适于生物质费托合成油生产航空煤油的催化剂及其制备方法转让专利

申请号 : CN201410201892.1

文献号 : CN103949280B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王弯弯宋德臣许莉

申请人 : 武汉凯迪工程技术研究总院有限公司

摘要 :

本发明公开了一种适于生物质费托合成油生产航空煤油的催化剂及其制备方法。该催化剂中各组份的重量百分比为:无定形硅铝20~50%,氧化铝粘结剂5~20%,水热改性ZSM-22分子筛20~60%,氧化镍0.5~5%,氧化钼5~15%。其制备方法是先将K-ZSM-22分子筛进行NH4+交换处理得到H-ZSM-22分子筛,然后水热处理得到改性H-ZSM-22分子筛,再与无定形硅铝混匀后,加入氧化铝粘结剂、田腈粉后,混捏、碾压成团,挤条成型,然后经干燥、焙烧,最后负载活性金属Ni和Mo。本发明所得到的催化剂具有高活性、高选择性,增加了长链烷烃的异构化程度,降低了航空煤油馏分的冰点,提高了航空煤油的收率。

权利要求 :

1.一种适于生物质费托合成油生产航空煤油的催化剂,其特征在于:该催化剂中各组份的重量百分比为:无定形硅铝20~50%,氧化铝粘结剂5~20%,水热改性ZSM-22分子筛20~60%,田菁粉0.5~1.0%,氧化镍0.5~5%,氧化钼5~15%;所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性H-ZSM-22分子筛。

2.根据权利要求1所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:该催化剂中各组份的重量百分比为:无定形硅铝30~45%,氧化铝粘结剂8~15%,水热改性ZSM-22分子筛25~50%,田菁粉0.6~0.8%,氧化镍2.5~4.5%,氧化钼8~12%。

3.根据权利要求1所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述高温水蒸汽热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。

4.根据权利要求3所述适于生物质费托合成油生产航空煤油的催化剂,其特征在于:所述高温水蒸汽热处理的温度为500~800℃,压力为0.1~0.5Mpa,处理时间为2~3.5h。

5.根据权利要求1~4中任一项所述适于生物质费托合成油生产航空煤油的催化剂,2

其特征在于:所述催化剂的比表面积为200~300m/g、孔容为0.4~0.8mL/g、4~10nm微孔分布占总孔容的65~85%、NH3-TPD总酸度为0.4~1.0mmol/g。

6.一种权利要求1所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:该方法包括如下步骤:

1)以K-ZSM-22分子筛为原料,加入到NH4NO3溶液中进行离子交换,然后进行过滤、洗涤和干燥处理;

2)重复步骤1)的操作2~3次,再进行焙烧处理,获得H-ZSM-22分子筛;

3)对所得H-ZSM-22分子筛通入高温水蒸汽进行水热处理,获得脱铝改性H-ZSM-22分子筛;

4)将所得脱铝改性H-ZSM-22分子筛与无定形硅铝混匀,加入氧化铝粘结剂,然后加入稀硝酸溶液调制,再加入助挤剂田菁粉,混捏、碾压成团,挤压成条形物;

5)对所得条形物进行干燥、焙烧处理,获得催化剂载体;

6)将可溶性钼盐和可溶性镍盐混合配制成水溶液,并对其进行超声波分散处理,获得活性浸渍液;

7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再经过老化、干燥、焙烧,即可获得成品催化剂。

7.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为20~160。

8.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30~100。

9.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,NH4NO3溶液的浓度为1.0~2.0mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为60~110℃,水浴时间为1~4h。

10.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤1)中,NH4NO3溶液的浓度为1.0~1.5mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为80~100℃,水浴时间为2~4h。

