一种中空管状吸油材料及其制备方法转让专利

申请号 : CN201410348578.6

文献号 : CN104128166B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 肖长发王子涛赵健胡霄黄庆林刘振

申请人 : 天津工业大学

摘要 :

本发明公开了一种中空管状吸油材料及其制备方法,该中空管状吸油材料芯部为弹簧,弹簧外侧包裹有片状海绵,海绵在弹簧两端处固定;其中在弹簧的一端,所述海绵完全将弹簧顶端包覆或者弹簧顶端与海绵在连接处固定密封;在弹簧的另一端固接有一用于连接真空泵的连接管;所述海绵外侧涂覆有氧化石墨烯层。所述氧化石墨烯层是将海绵浸泡于氧化石墨烯分散液中,由负压抽滤、水合肼蒸汽还原、冲洗、真空干燥形成的。该制备方法操作简单,制得的中空管状吸油材料不仅成本低廉,还能实现油品的连续吸附,提高油水分离效率。

权利要求 :

1.一种中空管状吸油材料,其特征在于:芯部为弹簧,弹簧外侧包裹有片状海绵,海绵在弹簧两端处固定;其中在弹簧的一端,所述海绵完全将弹簧顶端包覆或者弹簧顶端与海绵在连接处固定密封;在弹簧的另一端固接有一用于连接真空泵的连接管;所述海绵外侧涂覆有氧化石墨烯层。

2.一种中空管状吸油材料的制备方法,其特征在于包括如下步骤:

1)用片状海绵包裹在弹簧表面,并在弹簧两端处分别将其与海绵固定,其中一端海绵完全将弹簧顶端包覆或者将弹簧顶端与海绵在连接处固定密封,另一端固接有一连接管,得到中空管状海绵;

2)将氧化石墨在水中处理得到氧化石墨烯分散液;

3)将步骤1)得到的中空管状海绵的连接管与真空泵相连接,然后将所述中空管状海绵完全浸入步骤2)得到的氧化石墨烯分散液中,利用真空泵在所述中空管状海绵处形成负压并维持1~3min,得到涂覆有氧化石墨烯的中空管状海绵;

4)将步骤3)得到的涂覆有氧化石墨烯的中空管状海绵在30~40℃恒温真空干燥至恒重,然后将其在80~90℃水合肼蒸汽中还原处理12~24h,再经蒸馏水冲洗、真空干燥,即得所述中空管状吸油材料。

3.如权利要求2所述中空管状吸油材料的制备方法,其特征在于:步骤1)中弹簧顶端与海绵的固定方式为树脂浇注。

4.如权利要求2所述中空管状吸油材料的制备方法,其特征在于:步骤1)中海绵的孔隙率为85~95%。

5.如权利要求2所述中空管状吸油材料的制备方法,其特征在于:步骤1)中海绵为聚氨酯海绵或三聚氰胺海绵。

6.如权利要求2所述中空管状吸油材料的制备方法,其特征在于:步骤2)中氧化石墨烯分散液的浓度为1~3mg/mL。

7.如权利要求2所述中空管状吸油材料的制备方法,其特征在于:步骤3)中形成的负压为-0.05~-0.1MPa。

8.如权利要求2所述中空管状吸油材料的制备方法,其特征在于:步骤2)中将氧化石墨在水中经超声处理得到氧化石墨烯分散液。

9.如权利要求8所述中空管状吸油材料的制备方法,其特征在于:超声频率为30~

60kHz,时间为30min~120min。

说明书 :

