一种馏分油两相加氢反应器和加氢工艺方法转让专利

申请号 : CN201310035980.4

文献号 : CN103965953B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 马守涛田然张志华王刚孙发民张瑞芹于春梅孙生波冯秀芳李凤铉朱金玲

申请人 : 中国石油天然气股份有限公司

摘要 :

本发明涉及一种馏分油两相加氢反应器和加氢工艺方法;反应器上部空间尺寸比下部催化剂床层部分大,包括2~4个催化剂床层,在至少一个相邻催化剂床层之间设置气体补充和汽提含杂质液相物流的内构件,该内构件包括气液接触构件及汽提构件,气液接触构件和汽提构件设置在一起,内构件包括隔离板和排气管道,隔离板设有多个降液通孔;隔离板与多个排气管道相连接,排气管道垂直设置在隔离板上面,排气管道顶部与上一催化剂床层下部相接触;本反应器有效地补充液相原料中的氢气,在催化剂床层形成气液逆流,增大氢气浓度,脱除了反应生成的硫化氢和氨,减少H2S和NH3对下一步加氢反应的抑制作用,提高了加氢效率,提高了原料适应性,降低设备投资和操作成本。

权利要求 :

1.一种馏分油两相加氢反应器,包括至少两个催化剂床层,其特征在于:反应器上部空间尺寸比下部催化剂床层部分大,包括2~4个催化剂床层,在至少一个相邻催化剂床层之间设置气体补充和汽提含杂质液相物流的内构件,该内构件包括气液接触构件及汽提构件,气液接触构件和汽提构件设置在一起,内构件包括隔离板和排气管道,隔离板设有多个降液通孔;隔离板与多个排气管道相连接,排气管道垂直设置在隔离板上面,排气管道顶部与上一催化剂床层下部相接触。

2.一种液相加氢工艺方法,其特征在于:使用权利要求1所述的加氢反应器,过程包括:经加氢处理后的液相产物的一部分循环与新鲜原料混合为液相物料,溶氢之后形成饱和液相物流从上部进入反应器,在反应器上部的加氢催化剂床层进行加氢反应,反应后流出物通过内构件与氢气混合,补充液相物料中溶解的氢气量,补充了溶解氢的液相物料进入下一加氢催化剂床层;气相氢通过汽提构件的排气管道进入催化剂床层,在催化剂床层形成气液逆流,使催化剂床层的氢气浓度提高,氢气将反应生成的硫化氢和氨杂质汽提出来;

循环的液相产物与新鲜原料的体积比为0.1:1~10:1,每个催化剂床层间补充的氢气量按氢油体积比为0.5:1~10:1;

液相物料通过催化剂床层的反应条件为:反应温度为130~450℃,反应压力为1~-1

20MPa,液时体积空速为0.5~15h 。

说明书 :

一种馏分油两相加氢反应器和加氢工艺方法

技术领域

[0001] 本发明涉及一种馏分油两相加氢反应器及液相加氢工艺方法,具体地说涉及一种产物循环的液相反应器,特别是烃类液相物料中含有溶解氢气的产物循环液相加氢处理的反应器及使用该反应器的液相加氢工艺方法。