11.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为300~

900℃,压力为0.1~2.0MPa,处理时间为2~4h。

12.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为500~

800℃,压力为0.1~0.5MPa,处理时间为2~3.5h。

13.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,2

其特征在于:所述步骤4)中,无定形硅铝的比表面积为250~400m/g,其中SiO2含量占无定形硅铝总重量的20~50%。

14.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,2

其特征在于:所述步骤4)中,无定形硅铝的比表面积为250~300m/g,其中SiO2含量占无定形硅铝总重量的30~50%。

15.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤4)中,稀硝酸溶液的质量百分比浓度为3~8%。

16.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,对条形物进行干燥的温度80~120℃,干燥时间为6~24h。

17.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,对条形物进行干燥的温度100~120℃,干燥时间为6~12h。

18.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,对干燥后的条形物进行焙烧的温度为500~600℃,焙烧时间为4~8h。

19.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤5)中,所得催化剂载体的形状为圆柱形、三叶草形或四叶草形。

20.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤6)中,可溶性钼盐为钼酸铵或钼酸钠,可溶性镍盐为硝酸镍。

21.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤6)中,进行超声波分散处理的时间为0.5~1.5h。

22.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤7)中,老化处理在室温下进行,老化时间为12~24h;干燥处理的温度为100~120℃,干燥时间为10~14h;焙烧处理的温度为500~600℃,焙烧时间为4~

8h。

23.根据权利要求6所述适于生物质费托合成油生产航空煤油的催化剂的制备方法,其特征在于:所述步骤7)中,老化处理在室温下进行,老化时间为16~20h;干燥处理的温度为110~120℃,干燥时间为10~12h;焙烧处理的温度为550~600℃,焙烧时间为4~

6h。

说明书 :

