聚酰亚胺膜及其聚酰亚胺积层板转让专利

申请号 : CN201310070393.9

文献号 : CN103937239B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 孙德峥许艳惠李国维

申请人 : 达胜科技股份有限公司

摘要 :

一种聚酰亚胺膜及其聚酰亚胺积层板,聚酰亚胺膜包含一聚酰亚胺以及一磷酸铁锂。磷酸铁锂的重量百分比介于1wt%至49wt%,并且磷酸铁锂的重量百分比以聚酰亚胺膜的总重为基准。聚酰亚胺积层板包含一基材以及一聚酰亚胺膜。聚酰亚胺膜覆盖基材。借此,以提升聚酰亚胺膜保护印刷电路板上的电路设计的能力。

权利要求 :

1.一种聚酰亚胺膜,其特征在于,包含:一聚酰亚胺;以及

一磷酸铁锂,重量百分比介于1wt%至49wt%,该磷酸铁锂的重量百分比以该聚酰亚胺膜的总重为基准,其中,该磷酸铁锂的粒径为0.1微米至10微米,以及该聚酰亚胺膜的厚度为12微米至

250微米。

2.根据权利要求1所述的聚酰亚胺膜,其特征在于,该磷酸铁锂的重量百分比介于

5wt%至35wt%。

3.根据权利要求2所述的聚酰亚胺膜,其特征在于,该磷酸铁锂的重量百分比介于

10wt%至30wt%。

4.根据权利要求1所述的聚酰亚胺膜,其特征在于,该磷酸铁锂的粒径为0.5微米至6微米。

5.根据权利要求1所述的聚酰亚胺膜,其特征在于,另包含一碳材,该碳材为碳黑、碳灰、石墨、碳球、碳管、石墨烯或上述的组合。

6.根据权利要求1所述的聚酰亚胺膜,其特征在于,另包含一无机颗粒,该无机颗粒为云母粉、二氧化硅粉、滑石粉、陶瓷粉、黏土粉、二氧化钛、高岭土、硅胶烧结粉末、碳化硅、硫酸钡、氮化硼、氧化铝、氮化铝或上述的组合。

7.根据权利要求1所述的聚酰亚胺膜,其特征在于,该聚酰亚胺膜的透光度小于或等于20%。

8.根据权利要求1所述的聚酰亚胺膜,其特征在于,该聚酰亚胺膜的耐电压大于或等于1.2KV/mil。

°

9.根据权利要求1所述的聚酰亚胺膜,其特征在于,该聚酰亚胺膜的60 光泽度为小于或等于70GU。

10.一种聚酰亚胺积层板,其特征在于,包含:一基材;以及

权利要求1所述的聚酰亚胺膜,该聚酰亚胺膜覆盖该基材。

11.根据权利要求10所述的聚酰亚胺积层板,其特征在于,该基材为一金属基板。

12.根据权利要求11所述的聚酰亚胺积层板,其特征在于,该金属基板的材质为铜、钯、铝、铁、镍或合金。

13.根据权利要求10所述的聚酰亚胺积层板,其特征在于,该基材与该聚酰亚胺膜的接着强度大于或等于0.6公斤/公分。

说明书 :

聚酰亚胺膜及其聚酰亚胺积层板

技术领域

[0001] 本发明是关于一种聚酰亚胺膜,特别是关于一种包含磷酸铁锂的聚酰亚胺膜及其聚酰亚胺积层板。

背景技术

[0002] 聚酰亚胺(polyimide,PI)是一种具有高机械强度、耐高温并且绝缘的高分子材料,如今已成为制作软性印刷电路板(Flexible Printed Circuit,FPC)的重要材料。举例来说,业界在制造印刷电路板时,会在软性铜箔基板(Flexible Copper Clad Laminate,FCCL)上设计所要的电路,然后,再将具有黏着剂的聚酰亚胺膜覆盖在软性铜箔基板上,以作成聚酰亚胺覆铜的软性铜箔基板。由于印刷电路板是现在各式电子产品中的重要元件,因此,聚酰亚胺膜已成为制造各式电子产品时不可或缺的材料。
[0003] 由于民生消费性电子产品的竞争激烈,而使得各种电子产品的造型、颜色皆是消费者的诉求重点。随着手机、笔电等卷起了一股黑色流行旋风,拥有黑色外观的电子产品也成为了流行的代名词。另一方面,随着科技的发展,各种电子产品的设计也越趋复杂,由于印刷电路板上的电路设计攸关着各种电子产品的效能,因而成为了各界极欲保护的重点。以聚酰亚胺覆铜的软性铜箔基板来说,其铜箔基板上的聚酰亚胺膜通常是黄色系,或者是其它具有高度透光性的颜色。这使得聚酰亚胺覆铜的软性铜箔基板容易因为聚酰亚胺膜的透光性,而使得印刷电路板上线路层的电路设计被解读甚至被抄袭,进而影响产品的市场销售与公司营运。
[0004] 因此,如何设计一种聚酰亚胺膜,以解决现有技术中,电路设计容易因为聚酰亚胺膜的透光性而被解读的问题,就成为了研究人员需要解决的问题。

