一种在多个位置上同时聚集微/纳颗粒的方法及其装置转让专利

申请号 : CN201410065198.1

文献号 : CN103864173B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 胡俊辉汤强

申请人 : 南京航空航天大学

摘要 :

本发明涉及一种在多个位置上同时聚集微/纳颗粒的方法及其装置,属于超声应用技术领域。包括长方体腔体、一个及其以上的超声励振器和声透过/吸收板,利用腔体内的一个及其以上的超声励振器对腔体内的流场进行行波振动,通过超声励振器产生的超声行波声场在特定频率下产生的多个声学流涡流,使流场中的微/纳颗粒在对应的声学流涡流上进行聚集。本发明不仅能够对流场中的微/纳颗粒进行多点阵列式的聚集,同时对微/纳颗粒的物性没有要求,且不会破坏微/纳颗粒,另外本发明具有易小型化、易清洁和可靠性好等优点。

权利要求 :

1.一种在多个位置上同时聚集微/纳颗粒的方法,其特征在于: 利用腔体内的一个及其以上的超声励振器对腔体内的流场进行行波振动,通过超声励振器产生的超声行波声场在特定频率下产生的多个声学流涡流,使流场中的微/纳颗粒在对应的声学流涡流上进行聚集;所述超声励振器振动的频率为54kHz时,流场中产生四个第一声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,此时4个第一声学流涡流的中心坐标分别为(1.35cm,1.55cm),(-1.35cm,1.55cm),(1.35cm,5.15cm),(-1.35cm,5.15cm);

所述超声励振器振动的频率为216kHz时,流场中产生六个第二声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,此时6个第二声学流涡流的中心坐标分 别 为(1.5cm,2cm),(-1.5cm,2cm),(1.7cm,4.2cm),(-1.7cm,4.2cm),(1.4cm,7.2cm),(-1.4cm,7.2cm)。

2.根据权利要求1所述在多个位置上同时聚集微/纳颗粒的方法,其特征在于:所述超声励振器为压电陶瓷片。

3.根据权利要求2所述在多个位置上同时聚集微/纳颗粒的方法,其特征在于:所述流场的平面大小为6cm*9cm;所述超声励振器的个数为一个,且所述超声励振器设置于腔体的宽边的内壁上。

4.一种基于权利要求1所述在多个位置上同时聚集微/纳颗粒的装置,其特征在于:包括长方体腔体、一个及其以上的超声励振器和声透过/吸收板,所述超声励振器设置于长方体腔体的内壁上,而所述声透过/吸收板设置于超声励振器相对的内壁上;同时所述长方体腔体内部填充有作为流场的声学流动媒介。

5.根据权利要求4所述在多个位置上同时聚集微/纳颗粒的装置,其特征在于:所述声透过/吸收板平行于超声励振器的声辐射面。

6.根据权利要求5所述在多个位置上同时聚集微/纳颗粒的装置,其特征在于:所述长方体腔体的内壁及下底部为固体材料,所述超声励振器和声透过/吸收板均嵌入腔体的内壁中,而所述长方体腔体为敞口形,且腔体中的声学流动媒介的上表面与空气接触,且所述声学流动媒介为水,所述长方体腔体的内壁面及下底部面均为光滑面。

7.根据权利要求6所述在多个位置上同时聚集微/纳颗粒的装置,其特征在于:所述超声励振器为压电陶瓷片;所述超声励振器的个数为一个,且所述超声励振器设置于腔体的宽边的内壁上。

8.根据权利要求7所述在多个位置上同时聚集微/纳颗粒的装置,其特征在于:所述超声励振器为曲面体,声透过/吸收板为曲面体薄板,腔体的形状为曲面体。

说明书 :