适于生物质费托合成油生产航空煤油的催化剂及其制备方

技术领域

[0001] 本发明涉及生产航空煤油的加氢异构化催化剂,具体地指一种适于生物质费托合成油生产航空煤油的催化剂及其制备方法。

背景技术

[0002] 近年来,我国原油净进口量持续快速增长,石油的消耗量也在不断增加,导致能源短缺日益严重。随着航空业的发展,对航空煤油的需求不断增加,有数据表明我国航空煤油的消费以每年13%左右的速率增长。目前,以煤、天然气和生物质为原料,经过费托合成反应及深加工得到高品质、超清洁的汽油、柴油和航空煤油等液态燃料以及其它高附加值的化学品引起了人们的极大兴趣。尤其是生物质原料,具有资源丰富、来源广泛、绿色可再生等特点,其转化为液体燃料可减少有害物质和温室气体排放,提高碳资源利用效率,且所得到的液体燃料无硫、无氮、无芳烃,可满足清洁燃料和日益严格的环境法规要求,符合清洁燃料的低碳政策,因而受到人们的高度重视。
[0003] 费托合成油中具有高含量的正构烷烃,达90%以上,致使其冰点较高,低温流动性能较差,不能直接作为航空煤油使用。因此,生物质费托合成油生产航空煤油的关键是正构烷烃通过加氢异构转化为异构烷烃,而解决该问题的核心则是高活性、高选择性的长链烷烃加氢异构化催化剂的研发。
[0004] 加氢异构化催化剂是一种将具有加氢-脱氢活性的金属载于酸性载体上所组成的双功能催化剂。活性组分为贵金属(Pt、Pd等)和非贵金属(Ni、Co、Mo、W等)两类,酸性载体则通常选用USY、MOR、SAPO系列及β分子筛。由于分子筛载体的酸性较强,会造成裂化反应加剧,从而导致异构化选择性较低,因此寻求具有弱酸性及适中孔道结构的载体成为制备加氢异构化催化剂的关键。
[0005] 公开号为CN101722031A的中国发明专利申请介绍了一种长链正构烷烃择形异构化催化剂及其制备方法和应用,该催化剂使用EUO型分子筛,同时混合无机耐熔氧化物作为载体,采用浸渍的方法负载贵金属Pt、Pd,其特点在于采用稀土元素镧、铈等对EUO型分子筛进行改性,从而产生了更多的弱酸性中心。该催化剂用于润滑油馏分的加氢处理过程,目的产品收率高、倾点低、粘度指数好,但是该催化剂仅适于润滑油馏分、白油、石蜡等的加氢处理过程。
[0006] 公开号为CN103059901A的中国发明专利申请提出了一种动植物油脂制备柴油组分或喷气燃料的方法,该方法采用两段反应器,第一段反应器得到C8~C24的正构烷烃,第二段反应器加氢异构化反应来生产喷气燃料,该催化剂为双功能催化剂,选用分子筛作为载体,如SAPO-11、SAPO-31、SAPO-41、ZSM-22、ZSM-23、ZSM-48等,选用的金属组分为Pt、Pd、Rh、Ru、Ag等贵金属。该催化剂虽然具有较高的异构化选择性,一般在80%左右,但是喷气燃料的收率较低,在45%左右。
[0007] 公开号为CN103013589A的中国发明专利申请公布了一种含生物质燃料的混合喷气燃料及其制备方法,以蒎烯为原料,以Ni/SiO2、Pd/Al2O3或Pd/C为催化剂来合成生物质燃料,该过程转化率很高,得到的生物质燃料冰点很低,但是其密度偏高,不能单独用作喷气燃料使用,需与现有的喷气燃料混合,才能符合国家喷气燃料的标准。
[0008] 为了解决上述问题,已有科研人员将Pt/ZSM-22、Pt/SAPO-11催化剂用于航空煤油生产过程的报导,但由于载体的酸性依然较强且孔道较小,导致航空煤油的选择性较低。而费托合成油品中长链正构烷烃含量远高于传统石化油品,其正构烷烃达到90%以上,如果催化剂酸性过高,将会使裂解反应过于强烈,生成更多的小分子,这样降低了航空煤油的选择性,同时产物的异构化程度也较低。
[0009] 因此,要得到高收率的航空煤油,科研人员亟需寻找一种高活性、高选择性的加氢异构化催化剂,将长链的生物质费托合成油经过加氢异构化处理,提高航空煤油成分的异构化程度,降低成品航空煤油的冰点,使其达到国家航空喷气燃料的标准,从而替代现有的石化航空燃料。

