一种固体氧化物燃料电池电解质的制备工艺转让专利

申请号 : CN201410373293.8

文献号 : CN104134819B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 丁铁柱康正峰李强刘文德王雅琼代金龙

申请人 : 内蒙古大学

摘要 :

本发明公开了一种固体氧化物燃料电池电解质的制备工艺,本制备工艺采用脉冲激光溅射仪,溅射靶材采用YSZ和STO靶材,STO衬底单侧抛光,将YSZ靶材、STO靶材和单侧抛光的STO衬底固定在相应样品架上,在STO衬底上交替溅射YSZ靶材和STO靶材,形成YSZ/STO/YSZ/STO超晶格电解质薄膜。本制备工艺可有效降低固体氧化物燃料电池操作温度,在单侧抛光的STO衬底上制备YSZ/STO/YSZ/STO超晶格薄膜,YSZ/STO/YSZ/STO这种超晶格薄膜在300-500℃之间,其电导活化能最小值为0.76eV,在300℃时测得的电导率比体材料的电导率提高了三个数量级,有效降低了电池的工作温度,有利于延长电池的使用寿命。

权利要求 :

1.一种固体氧化物燃料电池电解质的制备工艺,其特征是:采用脉冲激光溅射仪,腔室内装有四个独立靶位,激光器为脉冲准分子激光器,溅射靶材采用纯度为99.999%的YSZ靶材和纯度为99.99%的STO靶材,YSZ靶材组成为0.08Y2O3:0.92ZrO2,尺寸为φ50.8×5.0mm,STO靶材尺寸为φ50.8×5.0mm,STO衬底单侧抛光,晶向100,尺寸为10×10×0.5mm,将YSZ靶材、STO靶材和单侧抛光的STO衬底固定在相应样品架上,STO衬底与YSZ靶材、STO靶材距离为4-6cm,激光器工作模式为恒压20-26KV,激光能量在650-690mJ,频率为5Hz,在STO衬底上交替溅射YSZ靶材和STO靶材,形成YSZ/STO/YSZ/STO超晶格电解质薄膜,沉积温度分别为4

400-700℃,溅射次数为10次,在STO衬底单晶基底上沉积的薄膜厚度为590-610nm,调整高纯Ar和O2气体流量比来达到所需溅射氧气含量,氧分压4-6Pa,然后将样品在900-1100℃下热处理1.9-2.1h。

说明书 :

一种固体氧化物燃料电池电解质的制备工艺

技术领域

[0001] 本发明涉及一种电解质的制备工艺,特别指一种固体氧化物燃料电池电解质的制备工艺。

背景技术

[0002] 固体氧化物燃料电池(SOFC)由于其高效、低污染等诸多方面的优点正日益受到广泛重视。决定SOFC性能的最主要因素是电解质材料离子电导率的大小。目前在SOFC中应用最普遍最成功的是钇稳定氧化锆(YSZ)电解质。YSZ在高温下(≥900℃)有良好的离子电导性能和化学稳定性以及优异的机械性能,因此SOFC须在高温(900-1000℃)下运行。但如此高的工作温度,导致电极材料的选择范围受到了限制,并且大大降低了SOFC的使用寿命和电池材料长期运行的稳定性。除此之外如此高的温度会导致与之匹配的电极材料老化快、密封困难、界面扩散严重、成本高等一系列问题。如果能将电池的工作温度降低到600-800℃(所谓中温),或者更低温度300-500℃(低温),甚至室温,那就可以避免出现以上问题,这对于推广SOFC的商业应用具有极高的价值。因此寻找在较低温度下具有足够高的离子电导率的电解质是目前SOFC电解质领域研究的重要课题。
[0003] 具有萤石结构的掺杂CeO2是较为理想的IT-SOFC电解质材料,其电导率在800℃以下,比YSZ电导率高几倍到一个数量级。但是CeO2在还原气氛中容易出现不可忽略的电子电导,引起电池内部短路从而降低电池的开路电压和功率输出。Doshi等报道用Ce0.8Gd0.2O1.9(GDC)作为电解质(厚度为30μm),在500℃工作温度下其最大功率密度达到了140mW/cm2,并且预测将GDC厚度减半后可望在500℃达300-400mW/cm2的功率输出,但是GDC在温度较高和还原气氛会偏离理想配比并伴随电子导电。
[0004] 最近,Ju Hee Kim等报道了采用Ni-YSZ(900μm)作支撑,Ni-YSZ(20μm)作为阳极功能层,YSZ(10μm)作为电解质,而后在YSZ上覆盖一层GDC(1μm)电解质中间层,LSFC-GDC作阴极,该燃料电池在780℃工作温度下其最大功率密度达到了1.29W/cm2。然而厚度较大的YSZ(10μm)电解质对电池的内阻造成显著影响。
[0005] 西班牙Javier Garcia Barriocanal等研发了一种由钇稳定氧化锆(YSZ)超薄膜层夹在两薄膜钛酸锶(STO)间所组成的电解质,在接近室温条件下,这种电解质的离子导电率较常规的SOFC电解质提高了近108倍。若SOFC采用这类新型电解质,应该可使SOFC在仅比室温高一点的温度下运行,则可以大大提高SOFC的效率和降低生产成本。