背景技术

[0002] 随着人们的环保意识不断增强,很多国家通过环境立法来限制柴油的硫含量,使其达到很低的水平(10~15μg/g),以降低有害气体的排放,改善空气质量。美国在2006年使柴油中的硫含量降低到15μg/g。德国在2003年一月份将硫含量降低到10μg/g。欧盟其他国家和日本在2008年将硫含量降低到10μg/g。我国城市车用柴油国家标准GB19147-2009参照欧洲Ⅲ类标准制定,其硫含量要求小于350μg/g。国家环保部发布的第五阶段车用汽柴油排放指标中柴油硫含量要求小于10μg/g。
[0003] 国际市场柴油需求在不断增长,然而,高品位的原料油供应却在减少。如何利用低品位的原料油来生产超低硫柴油以满足日益增长的需求,是炼油厂不得不面对的一个很大挑战。为应对挑战,一方面需要解决关键技术难题,新建加氢装置进行柴油的深度加氢脱硫;另外一方面又需要降低风险和重复投资以保障经济效益。在传统的固定床加氢工艺中,氢气需要从气相传递到液相,然后溶解氢和含硫化合物在催化剂的活性中心发生反应,从而达到脱硫目的。在此过程中,所需要的氢气量远远大于加氢反应所消耗的氢气量。这是因为,一方面,加氢反应是一个强放热反应,为了控制反应温度,需要大量的氢气和原料油通过催化剂床层带走反应热;另外一方面,在气-液-固三相的反应中,维持较高的氢分压有利于加氢反应,抑制焦炭生成,延长催化剂寿命。此外,没有参加反应的氢气通过循环氢压缩机将其提高压力后重新输送到反应器中参与反应。循环氢压缩机作为加氢过程的关键设备,投资和操作费用较高。为了取消循环氢和循环氢压缩机,降低装置的投资成本,液相加氢技术被提了出来,在液相循环加氢工艺中,氢气和原料油先预混合,使氢气溶解在原料油中,再进入反应器进行反应,反应过程中所需氢气完全来自溶解的氢,而无需额外补入冷氢。液相循环加氢工艺具有反应器比较小,投资成本低,反应温度容易控制等优点,但是,液相循环加氢也存在一个问题,即为了满足加氢过程中所需要的氢气量,需要使用大量的循环油或额外加入溶剂来溶解氢气,致使加氢效率降低。
[0004] 在常规的固定床加氢工艺过程中,为了脱除原料中的硫、氮、氧、金属等杂质或减小原料油分子的大小,需要进行催化加氢反应。为了控制催化剂床层的反应温度和避免催化剂积炭失活,通常采用较大的氢油体积比,在加氢反应完成后必然有大量的氢气富余。这些富余的氢气通常经循环氢压缩机增压后与新氢混合继续作为反应的氢气进料。这个工艺过程也可以定义为气相循环固定床加氢工艺。该工艺循环氢压缩机的投资占整个加氢装置成本的比例较高,氢气换热系统能耗较大,如果能够将加氢处理过程中的氢气流量减小并省去氢气循环系统和循环氢压缩机,可以为企业节省投资,为清洁燃料生产降低成本。