发明内容

[0005] 鉴于以上的问题,本发明是关于一种聚酰亚胺膜及其聚酰亚胺积层板,借以解决现有技术中电路设计容易因为聚酰亚胺膜的透光性而被解读的问题。
[0006] 本发明一实施例所揭露的聚酰亚胺膜,包含一聚酰亚胺以及一磷酸铁锂(分子式:LiFePO4,英文:Lithium iron phosphate,又称磷酸锂铁、锂铁磷,简称LFP)。磷酸铁锂的重量百分比介于1wt%至49wt%,并且磷酸铁锂的重量百分比是以聚酰亚胺膜的总重为基准。
[0007] 本发明一实施例所揭露的聚酰亚胺积层板,包含一基材以及一聚酰亚胺膜。聚酰亚胺膜覆盖基材。
[0008] 根据上述本发明实施例所揭露的聚酰亚胺膜及其聚酰亚胺积层板,由于聚酰亚胺膜包含了磷酸铁锂,因而可制成黑色的聚酰亚胺膜及其聚酰亚胺积层板。因此,聚酰亚胺膜可保护其所覆盖的基材上的电路设计,因而解决了现有技术中电路设计容易因为聚酰亚胺膜的透光性而被解读的问题。
[0009] 以上的关于本发明内容的说明及以下的实施方式的说明用以示范与解释本发明的原理,并且提供本发明的专利申请范围更进一步的解释。

附图说明

[0010] 图1为根据本发明一实施例所揭露的聚酰亚胺膜的制作方法的流程图。
[0011] 图2为根据本发明一实施例所揭露的聚酰亚胺积层板的制作方法的流程图。
[0012] 图3为根据本发明一实施例所揭露的聚酰亚胺积层板的示意图。
[0013] 10基材
[0014] 20聚酰亚胺膜

