发光装置转让专利

申请号 : CN201410130805.8

文献号 : CN104103744B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赖俊峰张忠杰

申请人 : 逢甲大学

摘要 :

本发明公开了一种发光装置,包括:一光源本体、一导线架、一LED晶粒、一齐纳二极管、一混体、一三维胶体光子晶体薄膜。导线架置于光源本体底部、LED晶粒置于导线架上方、混体置于光源本体内部、三维胶体光子晶体薄膜置于光源本体的表面、至少一导线与LED晶粒及齐纳二极管作电性连接。

权利要求 :

1.一种发光装置,其特征在于包括:

一光源本体;

一导线架,置于光源本体底部;

一LED晶粒,置于导线架上方;

一混体,置于光源本体内部;以及

一三维胶体光子晶体薄膜,粒子堆栈结构方式为体心立方式、面心立方式、简单立方式的晶体结构,而粒子与粒子间的排列可为四角或六角的紧密式或松散式晶格结构,置于光源本体的表面;

其中调整三维胶体光子晶体薄膜粒子的紧密度与堆栈排列方式,将白光通过的光线波段提升转换为另一个范围的光线波段,以调变白光的色温与演色性。

2.如权利要求1所述的发光装置,其特征在于LED晶粒为蓝色LED、红色LED、绿色LED或紫外光LED。

3.如权利要求1所述的发光装置,其特征在于LED晶粒形式为覆晶式LED或垂直式LED。

4.如权利要求1所述的发光装置,其特征在于三维胶体光子晶体薄膜的涂布方式为喷嘴式、刮刀式、旋转式或狭缝式,涂布于光源本体的表面。

5.如权利要求1所述的发光装置,其特征在于三维胶体光子晶体薄膜的粒子平均粒径为100~800纳米。

6.如权利要求1所述的发光装置,其特征在于三维胶体光子晶体薄膜的厚度为1~500微米。

7.如权利要求1所述的发光装置,其特征在于三维胶体光子晶体薄膜的粒子的材质可选自于有机化合物、无机化合物、金属或其组合。

8.如权利要求7所述的发光装置,其特征在于有机化合物为聚苯乙烯系列、聚甲基丙烯酸甲酯系列、聚马来酸系列、聚乳酸系列、聚胺基酸系列的高分子或其组合。

9.如权利要求7所述的发光装置,其特征在于无机化合物为Ag2O、CuO、ZnO、CdO、NiO、PdO、CoO、MgO、SiO2、SnO2、TiO2、ZrO2、HfO2、ThO2、CeO2、CoO2、MnO2、IrO2、VO2、WO3、MoO3、Al2O3、Y2O3、Yb2O3、Dy2O3、B2O3、Cr2O3、Fe2O3、Fe3O4、V2O5、Nb2O5、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、FeS、FeSe、FeTe、CoS、CoSe、CoTe、NiS、NiSe、NiTe、PbS、PbSe、PbTe、MnS、MnSe、MnTe、SnS、SnSe、SnTe、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、Cu2S、Cu2Se、Cu2Te、Bi2S3、Bi2Se3、Bi2Te3、SiC、TiC、ZrC、WC、NbC、TaC、Mo2C、BN、AlN、TiN、ZrN、VN、NbN、TaN、Si3N4、Zr3N4或其组合。

10.如权利要求7所述的发光装置,其特征在于金属为Au、Ag、Cu、Fe、Co、Ni、Pd、Pt、Al、Si、Ti、Zr、V、Nb、Mo、W、Mn或其组合。

11.如权利要求1所述的发光装置,其特征在于发光装置的电流值操作范围为0.1毫安~10安培。

12.如权利要求1所述的发光装置,其特征在于导线架的材质为铜合金、科瓦合金或铁镍合金。

13.如权利要求1所述的发光装置,其特征在于导线架包括至少一导线,导线与LED晶粒及一齐纳二极管作电性连接。

14.如权利要求13所述的发光装置,其特征在于导线为金线、铜线或银线。

15.如权利要求1所述的发光装置,其特征在于混体包括一荧光粉与一光学胶。

16.如权利要求15所述的发光装置,其特征在于荧光粉为黄色、蓝色、绿色、橙色、红色或其组合。

17.如权利要求15所述的发光装置,其特征在于荧光粉的材质是选自于有机荧光粉、无机荧光粉或其组合。

18.如权利要求15所述的发光装置,其特征在于光学胶的材质是选自于有机高分子、无机高分子、金属化合物或其组合。

说明书 :