[0005] 含有简单硫化物的原料在固定床加氢反应器中加氢脱硫的反应速率除了与有机硫化物的浓度有关,还受催化剂的润湿状况、反应器系统中的有机氮化物和H2S浓度等因素的影响。催化剂的润湿因子是对在加氢反应条件下催化剂表面被液体反应物所浸润程度的一种度量。催化剂的浸润程度越高、催化剂的润湿因子就越高,也就是说催化剂的有效利用率越高。在催化剂等因素确定的条件下,影响催化剂润湿因子的主要因素是反应器中液体的流速,以及气体和液体流速的比。一般认为,液体流速增加增强催化剂润湿效果,而常规加氢工艺多采用远远超过反应所需的大氢油比,从而降低了催化剂的润湿效果,对润湿因子有不利的影响。此外,炼油过程中氢气循环环节的投资占整个过程成本的比例较大。
[0006] 有机氮化物是加氢催化剂的毒物,对加氢脱氮、加氢脱硫和加氢脱芳烃反应有明显的抑制作用。这种抑制作用主要是由于某些氮化物和大多数氮化物的中间反应产物与催化剂的加氢反应活性中心具有非常强的吸附能,从竞争吸附的角度抑制了其他加氢反应的进行。而通过加氢产物循环将大大稀释原料中的杂质含量,有利于发挥催化剂的性能。
[0007] 美国专利US20060144756A1公开了一种两相加氢控制系统方法和装置。在连续的液相加氢过程中,取消了循环氢,加氢反应所需要的氢全都来自于液相溶解的氢,不需要额外的氢气。但其需要使用氢气溶解度较大的溶剂或稀释剂来溶解氢气,影响后续的加氢效率。
[0008] US6213835、US6428686、CN200680018017.3等公开了一种预先溶解氢气的加氢工艺,通过控制液体进料中的氢气量控制反应器中的液体量或气压。但其没有完全解决加氢精制反应过程中产生的H2S、NH3等有害杂质脱除的问题,导致其不断在反应器内累积,大大降低了反应效率,也无法有效处理硫、氮含量较高的原料,上述专利也没有公开反应器的具体结构。
[0009] 中国专利CN86108622公开了一种重整生成油的加氢精制工艺,氢油体积比为200:1~1000:1;中国专利CN93101935.4公开了一种劣质原料油一段加氢裂化工艺方法,氢油体积比1300:1~1500:1;中国专利CN94102955.7公开了一种催化裂解汽油加氢精制方法,氢油体积比150:1~500:1;中国专利CN96109792.2公开了一种串联加氢工艺生产高质量凡士林的方法,氢油体积比300:1~1400:1;中国专利CN96120125.8公开了一种由环烷基直馏馏分直接加氢生产白油的方法,氢油体积比500:1~1500:1。
[0010] 这些专利的特点是具有较高的氢油体积比,因此必须具有氢气循环环节和循环氢压缩机。