具体实施方式

[0015] 以下在实施方式中详细叙述本发明的详细特征以及优点,其内容足以使本领域技术人员了解本发明的技术内容并据以实施,且根据本说明书所揭露的内容、申请专利范围及图式,本领域技术人员可轻易地理解本发明相关的目的及优点。以下的实施例进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。
[0016] 首先,请参阅图1,图1为根据本发明一实施例所揭露的聚酰亚胺膜的制作方法的流程图。
[0017] 首先,将一磷酸铁锂(Lithium iron phosphate,LiFePO4,又称磷酸锂铁、锂铁磷,简称LFP)加入一溶剂(S101),以搅拌或研磨工艺,配置成一分散液。其中,溶剂例如为二甲基甲酰胺(N,N-Dimethyl formamide,DMF)、二甲基乙酰胺(Dimethylacetamide,DMAc)、二甲基亚砜(Dimethyl sulfoxide,DMSO)、N-甲基吡咯烷酮(N-methyl-2-pyrrolidone,NMP)、γ-丁内酯(gamma-Butyrolactone,GBL)及其衍生物,但并不以此为限。
[0018] 在本实施例中,磷酸铁锂的重量百分比介于1wt%至49wt%之间,其中,磷酸铁锂的重量百分比以所制成的聚酰亚胺膜的总重为基准。在本发明部分其它实施例中,磷酸铁锂的重量百分比介于5wt%至35wt%之间。在本发明部分其它实施例中,磷酸铁锂的重量百分比介于10wt%至30wt%之间。须注意的是,如果磷酸铁锂的重量百分比大于49wt%,由于磷酸铁锂在溶液中所占的比例过高,而使得在制成聚酰亚胺膜之后,磷酸铁锂在聚酰亚胺膜中会分散不均匀,而降低了所制成的聚酰亚胺膜的品质。然而,如果磷酸铁锂的重量百分比小于1wt%,则会使得聚酰亚胺膜的颜色无法转变为黑色,并且聚酰亚胺膜的透光度会过高,与使得与100%的聚酰亚胺膜较无明显的差异,而难以用来保护电路的设计。
[0019] 在本实施例中,磷酸铁锂的粒径为0.1微米(micrometer,μm)至10微米。在本发明部分其它实施例中,磷酸铁锂的粒径为0.5微米至6微米。详细来说,如果磷酸铁锂的粒径大于10微米,会使得所制成的聚酰亚胺膜的表面因为磷酸铁锂的粒径过大而过于粗糙,因而不适合使用在印刷电路板相关的电子产品中。另一方面,若磷酸铁锂的粒径小于0.1微米,那么磷酸铁锂之间容易聚集,进而造成磷酸铁锂在所制成的聚酰亚胺膜中分散不均匀,并且过小的磷酸铁锂会增加制造聚酰亚胺膜的控制难度。
[0020] 此外,在本实施例及部分其它实施例中,还可加入一碳材或者一无机颗粒于溶液中,借以进一步提升所制成的聚酰亚胺膜黑色的程度、提升所制成的聚酰亚胺膜的遮旋光性、或者提升所制成的聚酰亚胺膜的物性,例如聚酰亚胺膜的硬度、模数、尺寸安定性及降低热膨胀系数等。
[0021] 其中,碳材例如可包含由石油、木炭或其它有机化合物在完全燃烧或者不完全燃烧之后所得到的产物。举例来说,碳材例如为碳黑、碳灰、石墨、碳球、碳管、石墨烯或上述的组合,但并不以此为限。借由加入碳材,可再强化所制成的聚酰亚胺膜黑色的程度,进而提升聚酰亚胺膜保护电路设计的能力。另一方面,无机颗粒例如但不限于云母粉、二氧化硅粉、滑石粉、陶瓷粉、黏土粉、二氧化钛、高岭土、硅胶烧结粉末、碳化硅、硫酸钡、氮化硼、氧化铝、氮化铝或上述的组合。借由加入无机颗粒,可再降低所制成的聚酰亚胺膜的透光性及光泽度,进而提升聚酰亚胺膜保护电路设计的能力。
[0022] 为了使磷酸铁锂、碳材或无机颗粒在溶液中混合均匀,并且减少所需的混合时间,可以20赫兹(Hertz,Hz)至100赫兹的频率来快速搅拌溶液,或者可借由研磨的方法来加速磷酸铁锂、碳材或无机颗粒分散于溶液中。
[0023] 接着,在溶液中加入一二胺单体,并且使二胺单体溶解于溶液中(S102)。其中,二胺单体例如为对苯二胺(1,4-diamino benzene)、间苯 二胺(1,3-diamino benzene)、4,4’- 二 胺 基 二 苯 醚 (4,4’-oxydianiline)、3,4’- 二胺 基 二 苯 醚 (3,4’-oxydianiline)、4,4’- 二 胺 基 二 苯 烷 (4,4’-methylene dianiline)、二 对 苯 二 胺 (N,N-Diphenylethylenediamine),二 胺 基 二 苯 酮(diaminobenzophenone)、二胺 二苯基砜(diamino diphenyl sulfone)、二萘二 胺(1,5-naphthalene diamine)、二胺基二苯硫 醚(4,4-diamino diphenyl sulfide)、
