,大概是因为CdS在一个或多个器件制作步骤期间升华。然而,具有夹层的光伏器件(示例1)的显微照片示出更均匀的CdS层和形成在CdS层和CdTe层之间的薄夹层(包含MgO)。
[0081] 图9示出包括夹层的光伏器件(示例1)的x射线光电子能谱(XPS)深度分布,示出仅在夹层处MgO和CdS层之间的相互作用。图10示出包括夹层的光伏器件(示例1)的X射线光电子能谱(XPS)分布。这些XPS分布表明在夹层中存在氧化物相和硫酸盐相。
[0082] 所附权利要求意在要求本发明如已构想般广泛,在这里呈现的示例是对从多种所有可能实施方式中选择的实施方式的说明。因此,申请人意在所附权利要求不受用于说明本发明特征的选择性示例的限制。如权利要求中所使用,词“包括”及其语法变体逻辑上还包含具有变化和不同程度的短语,比如但并不局限于“本质上由…组成”和“由…组成”。必要时,可以提供范围;这些范围包括在其间的所有子范围。期望的是,这些范围中的变体对具有本领域一般技术的从业者而言是清楚的,在不向公众开放的情况下,这些变体应当视为由所附权利要求涵盖。还希望科学技术的发展会使由于语言的不严密而现在不能设想的等同物和替代物成为可能,这些变体也应当视为由所附权利要求涵盖。