发明内容

[0011] 本发明的目的是提供馏分油两相加氢反应器和加氢工艺方法,反应器采用适宜的结构形式,有效地补充液相原料中的氢气,同时脱除进入催化剂床层的硫化氢和氨,避免有害杂质对催化反应的不利影响,提高加氢效率和原料适应性。
[0012] 本发明所述的加氢反应器包括反应器筒体和催化剂床层、反应器入口和反应器出口,特征在于:加氢反应器上部空间尺寸比下部催化剂床层部分略大,包括至少两个催化剂床层,在至少一个相邻催化剂床层之间设置气体补充和汽提含杂质液相物流的内构件,该内构件包括气液接触及汽提构件,气液接触构件和汽提构件设置在一起,内构件包括隔离板和排气管道,隔离板具有降液通孔;隔离板与排气管道相连接,排气管道设置在隔离板上面,排气管道顶部与上一催化剂床层下部相接触。
[0013] 本发明所述的加氢反应器中,反应器上部空间尺寸比下部催化剂床层部分略大,避免上部反应器液泛,堵塞顶部气体管线。
[0014] 本发明所述的加氢反应器中,内构件包括隔离板和排气管道,隔离板具有降液通孔,气液两相通过降液通孔进行接触。
[0015] 本发明所述的内构件中,降液通孔和排气管道设置若干个,排气管道设置在隔离板上面。
[0016] 本发明所述的加氢反应器中,反应器顶部设置排气系统,反应器设置压力和液位监测系统,排气系统和压力液位监测系统联锁,通过控制排出反应器的气体量和液体量控制反应器的压力和液位。
[0017] 本发明所述的加氢反应器中,在反应器顶部和/或反应器底部也可以设置上述气体补充和汽提含杂质液相物流的内构件。
[0018] 本发明所述的加氢反应器的关键在于采用结构适宜的汽提构件(反应器其它结构可以采用本领域常规结构),使含有反应后杂质的气体不再经过下部催化剂床层而直接排出反应器,减少了反应后杂质对下一步反应的影响。
[0019] 本发明所述的加氢反应器为烃类原料液相加氢反应器,其中反应后的液相产物部分循环操作,催化剂床层使用烃类加氢催化剂。
[0020] 本发明液相加氢工艺方法使用本发明反应器,过程包括:经加氢处理后的液相产物的一部分循环与新鲜原料混合为液相物料,溶氢之后形成饱和液相物流从上部进入反应器,在反应器上部的加氢催化剂床层进行加氢反应,反应后流出物通过内构件与氢气混合,补充液相物料中溶解的氢气量,补充了溶解氢的液相物料进入下一加氢催化剂床层;气相氢通过汽提构件的排气管道进入催化剂床层,在催化剂床层形成气液逆流,增大催化剂床层的氢气浓度,提高反应效率,同时氢气将反应生成的硫化氢和氨杂质汽提出来。
[0021] 本发明上述液相加氢工艺方法中,循环的液相产物与新鲜原料的体积比为0.1:1~10:1,催化剂床层设置2~4个,催化剂床层间补充的氢气量按氢油体积比为
0.5:1~10:1。
[0022] 本发明上述液相加氢工艺方法中,液相物料通过催化剂床层的反应条件可以根据原料性质、产品质量要求由本领域技术人员具体确定,一般为:反应温度为130~450℃,反-1应压力为1~20MPa,液时体积空速为0.5~15h 。
[0023] 本发明产物循环的加氢处理方法中,可以根据需要将两个或多个反应器串联(一个反应器的流出物进入下一个反应器)或并联(物料分别进入不同的反应器)使用。
[0024] 本发明上述液相加氢工艺方法中,加氢催化剂可以根据反应的需要使用适宜的加氢催化剂,实现不同的加氢目的。如加氢精制催化剂、加氢改质催化剂、加氢处理催化剂、加氢裂化催化剂等,各种催化剂可以选择商品催化剂,也可以根据现有技术制备。
[0025] 本发明液相加氢工艺方法使用上述反应器,可以有效地补充液相原料中的氢气,在催化剂床层形成气液逆流,增大氢气浓度,同时脱除了反应生成的硫化氢和氨,能够减少H2S和NH3对下一步加氢反应的抑制作用,提高加氢效率,提高了原料适应性。该方法不需要循环氢气和循环氢压缩机,能够降低设备投资和操作成本。
[0026] 本发明主要用于劣质柴油组分的深度脱硫、脱氮、脱芳烃,生产清洁柴油,也可用于石脑油、喷气燃料、润滑油、石蜡等加氢精制生产优质油品,以及用于蜡油原料缓和加氢裂化生产优质清洁喷气燃料、柴油工艺过程。
[0027] 本发明加氢反应过程中,使用的氢气量为在化学氢耗量基础上增加略多于系统的溶解氢量,反应部分不设置氢气循环系统,依靠液相产品大量循环时携带进反应系统的溶解氢以及氢气补充溶解的氢来提供新鲜原料进行加氢反应所需要的氢气,由于加氢产物的循环使用,仍可以保持催化剂的活性稳定性。其优点是可以消除催化剂的润湿因子影响和循环氢中H2S及NH3的影响;由于循环油的比热容大,可以降低反应器的温升,提高催化剂的利用效率。

附图说明

[0028] 图1为本发明馏分油两相加氢反应器示意图。
[0029] 图2为本发明馏分油两相加氢反应器内构件示意图。
[0030] 图3为本发明馏分油两相加氢反应器内构件俯视图。
[0031] 图中:1-反应器入口,2-氢气入口,3-第一催化剂床层,4-第二催化剂床层,5-气液接触和汽提构件,6-排气管道,7-降液通孔,8-反应器排气系统,9-反应器出口。