发明内容

[0010] 本发明的目的就是要克服现有技术所存在的不足,提供一种高活性、高选择性、高收率的适于生物质费托合成油生产航空煤油的催化剂及其制备方法。
[0011] 为实现上述目的,本发明所设计适于生物质费托合成油生产航空煤油的催化剂,其中各组份的重量百分比为:无定形硅铝20~50%,氧化铝粘结剂5~20%,水热改性ZSM-22分子筛20~60%,田腈粉0.5~1.0%,氧化镍0.5~5%,氧化钼5~15%。
[0012] 优选地,该催化剂中各组份的重量百分比为:无定形硅铝30~45%,氧化铝粘结剂8~15%,水热改性ZSM-22分子筛25~50%,田腈粉0.6~0.8%,氧化镍2.5~4.5%,氧化钼8~12%。
[0013] 上述方案中,所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性ZSM-22分子筛。优选地,所述水热改性ZSM-22分子筛是经高温水蒸汽热处理的脱铝改性H-ZSM-22分子筛。
[0014] 上述方案中,所述高温水蒸汽热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。优选地,所述高温水蒸汽热处理的温度为500~800℃,压力为0.1~0.5Mpa,处理时间为2~3.5h。
[0015] 优选地,所述催化剂的比表面积为200~300m2/g、孔容为0.4~0.8mL/g、4~10nm微孔分布占总孔容的65~85%、NH3-TPD总酸度为0.4~1.0mmol/g。
[0016] 本发明还提供了一种适于生物质费托合成油生产航空煤油的催化剂的制备方法,该方法包括如下步骤:
[0017] 1)以K-ZSM-22分子筛为原料,加入到NH4NO3溶液中进行离子交换,然后进行过滤、洗涤和干燥处理;
[0018] 2)重复步骤1)的操作2~3次,再进行焙烧处理,获得H-ZSM-22分子筛;
[0019] 3)对所得H-ZSM-22分子筛通入高温水蒸汽进行水热处理,获得脱铝改性H-ZSM-22分子筛;
[0020] 4)将所得脱铝改性H-ZSM-22分子筛与无定形硅铝混匀,加入氧化铝粘结剂,然后加入稀硝酸溶液调制,再加入助挤剂田腈粉,混捏、碾压成团,挤压成条形物;
[0021] 5)对所得条形物进行干燥、焙烧处理,获得催化剂载体;
[0022] 6)将可溶性钼盐和可溶性镍盐混合配制成水溶液,并对其进行超声波分散处理,获得活性浸渍液;
[0023] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再经过老化、干燥、焙烧,即可获得成品催化剂。
[0024] 进一步地,所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为20~160。优选地,所述步骤1)中,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30~100。
[0025] 进一步地,所述步骤1)中,NH4NO3溶液的浓度为1.0~2.0mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为60~110℃,水浴时间为1~4h。优选地,所述步骤1)中,NH4NO3溶液的浓度为1.0~1.5mol/L,K-ZSM-22分子筛在NH4NO3溶液中水浴的温度为80~100℃,水浴时间为2~4h。
[0026] 进一步地,所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为300~900℃,压力为0.1~2.0MPa,处理时间为2~4h。优选地,所述步骤3)中,高温水蒸汽对H-ZSM-22分子筛进行水热处理的温度为500~800℃,压力为0.1~0.5MPa,处理时间为2~3.5h。
[0027] 进一步地,所述步骤4)中,无定形硅铝的比表面积为250~400m2/g,其中SiO2含量占无定形硅铝总重量的20~50%。优选地,所述步骤4)中,无定形硅铝的比表面积为2
250~300m/g,其中SiO2含量占无定形硅铝总重量的30~50%。
[0028] 进一步地,所述步骤4)中,稀硝酸溶液的质量百分比浓度为3~8%。
[0029] 进一步地,所述步骤5)中,对条形物进行干燥的温度80~120℃,干燥时间为6~24h。优选地,所述步骤5)中,对条形物进行干燥的温度100~120℃,干燥时间为6~12h。
[0030] 进一步地,所述步骤5)中,对干燥后的条形物进行焙烧的温度为500~600℃,焙烧时间为4~8h。
[0031] 进一步地,所述步骤5)中,所得催化剂载体的形状为圆柱形、三叶草形或四叶草形。优选为三叶草形或四叶草形,可以在反应液中扩散较快。
[0032] 进一步地,所述步骤6)中,可溶性钼盐为钼酸铵或钼酸钠,可溶性镍盐为硝酸镍。
[0033] 进一步地,所述步骤6)中,进行超声波分散处理的时间为0.5~1.5h。
[0034] 进一步地,所述步骤7)中,老化处理在室温下进行,老化时间为12~24h;干燥处理的温度为100~120℃,干燥时间为10~14h;焙烧处理的温度为500~600℃,焙烧时间为4~8h。优选地,所述步骤7)中,老化处理在室温下进行,老化时间为16~20h;干燥处理的温度为110~120℃,干燥时间为10~12h;焙烧处理的温度为550~600℃,焙烧时间为4~6h。
[0035] 由于ZSM-22分子筛具有十元环开口的椭圆形一维孔道,孔口大小0.45nm×0.55nm,没有交叉孔道,仅适宜于小分子烷烃异构化反应的进行,将其用于长链烷烃的异构化过程中,则需要对ZSM-22分子筛进行改性处理,进一步扩大ZSM-22分子筛的孔道尺寸。
[0036] 本发明针对费托合成油长链正构烷烃多的特点,以K-ZSM-22分子筛为原料,通过离子交换获得H-ZSM-22分子筛,再通过水热处理脱铝,降低其酸性,同时利用无定形硅铝具有的弱酸性,将无定形硅铝与脱铝改性H-ZSM-22分子筛按比例混合作为载体,使其具备适中的弱酸性和孔道尺寸结构,然后负载活性成分Ni和Mo,制备得到孔径分布集中在4~10nm的催化剂,有利于长链烷烃异构化反应的进行。
[0037] 本发明的有益效果在于:所制备的催化剂具有高活性、高选择性,可将长链的生物质费托合成油经过加氢异构化处理,高选择性的得到航空煤油,增加了长链烷烃的异构化程度,降低了航空煤油馏分的冰点,提高了航空煤油组分的选择性,同时具有很高的催化活性,提高了航空煤油的收率。通过本发明所得到的催化剂生产出来的航空煤油,可达到国家喷气燃料的标准,从而替代现有的石化航空燃料。