发光装置

技术领域

[0001] 本发明是有关于一个可调变色温及演色性发光装置结构,特别针对于在光源本体上涂布三维胶体光子晶体薄膜形成一可调变色温及演色性发光装置结构。

背景技术

[0002] 全球LED产业的发展以白光LED应用于照明市场为发展主轴,白光LED能让光源寿命较传统发光元件提高10倍以上,另外在发光效率方面也更为提升,而白光LED更可以解决废弃灯管所含汞的环保问题,尤其在环保光源日益受到重视后,白光LED已经成为开发环保光源的首要选择。
[0003] 目前白光LED发光效率较传统白炽灯泡高出一倍以上,在台湾地区,假设白炽灯泡及日光灯完全被白光LED取代,每年可省下超过100亿度电力,大约是1座核能发电厂的年发电量。照明使用的白光LED,其演色性必须高于80,目前采用的方法为蓝光LED晶粒所发射蓝光与绿色(氮氧化物,如:Sr1-xSi2O2N2:Eu2+)、黄色(yttrium aluminum garnet,YAG)和红色(氮化物,如:Sr2Si5N8:Eu2+)荧光粉的激发光组合而成的白光,并依据不同颜色荧光粉的混合比例浓度来达到不同的色温和演色性;或是利用红、绿、蓝三种发光二极管调整其个别亮度来达到白光效果。
[0004] 一般发光二极管主要包括一基底、一发光层以及至少一个电极,其中发光层由P型半导体、主动层以及N型半导体依序堆栈而成。当N型半导体与P型半导体之间因电位不同而形成一电位差时,N型半导体中的电子与P型半导体中的电洞则会在主动层结合而发出光
线。
[0005] 发光二极管的发光效率主要取决于主动层的量子效率(光生电子-空穴对数/入射光子数,即发光元件对光敏感性的精确测量),以及发光二极管的光引出效率(extraction efficiency)。其中,量子效率的提升主要取决于主动层的半导体材料质量及其结构的组
合,而光引出效率的提升则取决于从主动层发出的光线的有效利用率。
[0006] 在LED照明设备中,一项重要的参数就是色温,这关系到LED灯光照明产品所显示的颜色特性,一般的灯具也都有色温的规格。色温高低计量单位是以凯氏刻度(Kelvin 
Scale)K为单位,在不同色温下使人对光有不同的感受,色温大致可分为三个区块,暖白光属低色温,范围在3400K以下,光色偏红使人有温暖的感觉,当采用低色温光源照射红色物品时,能使其表现更鲜艳;中色温范围在3400--6000K,由于光线柔和,使人有愉快、舒适及安详的感受,所以也称为中性色温;冷白光属高色温,范围则超过6000K,光色偏蓝,光源接近自然光,有明亮的感觉,使人精神集中及不容易睡着。
[0007] 降低色温的目的为使光线由户外高明亮度转换成室内温和舒适感。依目前技术,得到暖白光LED的色温的方法包括提高荧光粉浓度,如冷白光LED降为暖白光LED,则必需将绿色荧光粉提高为原来的一点五倍和红色荧光粉提高为原来的三倍以上,才能达到降低色
温的要求,但此等方法不仅会增加成本,且会使白光发光效率大大降低;另若使用色温转换滤光片(Conversion Color Temperature Filter),其色温转换滤光片亦会使白光发光效
率大大降低。因此,如何有效任意降低光线的色温,且不必依靠提高荧光粉浓度,且仍可维持高发光效率为本发明探讨的重点。

