对表面进行光催化活性涂覆的方法转让专利

申请号 : CN201280046018.4

文献号 : CN104039449B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J-O·克利曼H·古茨曼T·克拉森F·格特纳

申请人 : 林德股份公司

摘要 :

本发明涉及对表面进行光催化活性涂覆的方法,以及根据该方法以光催化活性的方式涂覆的物件(1)。通过以下方法实现提供特别是金属表面的光催化活性涂覆的方法的目的(通过该方法在不会不利地影响该层的光催化活性的情况下产生永久稳定的涂层):在该方法中,准备具有表面的基底物件,将金属粘合增强层施用到基底物件的表面上,将一种或多种金属氧化物的光催化活性层施用到粘合增强层上,其中金属粘合增强层和基底物件的表面由不同材料组成并且选择粘合增强层以使得所述粘合增强层不被光催化活性层氧化或还原。

权利要求 :

1.对表面进行光催化活性涂覆的方法,其中:

i)预备具有表面的基底物件(5),

ii)向所述基底物件(5)的表面施用金属粘合增强层(7),iii)将由一种或多种金属氧化物组成的光催化活性层(9)施用到所述粘合增强层(7)上,其中,所述金属粘合增强层(7)和所述基底物件(5)的表面由不同材料组成;

所述粘合增强层(7)由金属形成,该金属对应于形成光催化活性层(9)的金属氧化物的金属组分;以及采用冷气体喷涂将所述光催化活性层(9)施用到金属表面(3)上。

2.根据权利要求1的方法,特征在于光催化活性层(9)由TiO2、WO3、SrTiO3、SnO2、NaTaO、ZnO、α-Fe2O3、BiVO4、TaON、InTaO4和InNbO4构成的组中的元素形成。

3.根据权利要求2的方法,特征在于光催化活性层(9)由二氧化钛形成。

4.根据权利要求3的方法,特征在于光催化活性层(9)由锐钛矿形成。

5.根据权利要求1的方法,特征在于粘合增强层(7)由选自由钛、锌、锡、钼、钨、钽、镍和/或铬组成的组中的元素形成。

6.根据权利要求1到5任一项的方法,特征在于粘合增强层(7)由钛形成。

7.根据权利要求1到5任一项的方法,特征在于采用热喷涂工艺或者采用电镀工艺将粘合增强层(7)施用到金属表面(3)上,所述热喷涂工艺选自:冷气体喷涂、HVOF喷涂、等离子体喷涂、悬浮液喷涂。

8.根据权利要求1到5任一项的方法,特征在于基底物件(5)的金属表面(3)由高级钢、铝或铜形成。

9.根据权利要求1到5任一项的方法,特征在于基底物件(5)选自如下系列:卫生物件、厨房物件、医疗物件、把柄、灯光开关、门把手、食品带、饮料充注装置、控制元件、键盘或床架。

10.根据权利要求1到5任一项的方法,特征在于,在冷气体喷涂的情况下,喷涂材料具有横截面在5μm到150μm之间粒径。

11.根据权利要求1到5任一项的方法,特征在于,在冷气体喷涂的情况下,压力为20bar到100bar。

12.根据权利要求1到5任一项的方法,特征在于,在冷气体喷涂的情况下,温度为200℃到1200℃。

13.根据权利要求7的方法,特征在于,在冷气体喷涂的情况下,喷涂材料具有横截面在

5μm到150μm之间粒径。

14.根据权利要求7的方法,特征在于,在冷气体喷涂的情况下,压力为20bar到100bar。

15.根据权利要求7的方法,特征在于,在冷气体喷涂的情况下,温度为200℃到1200℃。

16.对表面进行光催化活性涂覆的方法,其中:

i)预备具有表面的基底物件(5),

ii)向所述基底物件(5)的表面施用金属粘合增强层(7),iii)将由SiC和/或Ta3N5组成的光催化活性层(9)施用到所述粘合增强层(7)上,其中,所述金属粘合增强层(7)和所述基底物件(5)的表面由不同材料组成;