具体实施方式

[0038] 为了更好地解释本发明,以下结合具体实施例对本发明作进一步的详细说明,但它们不对本发明构成限定。
[0039] 以下实施例中,所述原料生物质费托合成油的性质,如表1所示。
[0040] 表1原料油的性质
[0041]馏程(℃) 密度(20℃,kg/m3) 冰点(℃) 粘度(-20℃,mm2/s)
100~350 820 -20 6.82
[0042] 实施例1
[0043] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为40,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入1.5mol/L的NH4NO3溶液中进行离子交换,在水浴温度100℃条件下恒温搅拌2h,过滤、洗涤、120℃干燥4h;
[0044] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0045] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度500℃,压力0.2Mpa,处理4h,获得脱铝改性H-ZSM-22分子筛;
[0046] 4)称取50.0g所得脱铝改性H-ZSM-22分子筛、125.0g无定形硅铝、37.5g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入2.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
[0047] 5)将所得条形物放入烘箱中于120℃干燥6h,500℃焙烧8h后冷却至室温,获得催化剂载体;
[0048] 6)将42.0g钼酸钠和40.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0049] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化24h,置于100℃烘箱中干燥14h,500℃焙烧8h后冷却至室温,得到催化剂A。
[0050] 催化剂A中各组分的质量百分比组成为:改性H-ZSM-22分子筛20.0%,无定形硅铝50.0%,氧化铝粘结剂15.0%,田腈粉0.8%,氧化镍4.2%,氧化钼10.0%。
[0051] 催化剂A的物化性质如表2所示。催化剂A的评价结果及产品性质如表3所示。
[0052] 实施例2
[0053] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为50,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入1.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度80℃条件下恒温搅拌4h,过滤、洗涤、120℃干燥4h;
[0054] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0055] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度650℃,压力0.1Mpa,处理3h,获得脱铝改性H-ZSM-22分子筛;
[0056] 4)称取50.0g所得脱铝改性H-ZSM-22分子筛、20.0g无定形硅铝、19.2g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入0.8g助挤剂田腈粉混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
[0057] 5)将所得条形物放入烘箱中于100℃干燥12h,550℃焙烧6h后冷却至室温,获得催化剂载体;
[0058] 6)将6.8g钼酸铵和19.5g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0059] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化18h,置于120℃烘箱中干燥10h,550℃焙烧6h后冷却至室温,得到催化剂B。
[0060] 催化剂B中各组分的质量百分比组成为:改性H-ZSM-22分子筛50.0%,无定形硅铝20.0%,氧化铝粘结剂19.2%,田腈粉0.8%,氧化镍5.0%,氧化钼5.0%。
[0061] 催化剂B的物化性质如表2所示。催化剂B的评价结果及产品性质如表3所示。
[0062] 实施例3
[0063] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为60,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入2.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度90℃条件下恒温搅拌3h,过滤、洗涤、120℃干燥4h;
[0064] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0065] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度800℃,压力0.5Mpa,处理2h,获得脱铝改性H-ZSM-22分子筛;