发明内容

[0008] 为解决先前技术中所提及,以提高荧光粉浓度降低色温的方式,不但使成本增加,且会使白光发光效率降低的问题,本发明的目的在于提供一种发光装置。
[0009] 为达到上述目的,本发明采用以下技术方案:
[0010] 一种发光装置,包括:一光源本体、一导线架、一LED晶粒、一齐纳二极管、一三维胶体光子晶体薄膜与一混体,其相对位置为将导线架置于光源本体底部、LED晶粒置于导线架上方、光源本体内部填充混体、三维胶体光子晶体薄膜置于光源本体的表面,至少一导线与LED晶粒及齐纳二极管作电性连接。
[0011] 导线架的材质为铜合金、科瓦(Kovar)合金或铁镍合金。三维胶体光子晶体薄膜涂布于光源本体的表面的方式为喷墨式、喷洒式、喷嘴式、刮刀式、旋转式或狭缝式。粒子堆栈于光源本体的堆栈结构为体心立方式、面心立方式和简单立方式的晶体结构,并且粒子与
粒子间的排列为四角和六角的松散式或紧密式晶格结构。三维胶体光子晶体薄膜的粒子大
小为100~800纳米(nm),膜厚为1~500微米(μm),其材质可选自于有机高分子、无机高分子、有机化合物、无机化合物、金属或其组合,其中有机高分子如聚苯乙烯系列、聚甲基丙烯酸甲酯系列、聚马来酸系列、聚乳酸系列、聚胺基酸系列的高分子或其组合,无机化合物如Ag2O、CuO、ZnO、CdO、NiO、PdO、CoO、MgO、SiO2、SnO2、TiO2、ZrO2、HfO2、ThO2、CeO2、CoO2、MnO2、IrO2、VO2、WO3、MoO3、Al2O3、Y2O3、Yb2O3、Dy2O3、B2O3、Cr2O3、Fe2O3、Fe3O4、V2O5、Nb2O5、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、FeS、FeSe、FeTe、CoS、CoSe、CoTe、NiS、NiSe、NiTe、PbS、PbSe、PbTe、MnS、MnSe、MnTe、SnS、SnSe、SnTe、MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、Cu2S、Cu2Se、Cu2Te、Bi2S3、Bi2Se3、Bi2Te3、SiC、TiC、ZrC、WC、NbC、TaC、Mo2C、BN、AlN、TiN、ZrN、VN、NbN、TaN、Si3N4、Zr3N4或其组合,金属如Au、Ag、Cu、Fe、Co、Ni、Pd、Pt、Al、Si、Ti、Zr、V、Nb、Mo、W、Mn或其组合。
[0012] 混体包括一荧光粉与一光学胶,荧光粉可为黄色、蓝色、绿色、橙色或红色或其组合,其材质是选自于有机荧光粉、荧光颜料、无机荧光粉、放射性元素或其组合,光学胶的材质可选自于有机高分子、无机高分子、有机聚合物、无机聚合物、金属化合物或其组合。
[0013] 发光装置的电流值操作范围为0.1毫安(mA)~10安培(A)。其中,导线架更可包括至少一导线,至少一导线为金线、铜线或银线,至少一导线与LED晶粒及齐纳二极管作电性连接。
[0014] 本发明以制作特定三维胶体光子晶体薄膜的粒子后,将粒子涂布于光源本体的表面上形成薄膜,其中经过实验数据而得到三维胶体光子晶体薄膜可成功降低白光的色温,
并且只降低些许白光发光效率,而粒子堆积排列方式也是影响调整暖白光色温和演色性的
重点参数。
[0015] 本发明的三维胶体光子晶体薄膜的粒子间的空隙与粒子间的相对位置具有高度的可微调性,藉此能微调整三维光子晶体薄膜的等效折射率、粒子间堆积的紧密度与粒子
排列方式,利用光线在粒子与空气的折射率差异,决定可通过三维胶体光子晶体薄膜光线
的波段,藉此改变白光色温和演色性,且仍可维持高发光效率,在调整白光色温和演色性技术属一大突破。因此,由三维胶体光子晶体薄膜的可调变色温和演色性的特性,即可有效降低光线的色温,并维持高发光效率及高演色性,且因为不需提高荧光粉浓度,更可有效减少成本支出。

附图说明

[0016] 图1绘示本发明的发光装置的结构示意图。
[0017] 图2(a)与图2(b)是由场效发射式电子显微镜观测,显示三维胶体光子晶体薄膜的粒子的分布型态图。
[0018] 图2(c)是三维胶体光子晶体粒子排列紧密型态图。
[0019] 图2(d)是三维胶体光子晶体粒子排列松散型态图。
[0020] 图3为冷白光经三维胶体光子晶体粒子(粒径230nm,膜厚20μm)、冷白光与暖白光的波长与相对强度的图。