所述粘合增强层(7)由金属形成,该金属对应于形成光催化活性层(9)的金属组分;以及采用冷气体喷涂将所述光催化活性层(9)施用到金属表面(3)上。

17.光催化活性涂覆的物件(1),特征在于其通过根据权利要求1到12和16任一项的方法获得。

说明书 :

对表面进行光催化活性涂覆的方法

[0001] 本发明涉及对表面进行光催化活性涂覆的方法,尤其是卫生物件和厨房物件的金属表面,由金属组成或具有金属表面的医疗设备的金属表面,以及涉及可以通过这种方法生产的物件。现有技术
[0002] 光催化涂层可以用于水净化、空气净化和制氢以及自清洁表面和自消毒表面。在水净化中,尤其是采用其它方式移除具有困难的高度可溶性有机废物,可以采用光催化被氧化或还原。在空气净化的情况下,汽车尾气例如一氧化氮可以被氧化成硝酸盐,并且醛类和酮类在各自情况下可以被氧化成CO2并且由此变成无害的。
[0003] 在医院、卫生设施和餐厅厨房中表面消毒尤其被看重并且有意义,
[0004] 公共厕所和盥洗池中的细菌污染和难闻气味仍然是一个问题。汽车协会做的实验反复证实了在高速公路服务区的绝大部分公共厕所里具有对人体健康造成有害影响的病菌和细菌。尤其是在门把手、马桶座和盥洗池发现存在各种微生物。
[0005] 已经发现的细菌的目录通常非常长并且让人担忧。那些每年反复出现在检测者名次表中的细菌包括由于没有充分清洁而出现的粪源病菌。此外,重复发现引起各种肠道和蠕虫疾病的病原体以及真菌。在极少的情况下,可发生甲型肝炎、衣原体或性传染疾病。
[0006] 现有的消毒方法只能以非常高的人力和时间成本进行,并且尽管如此仍然是不完全的。在公共厕所墙壁上的清洁方案用于提供一种安全感,然而通常不能掩盖实际的清洁程度。这是因为在许多情况下,在负责的清洁人员中存在巨大的不确定性。举例来说,如果采用抹布清洁不同的表面,细菌只是被携带到更远的地方,而不是被清除。在游泳池、健身房或桑拿房的卫生设施中,发现全部类型的细菌都成倍增长,因为这里的潮湿环境帮助它们扩散。
[0007] 此外,考虑到成本,公共卫生设施通常具有非常难以清洁的金属表面。水垢堆积在能够滋生菌落的界面上,比陶瓷表面更加难以清除。直到现在还在使用没有涂层的金属表面,因为传统的溶胶-凝胶涂层不抗磨并且在较长时期后有机粘结剂降解。
[0008] 厨房物件例如工业厨房,尤其是餐厅厨房的操作面、搁架或抽油烟机罩,以及医疗物件例如手术台或病床具有金属表面,因为它们能够更好地对入侵细菌进行消毒。因此,这些厨房物件和医疗设备通常规定进行定期的清洁和卫生措施。规定的消毒程序的目的是减少细菌,例如至特定数量级的活微生物。然而,经验显示清洁和卫生措施并不总是能够可靠地执行。没有正确消毒的后果导致发生污染,其中细菌、真菌和病毒在普遍存在的条件下能够快速地传播。在消毒循环之间还会发生无菌的间隙,因为化学消毒仅在短时间内有效。