[0066] 4)称取50.0g所得脱铝改性H-ZSM-22分子筛、16.7g无定形硅铝、7.7g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入0.7g助挤剂田腈粉混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
[0067] 5)将所得条形物放入烘箱中于110℃干燥10h,600℃焙烧4h后冷却至室温,获得催化剂载体;
[0068] 6)将5.7g钼酸铵和16.2g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0069] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化12h,置于110℃烘箱中干燥12h,600℃焙烧4h后冷却至室温,得到催化剂C。
[0070] 催化剂C中各组分的质量百分比组成为:改性H-ZSM-22分子筛60.0%,无定形硅铝20.0%,氧化铝粘结剂9.2%,田腈粉0.8%,氧化镍5.0%,氧化钼5.0%。
[0071] 催化剂C的物化性质如表2所示。催化剂C的评价结果及产品性质如表3所示。
[0072] 实施例4
[0073] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为80,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入1.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度80℃条件下恒温搅拌4h,过滤、洗涤、120℃干燥4h;
[0074] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0075] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度650℃,压力0.1Mpa,处理3h,获得脱铝改性H-ZSM-22分子筛;
[0076] 4)称取50.0g步骤2)得到的脱铝改性H-ZSM-22分子筛、42.8g无定形硅铝、28.6g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入1.2g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形条形物;
[0077] 5)将所得条形物放入烘箱中于120℃干燥6h,600℃焙烧4h后冷却至室温,获得催化剂载体;
[0078] 6)将23.7g钼酸铵和11.1g硝酸镍混合配制成水溶液,并对其超声波分散1h,,获得活性浸渍液;
[0079] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化24h,置于110℃烘箱中干燥12h,600℃焙烧4h后冷却至室温,得到催化剂D。
[0080] 催化剂D中各组分的质量百分比组成为:改性H-ZSM-22分子筛35.0%,无定形硅铝30.0%,氧化铝粘结剂20%,田腈粉0.8%,氧化镍2.0%,氧化钼12.2%。
[0081] 催化剂D的物化性质如表2所示。催化剂D的评价结果及产品性质如表3所示。
[0082] 实施例5
[0083] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为90,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入1.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度80℃条件下恒温搅拌4h,过滤、洗涤、120℃干燥4h;
[0084] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0085] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度650℃,压力0.1Mpa,处理3h,获得脱铝改性H-ZSM-22分子筛;
[0086] 4)称取50.0g步骤2)得到的脱铝改性H-ZSM-22分子筛、100g无定形硅铝、60.5g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入2.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出圆柱形条形物;
[0087] 5)将所得条形物放入烘箱中于110℃干燥10h,500℃焙烧8h后冷却至室温,获得催化剂载体;
[0088] 6)将34.0g钼酸铵和7.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0089] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化12h,置于100℃烘箱中干燥14h,500℃焙烧8h后冷却至室温,得到催化剂E。
[0090] 催化剂E中各组分的质量百分比组成为:改性H-ZSM-22分子筛20.0%,无定形硅铝40.0%,氧化铝粘结剂24.2%,田腈粉0.8%,氧化镍5.0%,氧化钼10.0%。
[0091] 催化剂E的物化性质如表2所示。催化剂E的评价结果及产品性质如表3所示。
[0092] 实施例6
[0093] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为100,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入2.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度90℃条件下恒温搅拌3h,过滤、洗涤、120℃干燥4h;