一种在多个位置上同时聚集微/纳颗粒的方法及其装置

技术领域

[0001] 本发明涉及一种多点聚集微/纳颗粒的装置,尤其涉及一种基于超声励振器的振动在流场中产生的多个对称声学流涡流来同时多点聚集流场中微/纳颗粒的聚集装置。

背景技术

[0002] 随着生物医学及环境能源科学的快速发展,如何使分散在流体中的微/纳颗粒聚集成阵列排布来进行多点传感等已经成为现在科学研究的重要课题,如何以高效率、低成本和无破坏的方式聚集微/纳颗粒是我们面临的重大技术课题。
[0003] 目前,针对流体中的微颗粒聚集的问题已经有一些装置。CN 101765762 A公开了一种使粒子在微通道中聚集的系统和方法,该发明采用流体、通道和泵送元件经配置以使惯性力作用于粒子来使粒子聚集在一条或多条流动线路中。这种聚集微颗粒的方式的不足之处在于:微通道系统一次能聚集的微/纳颗粒(微/纳颗粒是指微颗粒和/或纳颗粒)的数量非常的少而且不能形成多点聚集。
[0004] 因此,确有必要对现有技术进行改进以解决现有技术之不足。

发明内容

[0005] 本发明针上述问题的不足,提出一种在多个位置上同时聚集微/纳颗粒的方法,该方法不仅能够对流场中的微/纳颗粒进行多点阵列式的聚集,同时对微/纳颗粒的物性没有要求,且不会破坏微/纳颗粒,另外本方法具有易小型化、易清洁和可靠性好优点。
[0006] 本发明为解决上述技术问题提出的技术方案是:一种在多个位置上同时聚集微/纳颗粒的方法,利用腔体内的一个及其以上的超声励振器对腔体内的流场进行行波振动,通过超声励振器产生的超声行波声场在特定频率下产生的多个声学流涡流,使流场中的微/纳颗粒在对应的声学流涡流上进行聚集。
[0007] 优选的:所述超声励振器为压电陶瓷片;所述超声励振器之间的振动频率相差不超过1kHz。
[0008] 优选的:所述流场的平面大小为6cm*9cm;所述超声励振器的个数为一个,且所述超声励振器设置于腔体的宽边的内壁上。
[0009] 优选的:所述超声励振器振动的频率为54kHz时,流场中产生四个第一声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,此时4个第一声学流涡流的中心坐标分别为(1.35cm,1.55cm),(-1.35cm,1.55cm),(1.35cm,5.15cm),(-1.35cm,5.15cm)。
[0010] 优选的:所述超声励振器振动的频率为216kHz时,流场中产生六个第二声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,此时6个第二声学流涡流的中心坐标分别为(1.5cm,2cm),(-1.5cm,2cm),(1.7cm,4.2cm),(-1.7cm,4.2cm),(1.4cm,7.2cm),(-1.4cm,7.2cm)。
[0011] 本发明还提出一种在多个位置上同时聚集微/纳颗粒的装置,包括长方体腔体、一个及其以上的超声励振器和声透过/吸收板,所述超声励振器设置于长方体腔体的内壁上,而所述声透过/吸收板设置于超声励振器相对的内壁上;同时所述长方体腔体内部填充有作为流场的声学流动媒介。
[0012] 优选的:所述声透过/吸收板平行于超声励振器的声辐射面。
[0013] 优选的:所述长方体腔体的内壁及下底部为固体材料,所述超声励振器和声透过/吸收板均嵌入腔体的内壁中,而所述长方体腔体为敞口形,且腔体中的声学流动媒介的上表面与空气接触,且所述声学流动媒介为水,所述长方体腔体的内壁面及下底部面均为光滑面。
[0014] 优选的:所述超声励振器为压电陶瓷片;所述超声励振器的个数为一个,且所述超声励振器设置于腔体的宽边的内壁上。
[0015] 优选的:所述超声励振器为曲面体,声透过/吸收板为曲面体薄板,腔体的形状为曲面体。
[0016] 本发明的一种在多个位置上同时聚集微/纳颗粒的方法及其装置,相比现有技术,具有以下有益效果:1.由于利用腔体内的超声励振器对腔体内的流场进行行波振动,通过超声励振器产生的超声行波声场在特定频率下产生的多个声学流涡流,使流场中的微/纳颗粒在对应的声学流涡流上进行聚集, 因此本发明依靠超声励振器的振动在流场中产生的多个对称声学流涡流来对流场中的微/纳颗粒同时进行多点阵列式聚集。同时本发明对微/纳颗粒的物性没有要求,且不会破坏微/纳颗粒,另外,由于采用压电材料励振和无旋转部件,本发明涉及到的装置具有易小型化、易清洁和可靠性好等优点。
[0017] 2.由于所述长方体腔体的内壁面及下底部面均为光滑面,因此能够减小声学流涡流流动时的流阻。同时由于声学流动媒介的上表面与空气接触,因此能够进一步减小声学流涡流流动时的流阻。