[0009] 医院里的医院内传染也是一个问题。尤其是,由大多数抗生素对其不再有效的多耐药病原体引起的感染对医院提出了新的挑战。
[0010] DE 10 2004 038 795描述了通过冷气体喷涂在塑料上产生光催化活性表面。光催化活性氧化物材料的颗粒通过运载气体被加速,在碰撞时完全或部分渗入聚合物表面并且由于它们的高动能形成物理上牢固粘合的聚合物/氧化物结合。该申请仅涉及聚合物层。必须注意到二氧化钛的催化效果也会引起塑料降解。
[0011] DE 10 2005 053 263描述了通过冷气体喷涂在金属上产生光催化活性表面。二氧化钛陶瓷和金属粉末的混合物被喷涂到金属表面上。采用金属混合物喷涂硬陶瓷具有如下优点:即总是可以获得在碰撞时能够变形的部件。金属部分在碰撞时变形并且由此形成更厚的层。然而,该公开的文件仅描述了通过光催化活性二氧化钛降解有机物质,而没有杀死细菌或病毒。
[0012] DE 10 2009 043 319 A1描述了采用冷气体喷涂技术对金属表面,尤其是卫生物件、厨房物件和医疗设备进行光催化活性涂覆的方法以及采用这种方法生产的物件。根据这种方法,同样像根据现有技术已知的其它方法,光催化活性层被直接施用到金属表面上,从而这两种物质彼此直接接触。
[0013] 描述的光催化活性涂层确保了涂覆表面上细菌的降解。在光催化作用中,如果光子的能量远大于涂层的能带隙,那么光在光催化活性层中产生电子空穴对。随后,在光催化活性层的表面上,电子或空穴形成自由基,该自由基引起有机物质降解即细菌降解。
[0014] 在根据现有技术的涂层的情况下,然而发现在长期使用中,在通常对天气和化学物质有抵抗性的基底材料,例如高级钢、铜或铝的情况下,它们的光催化活性同样引起分解3+ 2+
现象。例如,已经发现二氧化钛可将钢中存在的Fe 离子还原为水可溶的Fe 离子。基底材料和涂层间的粘结区域可因此被腐蚀,从而涂层变得不稳定并且脱落。在基底材料为铜(贵金属)和铝时已经发现了类似的情形。尤其令人惊奇的是这些材料在它们的表面上形成相对稳定的氧化物并且由此难以氧化。尽管如此,光催化活性材料明确地能够侵袭氧化铝和氧化铜以及由氧化镍和/或氧化铜制成的高级钢涂层。
[0015] 从现有技术出发,本发明的目的因此是提供一种光催化活性涂覆金属表面的方法,采用这种方法能够生成永久稳定的涂层,不会对涂层的光催化活性产生不利影响。