1,3-二 (3- 胺 基 酚 氧 基) 苯 (1,3-Bis(3-aminophenoxy)benzene)、1,4-二 (4- 胺基 酚 氧 基 ) 苯(1,4-Bis(4-aminophenoxy)benzene)、1,3- 二 (4-胺 基 酚 氧 基 )苯 (1,3-Bis(4-aminophenoxy)benzene)、2,2-二 [4-(4- 胺 基 酚 氧 基 ) 苯 基 ] 丙烷 (2,2-Bis[4-(4-amino phenoxy)phenyl]propane)、4,4’- 二 (4- 胺 基 酚 氧基)联 苯4,4 ′-bis-(4-aminophenoxy)biphenyl、4,4’-二 (3-胺 基 酚 氧 基) 联苯4,4′-bis-(3-aminophenoxy)biphenyl、1,3- 二丙 胺基-1,1,3,3-四 甲 基二 硅氧 烷 (1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane)、1,3- 二 丙 胺基-1,1,3,3-四苯基二硅氧烷(1,3-Bis(3-aminopropyl)-1,1,3,3-tetraphenyldisiloxane)、1,3-二丙胺基-1,1-二甲基-3,3-二苯基二硅氧烷(1,3-Bis(aminopropyl)-dimethyldiphenyldisiloxane)或上述的组合。
[0024] 然后,在溶液中加入一四羧酸二酐单体(S103),借以使四羧酸二酐单体与二胺单体聚合成一聚酰胺酸。其中,四羧酸二酐单体例如为1,2,4,5-苯四甲 酸 二 酐(1,2,4,5-Benzene tetracarboxylic dianhydride)、联 苯 四 羧 酸 二酐 (3,3’,4,4’-Biphenyl tetracarboxylic dian hydride)、二 苯 醚 四 酸 二 酐(4,4’-Oxydiphthalic anhydride)、二苯酮四羧酸二酐(Benzophenonetetracarboxylicdianhydride)、二苯基砜四羧酸二酐(3,3',4,4'-diphenyl sulfonetetracarboxylic dianhydride)、萘基四酸二酐(1,2,5,6-naphthalene tetracarboxylic dianhydride)、萘二酸酐(Naphthalenetetracarboxylic Dianhydride)、二-(3,4-苯二甲酸酐)二甲基硅烷(bis(3,4-dicarboxypheny1)dimethylsilane dianhydride)、1,3-二(3,4-二羧基苯基)-1,1,3,3一四甲基二硅氧烷二酐(1,3-bis(4'-phthalic anhydride)-tetramethyldisiloxane)或上述的组合。
[0025] 如此一来,溶液中包含了聚酰胺酸、磷酸铁锂、碳粉以及无机颗粒。其中,溶液的黏度为100泊(poise,ps)至1000泊(即为10,000cps至100,000cps)。
[0026] 然后,干燥溶液以形成一聚酰胺酸膜(S104)。详细来说,是将溶液放置于高温的环境,使溶液中的溶剂因为高温气化而离开溶液并且使溶液中未被气化的成分形成聚酰胺酸膜。其中,干燥的温度例如可匹配于溶剂的沸点。在本实施例中,干燥的温度为120℃至200℃,但并不以此为限。