具体实施方式

[0032] 下面结合附图进一步说明本发明反应器的结构及加氢工艺的操作方法。
[0033] 按照图1和图2所示,本发明一种具体反应器结构,反应器入口1、氢气入口2、反应器出口9,反应器上部空间尺寸比下部催化剂床层部分大,采用两个催化剂床层:第一催化剂床层3和第二催化剂床层4。在两个催化剂床层之间设置气体补充和汽提含杂质液相物流的内构件,该内构件包括隔离板5和排气管道6,隔离板5具有降液通孔7;隔离板5与排气管道6相连接,排气管道6设置在隔离板5上面,排气管道6顶部与上一催化剂床层下部相接触。
[0034] 经加氢处理后的液相产物的一部分循环与新鲜原料混合为液相物料,溶氢之后形成饱和液相物流从上部进入反应器,经过第一催化剂床层进行加氢反应,反应后流出物通过内构件与氢气混合,补充液相物料中溶解的氢气量,补充了溶解氢的液相物料进入第二催化剂床层;气相氢通过汽提构件的排气管道进入第一催化剂床层,在第一催化剂床层形成气液逆流,同时氢气将反应生成的硫化氢和氨杂质汽提出来。第二催化剂床层反应流出物经排出反应器后部分循环部分进入产品罐。
[0035] 下面的实施例将对本发明作进一步说明。
[0036] 实验使用催化剂为工业应用的加氢处理和加氢裂化催化剂,为中国石油石油化工研究院研制生产的PHF-101柴油加氢脱硫催化剂、PHT-01重油加氢预处理催化剂、PHC-03加氢裂化催化剂,其理化性质指标见表1。
[0037] 实施例1
[0038] 混合柴油与氢气充分混合溶氢后,进入加氢反应器,反应条件为:氢分压6.0MPa、反应温度311℃,催化剂床层间补充的氢气量按氢油体积比为1:1。液相产物一部分经循环泵作为循环油与新鲜原料混合溶氢后进入反应器,另一部分液相产物以产品的形式进入产品罐。原料油性质及产品性质列于表2。
[0039] 由表2可见,采用该工艺技术可以使柴油中的硫、氮含量明显降低。
[0040] 实施例2
[0041] 重质蜡油原料与氢气充分混合溶氢后,进入加氢反应器,反应条件为:氢分压12.0MPa、反应温度370℃,催化剂床层间补充的氢气量按氢油体积比为3:1。液相产物一部分经循环泵作为循环油与新鲜原料混合溶氢后进入反应器,另一部分液相产物以产品的形式进入产品罐。原料油性质及产品性质列于表3。
[0042] 由表3可见,以含10wt.%焦蜡的混合蜡油为原料,采用该工艺技术可以使重质蜡油中的硫、氮杂质含量明显降低。
[0043] 实施例3
[0044] 经实例2处理后的蜡油原料与氢气充分混合溶氢后,进入加氢反应器,反应条件为:氢分压12.0MPa、反应温度385℃,催化剂床层间补充的氢气量按氢油体积比为7:1。液相产物一部分经循环泵作为循环油与新鲜原料混合溶氢后进入反应器,另一部分液相产物以产品的形式进入产品罐,然后进行实沸点切割。原料油性质列于表4,产品分布及性质见表5。
[0045] 由表5可见,含10wt.%焦蜡的混合蜡油为原料,控制>370℃尾油收率约20wt.%的工艺条件下,采用该工艺技术可以生产优质喷气燃料和清洁柴油。
[0046] 比较例1
[0047] 与实施例1相比,处理相同性质的混合柴油,反应器两个催化剂床层之间无内构件,所有的氢气全部从反应器入口进入反应器,其它工艺条件按实施例1操作条件,精制柴油性质见表6。由表6可以看出,本发明反应器的反应温度与常规反应器的温度相比低15℃,而产品性质较优。
[0048] 表1催化剂的理化性质指标
[0049]催化剂编号 PHF-101 PHT-01 PHC-03
金属组成
WO3 25.1 --- 25.1
MoO3 --- 20~30 ---
NiO 3.2 3~10 5.3
孔容,mL/g ≮0.37 ≮0.33 ≮0.35
比表面积,m2/g ≮150 ≮160 ≮190
形状 三叶草 三叶草 圆柱条
[0050] 表2实施例1原料油性质及试验结果
[0051]
[0052] 表3实施例2原料油性质及试验结果
[0053]
[0054] 表4实施例3原料油性质
[0055]
[0056] 表5实施例3实验结果
[0057]
[0058] 表6对比例1原料油性质及试验结果
[0059]