发明内容

[0016] 本目的通过一种对表面进行光催化活性涂覆的方法而实现,在该方法中:
[0017] i)准备具有表面的基底物件,
[0018] ii)将金属粘合增强层施用到基底物件的表面,
[0019] iii)将由一种或多种金属氧化物组成的光催化活性层施用到粘合增强层,[0020] 其中金属粘合增强层和基底物件的表面由不同的材料组成并且选择粘合增强层使得其不被光催化活性层氧化或还原。
[0021] 基底物件的表面优选地为金属表面,其中基底物件除了待涂覆的表面之外还可以包括其它材料,例如塑料或陶瓷。根据本发明由此可以想到的是,例如基底物件基本上由塑料形成但是在其表面上具有金属涂层。可以涂覆任何表面。然而优选地涂覆金属表面。金属表面优选地由铝、铜、钢,优选高级钢或这些材料的合金组成。在进一步优选的实施方式中,基底物件的金属表面由高级钢、铝或铜形成。高级钢、铝和铜是容易感染细菌的物件的最常用金属材料。然而,还可以想到其它金属作为表面材料。
[0022] 光催化活性材料对本领域技术人员来说是公知的。这些通常为光半导体,如果光子的能量远大于价电子和导电带(光电效应)之间的能带隙,当暴露于光时其产生电子空穴对。电子和空穴在光催化材料的表面上扩散并且在那里产生引起有机物质降解的自由基。光催化活性材料优选地选自由TiO2,WO3,SrTiO3,SnO2,SiC,NaTaO,ZnO,α-Fe2O3,BiVO4,TaON,Ta3N5,InTaO4和InNbO4组成的组。特别优选地光催化材料为二氧化钛,尤其是锐钛矿。
[0023] 选择粘合增强层以使得其不被光催化活性材料还原或氧化。粘合增强层的材料优选地选自由钛、锌、锡、镍和/或铬组成的组。钛尤其优选地作为粘合增强层的材料。然而,如果光催化活性材料不是二氧化钛,也可以考虑采用其它材料作为粘合增强层,尤其是与形成光催化活性层的金属氧化物的金属组分相对应的金属。在使用WO3作为光催化活性材料时,除了上述的材料,钨由此也可以被用作粘合增强层的材料;在BiVO4被用作光催化活性材料的情况下,除了上面给出的材料,铋或钒由此也可以被用作粘合增强层的材料。
[0024] 根据一个优选实施方式,采用热喷涂工艺或者采用化学或物理沉积工艺将光催化活性层施用到金属表面上,热喷涂工艺选自由冷气体喷涂、HVOF喷涂、等离子体喷涂、悬浮液喷涂组成的组;沉积工艺选自由溶胶-凝胶工艺、CVD、PVD、溅射组成的组。这里,尤其优选冷气体喷涂,其中进一步优选喷涂材料具有的横截面在5μm到150μm之间的粒径,进行喷涂的压力优选地为20bar到100bar并且在喷涂中气体的温度优选地为200℃到1200℃。
[0025] 根据进一步优选的实施方式,采用选自由冷气体喷涂、HVOF喷涂、等离子体喷涂、悬浮液喷涂组成的组中的热喷涂工艺或者采用电镀工艺将粘合增强层施用到金属表面上。在此也优选冷气体喷涂,其中喷涂材料进一步优选横截面为5μm到150μm之间的粒径,进行喷涂的压力优选地为20bar到100bar并且喷涂过程中气体的温度优选地为200℃到1200℃。
此外,电镀工艺也是有利的。
[0026] 在一个特别优选的实施方式中,基底物件选自卫生物件、厨房物件或医疗物件、把柄、光开关、门把手、食品带、饮料加注装置、控制部件、键盘、床架或灯的组。这些是被细菌感染最严重的物件,因为细菌能够引起巨大的危害-主要是对人体健康产生危害。然而,它们仅仅是全部可能的能够合理使用的基底物件的选择物。
[0027] 本发明另一个方面涉及一种光催化活性涂覆的物件,其能够通过上面描述的工艺获得。该物件包括具有金属表面的基底物件,该金属表面优选地由高级钢、铝或铜形成。在该表面上粘结有粘合增强层并且在其上具有光催化活性层,其中选择粘合增强层以使得其不被光催化活性层氧化或者还原。粘合增强层优选地由钛形成。粘结到粘合增强层上的光催化活性层优选地由二氧化钛组成,尤其优选的是锐钛矿形式。粘合增强层和光催化活性层优选地在彼此之上地设置在金属表面上以使得粘合增强层将光催化活性层与金属表面完全物理地隔开。