[0027] 最后,加热聚酰胺酸膜以形成一聚酰亚胺膜(S105)。详细而言,是将聚酰胺酸膜放置于更高温的环境,借以使聚酰胺酸膜进行亚酰胺化(imidization)反应而形成聚酰亚胺膜。所形成的聚酰亚胺膜可以是裸膜型态,或者可视使用者的需求,将聚酰亚胺膜配置于其它基材上来进行使用。其中,反应的温度越高,制备聚酰亚胺膜所需的时间越短。然而,若是反应的温度过高,则可能会破坏聚酰亚胺膜中原子之间的键结,而使得聚酰亚胺因为高温而降解(degradation)。在本实施例中,反应的温度为270℃至400℃,但并不以此为限。此外,使用者可根据需求来选择调整聚酰亚胺膜的厚度。须注意的是,聚酰亚胺膜的厚度应大于磷酸铁锂的粒径,在本实施例中,聚酰亚胺膜的厚度为12微米至250微米,但聚酰亚胺膜的厚度并非用以限定本发明。
[0028] 以下将借由实施例一至实施例六以及比较例一、二进行更详细的说明。请参阅表一,表一为依据图1的实施例所制备的聚酰亚胺膜的成分组成及其相关检测。其中,以膜厚为50μm的聚酰亚胺膜作为举例说明。
[0029] 表一
[0030]
[0031]
[0032] 在实施例一至实施例六中,所制成的聚酰亚胺膜均为黑色,因此适合使用在印刷电路板上,借以保护电路的设计。在实施例一至实施例六的聚酰亚胺膜中,表面电阻均大于等于1013Ω,而体积电阻均大于等于1013Ωcm,因此具有良好的绝缘性质。就聚酰亚胺膜的耐电压而言,实施例一至实施例六的耐电压均大于等于1.2kV/mil,也就是说,这些聚酰亚胺膜可至少承受1.2kV/mil的电压下而不会崩溃分解。更进一步来说,以高频线路的印刷电路板而言,通常会需要在大于0.2kV/mil的条件下运作,而添加了磷酸铁锂的聚酰亚胺膜可以承受这样的施作条件而不会因为高压进而崩溃分解。在实施例一、二、四及实施例五中,耐电压大于等于1.5kV/mil。在实施例一、二及实施例四中,耐电压大于等于2.0kV/mil。在实施例二及实施例四中,耐电压大于等于3.0kV/mil。就聚酰亚胺膜的透光度来说,实施例一至实施例六的透光度均小于等于20%,因此具有良好的遮光效果。在实施例二至实施例六中,透光度均小于等于10%。在实施例三至实施例六中,透光度为0%。因此,包含有磷酸铁锂的聚酰亚胺膜具有较低的透光度,因而,在保护电路设计上具有良好的效果。以聚酰亚胺膜的60°光泽度而言,实施例一至实施例六的60°光泽度均小于等于70GU,因而可减少聚酰亚胺膜反射光线。在实施例一至实施例五中,60°光泽度均小于等于40GU。在实施例二至实施例五中,60°光泽度均小于等于30GU。在实施例二至实施例四中,60°光泽度均小于等于25GU。在实施例三、实施例四中,60°光泽度均小于等于20GU。
[0033] 详细而言,包含磷酸铁锂的聚酰亚胺膜是黑色的薄膜,可用以保护电路的设计。并且,包含磷酸铁锂的聚酰亚胺膜具有高表面电阻、体积电阻而具有良好的绝缘性。另一方面,包含磷酸铁锂的聚酰亚胺膜还具有高耐电压,因而可在较高的电压下进行操作。同时,包含磷酸铁锂的聚酰亚胺膜的透光度、光泽度较低,因而具有较佳的保护电路的效果。此外,由于磷酸铁锂的分子量大,因此包含磷酸铁锂的聚酰亚胺膜在电路设计的工艺中,可避免在对聚酰亚胺膜在进行等离子、激光等表面处理时,磷酸铁锂被激光激发而从聚酰亚胺膜析出,进而造成污染。
[0034] 接着请参阅表二,表二为未添加磷酸铁锂的聚酰亚胺膜的组成及其相关检测。其中,是以膜厚为50μm的聚酰亚胺膜作为举例说明。
[0035] 表二
[0036]比较例 一 二
聚酰胺酸(wt,%) 100% 75%
磷酸铁锂(wt,%) 0 0
无机颗粒(wt,%) 0 0
碳粉材料(wt,%) 0 碳黑25%
膜厚(μm) 50 50
[0037]颜色 橘色 黑色
表面电阻(Ω) ≧1013 ≧1013
体积电阻(Ωcm) ≧1013 ≧1013
耐电压(kV/mil) 5.5 0.2
透光度(%) >90 0
60°光泽度(GU) 100 25
[0038] 在比较例一中,由于未添加磷酸铁锂,因此所制成的聚酰亚胺膜为橘色。如此一来,无法达到本发明实施例中黑色聚酰亚胺膜所具有的保密功效,因而不适合用于电路设计的保护。在比较例二中,虽然加入碳黑可制造出黑色的聚酰亚胺膜,然而却也大幅降低了聚酰亚胺膜的耐电压(0.2kV/mil)。如此一来,聚酰亚胺膜容易因为耐电压过低而崩溃分解,也不适合使用在印刷电路板上。此外,由于碳黑的分子量小,因此,所制成的聚酰亚胺膜在进行等离子、激光等表面处理时,碳黑容易被激光激发而析出,进而造成污染。