具体实施方式

[0021] 以下将配合图式,进一步说明本发明的结构。如图1所示,本发明发光装置包括一光源本体105、一导线架101、至少一导线103、一LED晶粒102、一三维胶体光子晶体薄膜107、一齐纳二极管106与一混体104,其相对位置为将导线架101置于光源本体105底部、LED晶粒
102置于导线架101上方、光源本体105内部填充混体104、三维胶体光子晶体薄膜107涂布于光源本体105的表面、导线架101包括至少一导线103与LED晶粒102及齐纳二极管106作电性
连接。
[0022] 导线架101的制作材料需要考虑其导电性、热传导性、机械强度、焊接性与抗腐蚀性,常使用的材质为铜合金、42合金(镍:42%,铁:58%)、科瓦合金(镍:29%,钴:17%,铁:
54%)与铁镍合金(铁:42%,镍:58%)。
[0023] 在导线103材料选择当中,可为金、银或铜。金、银与铜为导电速率最快的前三名,金的稳定性最好导电速率也最快,但其成本较为高,铜的单价最便宜,其耐离子迁移率性质佳。
[0024] LED晶粒102制程步骤可分为上游、中游及下游,上游包括形成基板(蓝宝石,陶瓷,金属)→单晶棒(GaN,GaAs,GaP)→单芯片→结构设计→磊芯片,中游包括金属蒸镀→光照蚀刻→热处理→切割,下游封装则包括覆晶式(Flip-chip)、芯片黏着式(SMD,surface mount device)与芯片封装式(COB,chip on board)。
[0025] LED晶粒102形式可为传统蓝宝石基板(Sapphire-based)LED、覆晶式(Flip-chip)LED和垂直式(Vertical)LED。
[0026] 三维胶体光子晶体薄膜107涂布于光源本体105方式包括喷墨式(ink-jet)、喷洒式(spray)、喷嘴式(nozzle)、刮刀式(blade)、旋转式(spin)或狭缝式(slit)。喷墨式、喷洒式与喷嘴式的工作原理是利用计算机程序控制步进马达带动喷嘴前后左右移动,从喷墨头
中喷出的墨水依序喷布于元件上,完成着色的工作;刮刀式系将涂布着料储存于墨斗内,由滚墨轮滚动涂布将着料带出,经由刮刀控制厚度,将着料涂布至元件上;旋转式多应用于光电与半导体制程,以旋转涂布方式将液体滴至芯片中央;狭缝式为利用一模具挤出一液膜,涂布于移动的基材上。
[0027] 三维胶体光子晶体薄膜107的粒子堆栈结构为体心立方式(Body-Centered Cubic Crystal Structure)、面心立方式(Face-Centered Cubic Crystal Structure)和简单立
方式(Simple cubic lattice)的晶体结构,并且粒子与粒子间的排列为四角和六角的松散
式(non-close-packed crystal structure)或紧密式(close-packed crystal 
structure)晶格结构。每一个体心立方单位里含有2个粒子,有8个角落粒子,角落每一个粒子系八分之一个粒子,在中心的单一粒子,则全部包含于此单位中,体心立方式的粒子堆积密度为68%;每一面心立方式单位共有4个粒子,内含有8个角落粒子和6个面心粒子,面心粒子为二分之一个粒子,加总共有4个完整粒子被分配于一单位,其粒子堆积密度为74%;
简单立方在每个单位内含有8个角落粒子,共有1个完整粒子被分配于一单位,粒子堆积密
度为52%。
[0028] 混体104包括一荧光粉与一光学胶,荧光粉材料由主晶体、助活化剂(敏感剂)与活化剂组成。荧光粉为黄色、蓝色、绿色、橙色、红色或其组合,如黄橙色和红黄色的氮化物荧光粉。当荧光物质接受光能量后,其外层电子受激发至高能阶的激发状态后,回到原有的低能阶状态时,能阶差的能量以光的形式发射出来。
[0029] 光学胶保护LED晶粒102避免电气和环境损害,混体104必须把光源本体105区域内全部灌满,若有空气间隙(air cap),则会有思乃尔效应(snell loss)而大大降低出光量。
传统上,光学胶多由环氧树脂(epoxy)和有机高分子所制成,如今LED照明市场朝向更高功
率且高亮度的发展,无机硅封胶(silicon)则愈来愈广为使用,硅封胶不仅可耐高温程度承受较环氧树脂为高,和更好的透光率。
[0030] 图2(a)与图2(b)是由场效发射式电子显微镜(Field-emission scanning electron microscope,FESEM)所拍摄,由图2(a)可见三维胶体光子晶体粒子呈现粒径均一分布于190纳米(nm),图2(b)则分布在230纳米(nm),因此其粒径分布系数(Polydispersity index,PDI)范围皆在0.001~0.1。图2(c)为三维胶体光子晶体粒子排列紧密式(close-
packed),图2(d)为三维胶体光子晶体粒子排列松散式(non-close-packed)。
[0031] 图3则显示出冷白光经三维胶体光子晶体粒子(粒径230nm,膜厚20μm),由蓝光(455nm)和绿光(520~550nm)波段被三维胶体光子晶体薄膜107粒子堆栈排列方式提升成
红光(600nm),且其波长-相对强度的波形近似于一般暖白光。
[0032] 由表1可见,白光经三维胶体光子晶体薄膜107(粒径:230nm)后,利用积分球量测其色温由5153K降至3324K,且本发明技术的暖白光发光效率比一般暖白光发光效率高约
11%,CIE色坐标也落于普朗克轨迹(Planckian locus)上。此外,光源让人眼正确地辨别色彩种类的程度,称之为演色性指数(color rendering index,CRI),而本发明演色性除了高于一般暖白光外,且其CRI高于80可成为一照明光源。
[0033]
[0034] 表1实际装置的光学特性测量结果
[0035] 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。