一种中空管状吸油材料及其制备方法

技术领域

[0001] 本发明涉及一种吸油材料,特别是一种中空管状吸油材料及其制备方法。

背景技术

[0002] 近年来,石油泄漏事故频繁发生,造成海洋、河流严重污染。工业油性有机溶剂及其污水、废弃液给水生动植物和人类带来灾难性的危害,需要回收处理。为了解决这一环境问题,人们正致力于研究能够满足废油回收要求的新材料、新方法(Shannon MA,Bohn PW,Elimelech M,Georgiadis JG,Marinas BJ and Mayes AM.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185),301-310)。石墨烯具有单原子层紧密堆积的二维晶体结构,单层石墨烯易折叠在其表面形成微小突起,使得石墨烯具有比表面积大、疏水性强等特点。研究人员利用石墨烯这一优良的特性,将其应用在吸油领域,开发了许多石墨烯基吸油材料(Zhang X,Wan S,Pu J,Wang L,Liu X.Highly hydrophobic and adhesive performance of graphene films[J].Journal of Materials Chemistry,2011,21(33),12251-12258)。Nguyen等将石墨烯涂覆于三聚氰胺海绵,制得的石墨烯基海绵具有良好的吸附能力和油水选择性,其吸附量可达自重165倍(Nguyen DD,Tai N-H,Lee S-B,Kuo W-S.Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J].Energy&Environmental Science,2012,5(7),7908-7912)。Gao等将氧化石墨烯和碳纳米管溶液通过冷冻干燥成型,再用肼还原得到碳气凝胶并对其进行测试。研究发现,制得的碳气凝胶对不同的油品具有良好的吸收效果(Sun H,Xu Z,and Gao C.Multifunctional,Ultra-Flyweight,Synergistically Assembled Carbon Aerogels[J].Advanced Materials,2013,25(18),2554-2560)。石墨烯基吸油材料具有很强的疏水性和超强的亲油性,可以很好地实现油水混合物的分离,但存在着成本较高、使用寿命短和无法连续运行等缺点。

发明内容

[0003] 为了解决上述技术问题,本发明提供了一种中空管状吸油材料及其制备方法,该方法操作简单,制得的中空管状吸油材料不仅成本低廉,还能实现油品的连续吸附,提高油水分离效率。
[0004] 为此,本发明的技术方案如下:
[0005] 一种中空管状吸油材料,芯部为弹簧,弹簧外侧包裹有片状海绵,海绵在弹簧两端处固定;其中在弹簧的一端,所述海绵完全将弹簧顶端包覆或者弹簧顶端与海绵在连接处固定密封;在弹簧的另一端固接有一用于连接真空泵的连接管;所述海绵外侧涂覆有氧化石墨烯层。
[0006] 一种中空管状吸油材料的制备方法,包括如下步骤:
[0007] 1)用片状海绵包裹在弹簧表面,并在弹簧两端处分别将其与海绵固定,其中一端海绵完全将弹簧顶端包覆或者将弹簧顶端与海绵在连接处固定密封,另一端固接有一连接管,得到中空管状海绵;
[0008] 2)将氧化石墨在水中处理得到氧化石墨烯分散液;
[0009] 3)将步骤1)得到的中空管状海绵的连接管与真空泵相连接,然后将所述中空管状海绵完全浸入步骤2)得到的氧化石墨烯分散液中,利用真空泵在所述中空管状海绵处形成负压并维持1~3min,得到涂覆有氧化石墨烯的中空管状海绵;
[0010] 4)将步骤3)得到的涂覆有氧化石墨烯的中空管状海绵在30~40℃恒温真空干燥至恒重,然后将其在80~90℃水合肼蒸汽中还原处理12~24h,再经蒸馏水冲洗、真空干燥,即得所述中空管状吸油材料。
[0011] 步骤1)中弹簧顶端与海绵的固定方式为树脂浇注。
[0012] 步骤1)中海绵的孔隙率为85~95%。
[0013] 步骤1)中海绵为聚氨酯海绵或三聚氰胺海绵。
[0014] 步骤2)中氧化石墨烯分散液的浓度为1~3mg/mL。
[0015] 步骤3)中形成的负压为-0.05~-0.1MPa。
[0016] 步骤2)中将氧化石墨在水中经超声处理得到氧化石墨烯分散液。超声频率为30~60kHz,时间为30min~120min。
[0017] 步骤1)中弹簧为不锈钢弹簧。
[0018] 步骤1)中海绵厚度为3~9mm。
[0019] 步骤4)真空干燥的条件为20~90℃下干燥12~24h。
[0020] 与现有技术相比,本技术方案具有以下有益效果:
[0021] 1、本发明中,抽滤吸附制备中空管状吸油材料的原理为:通过抽滤诱导氧化石墨烯在海绵表面发生自组装形成氧化石墨烯薄膜,可增加石墨烯在海绵上的锚点,有效提高石墨烯与海绵基质之间界面结合强度,提高了石墨烯基海绵重复使用能力。相对于之前报道的石墨烯基吸油材料,该制备方法是以廉价的海绵为基质,所得产品具有成本低、使用寿命长的特点。海绵表面的石墨烯吸附层使其具有疏水亲油的特性,可吸附油品或用于油水分离。
[0022] 2、将所得中空管状吸油材料放入油水混合体系中,一端提供负压,可实现动态连续吸附分离,大大提高油水分离效率,适用于工业油性有机废水和海洋溢油等大工作量油水分离处理的需求。同时,可以以更少的吸附剂吸附更多的油品,大幅降低成本,在环境保护和能源领域具有很大的实际应用价值。