[0039] 接着,请参阅图2、图3,图2为根据本发明一实施例所揭露的聚酰亚胺积层板的制作方法的流程图,图3为根据本发明一实施例所揭露的聚酰亚胺积层板的示意图。其中,步骤S201至S203与图1的S101至S103相同或相似,故不再赘述。
[0040] 在四羧酸二酐单体与二胺单体聚合成聚酰胺酸以后,将包含聚酰胺酸的溶液涂布于一基材10上,并且加热移除溶剂(S204)。如此一来,即在基材10上形成了一聚酰胺酸膜。其中,基材10例如为一金属基板,金属基板的材质可以为铜、钯、铝、铁、镍或合金,但并不以此为限。在本实施例中,所使用的基材10为铜箔,而干燥的温度为120℃至200℃。须注意的是,基材10的熔点应匹配干燥的温度,以避免基材10因为干燥的温度过高而随之液化。
[0041] 最后,加热聚酰胺酸膜以形成一聚酰亚胺膜20(S205)。详细而言,是将基材10放置于更高温的环境,借以使聚酰胺酸膜进行亚酰胺化反应而在基材10的表面形成聚酰亚胺膜20,并且聚酰亚胺膜20覆盖基材10。如此一来,即完成了聚酰亚胺积层板的制备(如图3所示)。其中,基材10的熔点也应匹配进行亚酰胺化反应的反应温度,以避免基材10因为反应温度过高而随之液化。此外,在将包含聚酰胺酸的溶液涂布于一基材10上时,由于包含聚酰胺酸的溶液为液态,因而可流入基材10的表面空隙。如此一来,在聚酰胺酸经由高温加热而使得聚酰胺酸之间形成高分子键结并且形成聚酰胺酸膜,并进而形成聚酰亚胺膜20之后,聚酰亚胺膜20与基材10间的空隙较少,亦即,聚酰亚胺膜20与基材10间的接触面积较大。因此,借由聚酰胺酸膜20与基材10之间相互吸引,而使得聚酰胺酸膜20与基材10之间具有很好的接着力。在本实施例中,反应的温度为270℃至400℃,此外,聚酰亚胺膜20固着于基材10(例如:铜箔)上。在本实施例中,基材10与聚酰亚胺膜20之间的接着强度大于或等于0.6公斤/公分。如此一来,聚酰亚胺膜20与基材10不须黏着剂即可结合(例如可制成无胶式的覆铜基层板),而可避免使用时聚酰亚胺膜20自基材10脱落。此外,这样的工艺较使用黏着剂的工艺简单,并且还可避免黏着剂影响聚酰亚胺膜的物理、化学性质。
[0042] 请参阅表三,表三为依据图2的实施例所制备的聚酰亚胺积层板以及未添加磷酸铁锂的聚酰亚胺积层板的成分组成及其相关检测。
[0043] 表三
[0044]
[0045]
[0046] 在实施例七至实施例十中,所制成的聚酰亚胺积层板的接着强度均大于等于0.6kg/cm,测试方法:IPC-TM-650;Method2.4.9。在实施例七至实施例九中,所制成的聚酰亚胺积层板的接着强度均大于等于1.0kg/cm。在实施例八中,所制成的聚酰亚胺积层板的接着强度为1.2kg/cm。此外,在实施例七至实施例十中,所制成的聚酰亚胺积层板的尺寸安定性均小于等于0.08%,测试方法:IPC-TM-650;Method2.2.4。在实施例七、实施例八中,所制成的聚酰亚胺积层板的尺寸安定性均小于等于0.06%。在实施例八中,所制成的聚酰亚胺积层板的尺寸安定性均为0.05%。其中,尺寸安定性代表在加工制作时聚酰亚胺积层板的尺寸大小变化的比率。由于本发明实施例的聚酰亚胺积层板的尺寸安定性均小于等于0.08%,因而在进行聚酰亚胺积层板之后续加工时,聚酰亚胺积层板的尺寸变化较小,因而进行后续加工时较为容易。
[0047] 根据上述本发明实施例所揭露的聚酰亚胺膜及其聚酰亚胺积层板,由于聚酰亚胺膜包含了磷酸铁锂,因而可制成黑色的聚酰亚胺膜及其聚酰亚胺积层板。因此,聚酰亚胺膜可保护其所覆盖的基材上的电路设计,因而解决了现有技术中电路设计容易因为聚酰亚胺膜的透光性而被解读的问题。
[0048] 此外,由于聚酰亚胺膜包含了磷酸铁锂,因而所制成的聚酰亚胺膜及其酰亚胺积层板具有较高的耐电压,因而可减少施加电压时,聚酰亚胺膜因为电压而崩溃分解的问题。
[0049] 此外,在部分的实施例中,由于聚酰亚胺膜还包含碳材,因此可再强化聚酰亚胺膜黑色的程度,进而提升聚酰亚胺膜保护电路设计的能力。
[0050] 此外,在部分的实施例中,由于聚酰亚胺膜还包含无机颗粒,因此可再降低聚酰亚胺膜的透光性,进而提升聚酰亚胺膜保护电路设计的能力,并可降低光泽度,增加质感,减少散光。
[0051] 当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。