[0094] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0095] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度800℃,压力0.5Mpa,处理2h,获得脱铝改性H-ZSM-22分子筛;
[0096] 4)称取50.0g所得脱铝改性H-ZSM-22分子筛、100.0g无定形硅铝、48.0g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入2.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出四叶草形条形物;
[0097] 5)将所得条形物放入烘箱中于120℃干燥6h,550℃焙烧6h后冷却至室温,获得催化剂载体;
[0098] 6)将51.1g钼酸铵和7.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0099] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化20h,置于120℃烘箱中干燥10h,550℃焙烧6h后冷却至室温,得到催化剂F。
[0100] 催化剂F中各组分的质量百分比组成为:改性H-ZSM-22分子筛20.0%,无定形硅铝40.0%,氧化铝粘结剂19.2%,田腈粉0.8%,氧化镍5.0%,氧化钼15.0%。
[0101] 催化剂F的物化性质如表2所示。催化剂F的评价结果及产品性质如表3所示。
[0102] 实施例7
[0103] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入2.0mol/L的NH4NO3溶液中进行离子交换,在水浴温度90℃条件下恒温搅拌3h,过滤、洗涤、120℃干燥4h;
[0104] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0105] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度800℃,压力0.5Mpa,处理2h,获得脱铝改性H-ZSM-22分子筛;
[0106] 4)称取50.0g所得脱铝改性H-ZSM-22分子筛、41.3g无定形硅铝、18.8g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入1.0g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出四叶草形条形物,
[0107] 5)将所得条形物放入烘箱中于100℃干燥10h,500℃焙烧8h后冷却至室温,获得催化剂载体;
[0108] 6)将17.0g钼酸铵和5.8g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0109] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化24h,置于100℃烘箱中干燥14h,500℃焙烧8h后冷却至室温,得到催化剂G。
[0110] 催化剂G中各组分的质量百分比组成为:改性H-ZSM-22分子筛40.0%,无定形硅铝33.0%,氧化铝粘结剂15%,田腈粉0.8%,氧化镍1.2%,氧化钼10.0%。
[0111] 催化剂G的物化性质如表2所示。催化剂G的评价结果及产品性质如表3所示。
[0112] 实施例8
[0113] 1)取200gK-ZSM-22分子筛,K-ZSM-22分子筛中SiO2/Al2O3的摩尔比为30,按K-ZSM-22分子筛与NH4NO3溶液的重量比1:10,加入1.5mol/L的NH4NO3溶液中进行离子交换,在水浴温度100℃条件下恒温搅拌2h,过滤、洗涤、120℃干燥4h;
[0114] 2)重复步骤1)的操作3次后,再于550℃焙烧6h,获得H-ZSM-22分子筛;
[0115] 3)将所得H-ZSM-22分子筛置于高温焙烧炉中,通入水蒸气,水热处理温度500℃,压力0.2Mpa,处理4h,获得脱铝改性H-ZSM-22分子筛;
[0116] 4)称取50.0g所得脱铝改性H-ZSM-22分子筛、18.2g无定形硅铝、7.5g氧化铝粘结剂,加入质量百分比浓度5.0%的稀硝酸溶液调制,并加入0.7g助挤剂田腈粉后混合均匀,混捏、碾压成团,放入挤条机中挤出三叶草形成条形物;
[0117] 5)将所得条形物放入烘箱中于100℃干燥12h,600℃焙烧4h后冷却至室温,获得催化剂载体;
[0118] 6)将18.6g钼酸铵和4.3g硝酸镍混合配制成水溶液,并对其超声波分散1h,获得活性浸渍液;
[0119] 7)用所得活性浸渍液对所得催化剂载体进行饱和浸渍处理,使其中的活性组份负载到载体上,再于室温下老化12h,置于120℃烘箱中干燥10h,600℃焙烧4h后冷却至室温,得到催化剂H。
[0120] 催化剂H中各组分的质量百分比组成为:改性H-ZSM-22分子筛55.0%,无定形硅铝20.0%,氧化铝粘结剂8.2%,田腈粉0.8%,氧化镍1.0%,氧化钼15.0%。
[0121] 催化剂H的物化性质如表2所示。催化剂H的评价结果及产品性质如表3所示。
[0122] 表2催化剂的物化性质
[0123]
[0124]
[0125] 表3催化剂的评价结果及产品的性质