附图说明

[0018] 图1为本发明多点聚集微/纳颗粒的装置的结构示意图。
[0019] 图2为图1所示的多点聚集微/纳颗粒的装置的有限元软件仿真图。
[0020] 其中:1-超声励振器,2-声透过/吸收板,3-边框,4-水体,5-声学流涡流,6-行波,7-微/纳颗粒团。

具体实施方式

[0021] 附图非限制性地公开了本发明一个优选实施例的结构示意图,以下将结合附图详细地说明本发明的技术方案。实施例
[0022] 本实施例的一种在多个位置上同时聚集微/纳颗粒的方法,利用腔体内的一个及其以上的超声励振器对腔体内的流场进行行波振动,通过超声励振器产生的超声行波声场在特定频率下产生的多个声学流涡流,使流场中的微/纳颗粒在对应的声学流涡流上进行聚集。
[0023] 所述超声励振器为压电陶瓷片;所述超声励振器之间的振动频率相差不超过1kHz。
[0024] 所述流场的平面大小为6cm*9cm;所述超声励振器的个数为一个,且所述超声励振器设置于腔体的宽边的内壁上。
[0025] 如图2所示,所述超声励振器振动的频率为54kHz时,流场中产生四个第一声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,此时4个第一声学流涡流的中心坐标分别为(1.35cm,1.55cm),(-1.35cm,1.55cm),(1.35cm,5.15cm),(-1.35cm,5.15cm)。
[0026] 如图2所示,所述超声励振器振动的频率为216kHz时,流场中产生六个第二声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,此时6个第二声学流涡流的中心坐标分别为(1.5cm,2cm),(-1.5cm,2cm),(1.7cm,4.2cm),(-1.7cm,4.2cm),(1.4cm,7.2cm),(-1.4cm,7.2cm)。
[0027] 一种在多个位置上同时聚集微/纳颗粒的装置,如图1-2所示,包括长方体腔体、一个及其以上的超声励振器和声透过/吸收板,所述超声励振器设置于长方体腔体的内壁上,而所述声透过/吸收板设置于超声励振器相对的内壁上;同时所述长方体腔体内部填充有作为流场的声学流动媒介。
[0028] 所述声透过/吸收板平行于超声励振器的声辐射面。
[0029] 所述长方体腔体的内壁及下底部为固体材料,所述超声励振器和声透过/吸收板均嵌入腔体的内壁中,而所述长方体腔体为敞口形,且腔体中的声学流动媒介的上表面与空气接触,且所述声学流动媒介为水,所述长方体腔体的内壁面及下底部面均为光滑面。
[0030] 所述超声励振器为压电陶瓷片;所述超声励振器的个数为一个,且所述超声励振器设置于腔体的宽边的内壁上。
[0031] 所述超声励振器为曲面体,声透过/吸收板为曲面体薄板,腔体的形状为曲面体。
[0032] 具体的:
[0033] 一种在多个位置上同时聚集微/纳颗粒的方法,该方法利用腔体内产生的超声行波声场在某些频率下产生的多个声学流涡流,对流场中的微/纳颗粒在多个位置上同时进行聚集。
[0034] 所述长方体腔体的壁及下底部为固体材料,超声励振部位嵌入腔体的壁中,声透过/吸收板嵌入与超声励振部位相对的腔体的壁面,腔体上表面与空气接触,腔体中存在液体。
[0035] 具有多个超声励振部位,分布在腔体壁的不同位置,且这些超声励振部位的振动幅值及相位可以存在差别。
[0036] 所述超声励振部位可以为曲面体等多种形状,声透过/吸收板可以为曲面体薄板等多种形状,腔体的形状依据超声励振部位和声透过/吸收板而定可以为曲面体等多种形状。