[0028] 本发明在下面参照表示实施例的附图进行解释。附图所示:
[0029] 图1为根据本发明的物件的实施例的光催化活性涂覆金属表面的部分剖视图。
[0030] 在图1中示出根据本发明的光催化活性涂覆物件的实施例。物件1包括基底物件5,该基底物件5在所示的实施例中由高级钢形成,但是原则上也可以由铜、铝或包括非金属材料的其它材料形成并且具有金属表面3。在该实施例中,金属表面3也是由高级钢制成。
[0031] 采用热喷涂工艺施用(在该实施例中采用冷气体喷涂技术施用)的由钛制成的粘合增强层7粘合到金属表面3上。最终,由锐钛矿形式的二氧化钛制成的光催化活性层9(其也是采用热喷涂工艺施用并且在该实施例中采用冷气体喷涂技术施用)粘合到粘合增强层7上。
[0032] 施用两个层7,9使得粘合增强层7将光催化活性层9与金属表面3物理地隔离开,由此在基底材料3的金属表面和光催化活性层9之间不会发生化学反应。
[0033] 钛尤其适合用作粘合增强层7,因为其形成由二氧化钛制成的稳定表面层,反过来二氧化钛本身也是非常好的光催化活性物质并且由此提高了光催化活性层9的光催化活性。实施例
[0034] 涂层的化学稳定性决定性地取决于基底材料。在实地测试(field testing)以及DCA反应器(二氯乙酸水溶液)中不同基底材料自身具有显著的差别。
[0035] 在钛基底上的TiO2层具有最好的耐受性。在DCA分解的情况下,全部的在铜基底上的TiO2层并且尤其是暴露于气候的钢基底上的层都被强烈地侵袭并且剥落。在实地测试中,仅在TiO2涂覆的基底由铝、铜和高级钢制成的情况下才会发生降解现象,这表明在光催化和基底材料之间发生化学相互作用。
[0036] 铝作为非贵金属(-1.66V vs.NHE)同样永久涂覆有由Al2O3制成的氧化物层。然而,随着气候的影响,在一些区域冷气体喷涂的样本显示具有腐蚀裂纹,这即使在初始基底进行了680天实地测试之后仍然是不可见的。
[0037] 与铝和钛不同,铜在表面上不形成耐腐蚀的氧化物陶瓷层。铜是耐腐蚀的,因为在有水时其在表面上形成作为中间产物的氧化亚铜(I)Cu2O层(红色)。该层必须被电子和离子穿透以允许进一步的腐蚀,由此像其它钝化层一样极大程度地减缓了腐蚀进一步的发展。氧化铜(II)CuO是黑色的。开始,在TiO2的影响下,形成黑红色氧化物(混合物)以及微绿色覆盖物,然而该微绿色覆盖物很快再次消失并且生成黑色氧化物,即CuO。在DCA装置中TiO2涂层的剥落可以参照DCA反应进行解释:在有氧溶解在水中时,Cu2O层不再稳定,而是被氧化成CuO。在DCA分解中在铜基底上的TiO2层的高水平活性可能也是受益于该反应,因为在DCA分解反应方程式中,溶解的氧必须被分解以用于氧化,就像用于铜氧化那样。
[0038] 在钢基底上的TiO2层呈现出最有意思并且同时最不明确的特点。这里使用的1.4301钢为一种奥氏体钢(面心立方体)并且组成为具有<0.08%的碳、18-20%的铬以及
8-10.5%的镍的铁。不锈钢的耐腐蚀性通常基于钢表面上的耐腐蚀氧化铬层。其中Cr3+/Cr2O2-7的标准电极电势=+1.33V vs.NHE,这种氧化铬层在电化学上非常稳定,并且由此应该不会促进观察到的TiO2的剥落。镍(其决定了钢的奥氏体结构)也不能(单独地)致使TiO2涂层的剥落,由于镍溶解在铁基体中,所以仅由于镍氧化导致的剥落不太可能。推测铁基体本身在分层中扮演决定性的角色:当钢基底通过冷气体喷涂被涂覆时在表面上的氧化层非常可能破损,结果使得嵌入的TiO2粒子与铁直接接触。铁还形成由Fe(OH)3组成的钝化层,其中Fe2+/Fe3+的标准电极电势=+0.77,没有氧化铬层显著,但是尽管如此,由于其在水中溶
3+ 2+
解性差而形成水密钝化层。然而,TiO2能够将Fe 还原成Fe 。Fe(OH)2较好的溶解性导致了金属结合的缓慢浸出并且由此导致TiO2粒子的可观察到的剥落。