发明内容

[0006] 本发明要解决的技术问题是提供一种固体氧化物燃料电池电解质的制备工艺,这种制备工艺可降低固体氧化物燃料电池工作温度并制备出具有较高离子电导率的新电解质材料,这种新的电解质材料就是:超薄膜YSZ(萤石结构)/STO(钙钛矿结构)/YSZ(萤石结构)/STO(钙钛矿结构)超晶格电解质,使萤石结构和钙钛矿结构交迭两个周期形成超晶格电解质,由于交迭层晶格失配导致超晶格界面区存在大量氧离子空位,从而形成更多氧离子通过的开放通道,而不必由一个原子传送给另一个原子,试验证明这类超晶格电解质材料在室温下具有更好的离子导电性,能够用于室温的固体氧化物燃料电池电解质。
[0007] 本发明要解决的技术问题由如下方案来实现:一种固体氧化物燃料电池电解质的制备工艺,采用脉冲激光溅射仪,腔室内装有四个独立靶位,激光器为脉冲准分子激光器,溅射靶材采用纯度为99.999%的YSZ靶材和纯度为99.99%的STO靶材,YSZ靶材组成为0.08Y2O3∶0.92ZrO2,尺寸为φ50.8×5.0mm,STO靶材尺寸为φ50.8×5.0mm,STO衬底单侧抛光,晶向100,尺寸为10×10×0.5mm,将YSZ靶材、STO靶材和单侧抛光的STO衬底固定在相应样品架上,STO衬底与YSZ靶材、STO靶材距离为4-6cm,激光器工作模式为恒压20-26KV,激光能量在650-690mJ,频率为5Hz,在STO衬底上交替溅射YSZ靶材和STO靶材,形成YSZ/STO/YSZ/STO超晶格电解质薄膜,沉积温度分别为400-700℃,溅射次数分别为104次,在STO衬底单晶基底上沉积的薄膜厚度约为590-610nm,溅射前需除去靶材表面氧化层和其它杂质,然后打开挡板溅射,通过调节激光的能量以及脉冲次数来调节控制薄膜的厚度,调整高纯Ar和O2气体流量比来达到所需溅射氧气含量,氧分压4-6Pa,然后将样品在900-1100℃下热处理1.9-2.1h。
[0008] 本发明的优点:利用脉冲激光溅射法制备超薄膜YSZ萤石结构和STO钙钛矿结构超晶格电解质,这种电解质在低温下具有较高的离子电导率,有效降低了固体氧化物燃料电池的操作温度,电池的使用寿命得以有效延长。

附图说明

[0009] 图1是YSZ/STO/YSZ/STO超晶格电解质薄膜在不同温度(400-700℃)下的电导率Arrhenius图。

具体实施方式

[0010] 1、实验原料:8%mol Y2O3∶ZrO2靶材,纯度99.999%,尺寸φ50.8×5.0mm,合肥科晶材料技术有限公司;STO靶材,纯度99.99%,尺寸φ50.8×5.0mm,合肥科晶材料技术有限公司;STO基底,单侧抛光,(100)晶向,尺寸10×10×0.5mm,合肥科晶材料技术有限公司。
[0011] 2、实验仪器
[0012] 表1 主要实验仪器及设备
[0013]
[0014] 3、YSZ/STO/YSZ超晶格电解质薄膜制备过程,采用中科院沈阳科学仪器厂生产的PLD-450型脉冲激光溅射仪,腔室内装有四个独立靶位,激光器为美国相干公司(CoherentInc.)生产的COMPexPro201型脉冲准分子激光器,溅射靶材采用高纯YSZ(0.08Y2O3∶0.92ZrO2)靶材和STO靶材(纯度为99.99%)。将YSZ靶材、STO靶材和单侧抛光的STO衬底固定在相应样品架上,衬底和YSZ靶材距离为5cm,激光器工作模式为恒压26KV,激光能量在650-690mJ,频率为5Hz。在STO衬底上交替溅射YSZ靶材和STO靶材形成YSZ/STO/YSZ超晶格电解质薄膜,沉积温度分别为400℃、500℃、600℃和700℃,溅射次数分别为104次,溅射前需除去靶材表面氧化层和其它杂质,然后打开挡板溅射,通过调节激光的能量以及脉冲次数来控制薄膜的厚度,通过调整高纯Ar和O2气体流量比来达到所需溅射氧气含量,氧分压5Pa,然后将样品在1000℃下热处理2h。
[0015] 利用激光溅射在STO单晶基底上生长多层YSZ/STO/YSZ/STO超晶格电解质薄膜,STO属立方晶系结构(钙钛矿族,晶格常数a=0.38nm),(100)面是其密排面,具有最小表面能;YSZ立方萤石结构(晶格常数a=0.5147nm),其(111)面具有最小表面能,而且(111)方向与STO单晶(100)方向晶格失配比较小,可以生长出沿(111)方向择优生长的YSZ膜;STO为钙钛矿多晶结构,与YSZ萤石结构交迭两个周期形成超晶格结构,基底晶向能够决定薄膜的择优生长方向,所有各层均采用高纯(99.999%)的原料溅射靶。
[0016] 本实验使用PLD技术在STO单晶基底上沉积厚度约为590-610nm的致密YSZ/STO/YSZ/STO超晶格电解质薄膜,在(111)晶向上择优生长。沉积温度为600℃时,薄膜具有最佳的结晶度。在温度350-500℃范围内,YSZ/STO/YSZ/STO超晶格电解质薄膜电导活化能在0.76-0.81eV范围内,比YSZ体材料的活化能明显减小,在300℃时测得的电导率比体材料提高了三个数量级,比Sillassen等报道的电导率高一个数量级,是较好的低温固体燃料电池电解质。
[0017] PLD是目前较有前途的制膜技术之一,它通过非加热方法控制电子能量分布,是一种非平衡的制膜方法,该技术简单且有很多优点:(1)易于在较低温度(如室温)下原位生长取向一致的结构膜和外延单晶膜。(2)灵活的换靶装置,便于实现多层膜及超晶格薄膜的生长,多层膜的原位沉积便于产生原子级清洁的界面。(3)生长过程可以原位引入多种气体,烧蚀物能量高,容易制备多层膜,工艺简单,灵活性大。