[0037] 所述腔体的壁及下底部的固体材料足够光滑,以减小声学流涡流流动时的流阻。
[0038] 所述腔体的上表面与空气接触,以减小声学流涡流流动时的流阻。
[0039] 如图1所示,本发明多点聚集微/纳颗粒的装置包括有超声励振器、声透过/吸收板、有机塑料的边框及基板及水体。所述声透过/吸收板平行于超声励振器的声辐射面,所述有机塑料的边框及基板与超声励振器和声透过/吸收板共同形成腔体,所述水体作为声学流动媒介。
[0040] 本发明多点聚集微/纳颗粒的装置中的超声励振器嵌入有机塑料的边框及基板中,超声励振器的主要材料为压电陶瓷片,其尺寸2cm*0.5cm*1cm,振动的频率为超声级别。超声励振器的声辐射面的振动速度幅值沿x轴方向是等值的。当超声励振器振动时,在水体中会产生声场,且在声透过/吸收板的作用下,在整个腔体内会形成一个行波声场,从而在水体中产生声学流涡流。在某些超声频率下,流场中会产生多个对称声学流涡流,原本分散在流场内的微/纳颗粒会随涡流流动,进而聚集到涡流的中心位置,形成多点阵列式聚集。所述声透过/吸收板与超声励振器的声辐射面保持平行,所用的材料为具有声透过或吸收功能的有机塑料薄板,尺寸为6cm*0.1cm*1cm。腔体的其余部分均为有机塑料边框及基板,其中边框的厚度为0.5cm,高度为1cm,基板的尺寸为7cm*9.6cm*0.5cm,与超声励振器和声透过/吸收板共同形成一个腔体,腔体的内尺寸为6cm*9cm*1cm。水体为腔体内的声场及流场媒介,用于被聚集的微/纳颗粒散布在水体中,微/纳颗粒可以为有机材料酵母菌或者无机材料ZnO等,它们的尺度均在微米级别以下。
[0041] 下面借助于有限元仿真软件来说明本发明多点聚集微/纳颗粒的装置的效果,参照图2所示,建模时采用二维平面,简化超声励振器、声透过/吸收板和有机塑料边框及基板,将它们用线段表示,保留流场区域,其尺寸为6cm*9cm。超声励振器的振动频率分别设为设为54kHz及216kHz,声辐射面的速度幅值保持不变为1.2cm/s,先计算得到行波声场,再利用该声场,可以计算得出图2所示的多个对称排列的声学流涡流。
[0042] 通过上述仿真案例可以发现,本发明中的微/纳颗粒多点聚集装置必须保证频率在某一个频率点附近,前后相差不超过1kHz。超声换能器的振动产生的多个对称声学流涡流在不同的频率下在有不同的大小、数量及分布。在54kHz时,流场中会产生个第一声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,这些涡流的中心坐标分别为(1.35cm,1.55cm),(-1.35cm,1.55cm),(1.35cm,5.15cm),(-1.35cm,5.15cm),它们的流动范围近似为直径为2.7cm的圆形。在216kHz时,流场中会产生6个第二声学流涡流,以流场的宽为X轴,长为Y轴,宽的中点为坐标原点建立坐标系,这些涡流的中心坐标分别为(1.5cm,2cm),(-1.5cm,2cm),(1.7cm,4.2cm),(-1.7cm,4.2cm),(1.4cm,7.2cm),(-1.4cm,7.2cm),它们的流动范围近似为圆形,沿y轴方向涡流的直径依次为2.5cm,2cm,
3.2cm。利用这些声学流涡流,即可以在上述特定的涡流中心位置,聚集形成团状的微/纳颗粒团,这些微/纳颗粒团近似为直径为0.5cm的圆形。
[0043] 上面结合附图所描述的本发明优选具体实施例仅用于说明本发明的实施方式,而不是作为前述发明目的和所附权利要求内容和范围的限制,凡是依据本发明的技术实质以上实施例所做的任何简单修改、等同变化与修饰,均仍属本发明技术和权利保护范畴。