附图说明

[0023] 图1是本发明制得的中空管状吸油材料结构示意图;
[0024] 图2是实施例1制得的中空管状吸油材料对甲苯/水混合物分离使用情况;
[0025] 图3是实施例1制得的中空管状吸油材料对煤油/水混合物分离使用情况;
[0026] 图4是实施例1制得的中空管状吸油材料对甲苯/水混合物分离进行循环使用情况;
[0027] 图5是实施例1制得的中空管状吸油材料中空管状吸油材料对煤油/水混合物分离进行循环使用情况。

具体实施方式

[0028] 以下结合附图和实施例对本发明的技术方案进行详细描述。
[0029] 实施例1
[0030] 一种中空管状吸油材料的制备方法,包括以下步骤:
[0031] 1)用厚度为3mm的聚氨酯海绵薄片(孔隙率:85%)包裹在不锈钢弹簧表面,弹簧线径0.5mm,外径3mm,长度30cm;在弹簧两端处分别将其与海绵用环氧树脂浇注固定,其中一端密封,另一端固接有一连接管,用于连接真空泵;得到中空管状海绵;
[0032] 2)将氧化石墨利用超声波清洗机在频率为40kHz条件下超声分散30min,得到浓度为2mg/mL氧化石墨烯分散液;
[0033] 3)将步骤1)得到的中空管状海绵的连接管与真空泵相连接,然后将所述中空管状海绵完全浸入步骤2)得到的氧化石墨烯分散液中,利用真空泵在所述中空管状海绵处形成-0.1MPa的负压,维持3min;得到涂覆有氧化石墨烯的中空管状海绵;
[0034] 4)将步骤3)得到的涂覆有氧化石墨烯的中空管状海绵在40℃恒温干燥24h,至恒重,然后将其在80℃水合肼蒸汽中还原处理24h,再经蒸馏水冲洗、真空干燥,即得所述中空管状吸油材料,其结构如图1所示。一种中空管状吸油材料,芯部为弹簧2,弹簧2外侧包裹有片状海绵4,海绵4在弹簧两端31,32处固定;其中在弹簧的一端,所述海绵完全将弹簧顶端包覆或者弹簧顶端与海绵在连接处固定密封31;在弹簧的另一端固接有一用于连接真空泵的连接管1;所述海绵外侧涂覆有氧化石墨烯层(由于氧化石墨烯渗入海绵,裸露在海绵外侧的氧化石墨烯层很薄,所以并未在图中显示。)
[0035] 应用实验
[0036] ①将本实施例制得的中空管状吸油材料放入2L甲苯/水混合物(体积1:1)中,将中空管状吸油材料的连接管与真空泵相连接,真空泵负压控制在-0.05MPa,对甲苯/水混合物进行分离。中空管状吸油材料的分离效率由下式计算得出:
[0037] 分离效率=VT/VO×100%
[0038] 式中,VT为t时刻收集到的油品体积,VO为油品的初始体积。测试结果如图2所示,横坐标表示分离时间,纵坐标表示分离效率。
[0039] 从图2可以看出,该中空管状吸油材料对甲苯/水混合物的分离效率能达到99%以上,可实现油水分离。
[0040] ②利用本实施例制得的中空管状吸油材料对煤油/水混合物(体积1:1)进行分离。测试结果如图3所示,横坐标表示分离时间,纵坐标表示分离效率。
[0041] 从图3可以看出,该中空管状吸油材料对煤油/水混合物的分离效率能达到99%以上,可实现油水分离。
[0042] ③利用本实施例制得的中空管状吸油材料对甲苯/水混合物(体积1:1)进行循环使用测试。测试条件为:将吸附有甲苯的中空管状吸油材料置于密闭容器中,然后用真空泵将容器里的气体抽出,降低容器内的气压,这时甲苯便会逸出,待脱附完成,再将中空管状吸油材料置于甲苯/水混合物中进行油水分离,如此循环共进行10次。图4给出了中空管状吸油材料循环使用情况,其中,横坐标表示实验的循环次数,共10次;纵坐标表示分离效率。
[0043] 从图4可以看出,该中空管状吸油材料在甲苯/水混合物中使用10次后,油水分离效率仍保持在99%以上。
[0044] ④利用本实施例制得的中空管状吸油材料对煤油/水混合物(2L,体积1:1)进行循环使用测试。图5给出了中空管状吸油材料循环使用情况。其中,横坐标表示实验的循环次数,共10次;纵坐标表示分离效率。
[0045] 从图5可以看出,该中空管状吸油材料在煤油/水混合物中使用10次后,油水分离效率仍保持在99%以上。
[0046] 实施例2
[0047] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤1)的聚氨酯海绵孔隙率为95%,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0048] 实施例3
[0049] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤1)中使用的海绵为三聚氰胺海绵薄片,孔隙率为85%,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0050] 实施例4
[0051] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤1)中使用的海绵为三聚氰胺海绵薄片,孔隙率为95%,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0052] 实施例5
[0053] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤1)中使用的海绵为厚度为6mm的聚氨酯海绵,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0054] 实施例6
[0055] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤1)中使用的海绵为厚度为6mm的聚氨酯海绵,其余步骤同实施例1。其应用实验结果类似于实施例1所示。
[0056] 实施例7
[0057] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤2)中氧化石墨烯浓度为1mg/mL,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0058] 实施例8
[0059] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤2)中氧化石墨烯浓度为3mg/mL,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0060] 实施例9
[0061] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤2)中超声时间为120min,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0062] 实施例10
[0063] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤3)中利用真空泵在所述中空管状海绵处形成-0.1MPa的负压,维持1min,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0064] 实施例11
[0065] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤3)中利用真空泵在所述中空管状海绵处形成-0.05MPa的负压,维持3min,其余步骤同实施例1。应用实验结果类似于实施例1所示。
[0066] 实施例12
[0067] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤3)中利用真空泵在所述中空管状海绵处形成-0.05MPa的负压,维持1min,应用实验结果类似于实施例1所示。
[0068] 实施例13
[0069] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤4)中在90℃水合肼蒸汽中还原处理12h。应用实验结果类似于实施例1所示。
[0070] 实施例14
[0071] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤4)中在90℃水合肼蒸汽中还原处理24h,应用实验结果类似于实施例1所示。
[0072] 实施例15
[0073] 一种中空管状吸油材料的制备方法,与实施例1中制备方法的不同之处为:步骤4)中在80℃水合肼蒸汽中还原处理12h。应用实验结果类似于实施例1所示。