控制电动潜水泵的方法转让专利

申请号 : CN201380011915.6

文献号 : CN104160156A

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : L·巴里奥斯D·E·胡格

申请人 : 国际壳牌研究有限公司

摘要 :

本发明公开了一种控制电动潜水泵的方法,所述方法包括:a)监测电动潜水泵的抽吸口和排放口之间的压力;b)计算排放压力和抽吸压力之间的压差;和c)控制电动潜水泵,以保持排放压力和抽吸压力之间的压差恒定。

权利要求 :

1.一种控制电动潜水泵的方法,所述方法包括:a.监测电动潜水泵的抽吸口和排放口处的抽吸压力和排放压力;

b.计算排放压力和抽吸压力之间的压差;和c.控制所述电动潜水泵,以保持所述排放压力和所述抽吸压力之间的压差恒定。

2.根据权利要求1所述的方法,其中,所述电动潜水泵位于海底下的水下沉箱中。

3.根据权利要求1所述的方法,其中,所述电动潜水泵包括泵和护罩。

4.一种在启动期间启动电动潜水泵的方法,所述方法包括:a.根据恒速升压控制启动所述电动潜水泵,包括:i.监测所述电动潜水泵的抽吸口和排放口处的抽吸压力和排放压力;

ii.计算排放压力和抽吸压力之间的压差;和iii.控制所述电动潜水泵,以保持所述排放压力和所述抽吸压力之间的压差恒定;和b.将所述恒速升压控制切换成压力控制,包括:i.监测所述沉箱顶部处的压力;和

ii.控制所述电动潜水泵,以保持所述沉箱顶部处的压力恒定。

5.根据权利要求4所述的方法,其中,通过操作员干预来实施将恒速升压控制切换成压力控制的切换。

6.一种在操作期间控制电动潜水泵的方法,所述方法包括:a.监测沉箱顶部处的压力;

b.当在操作期间压力处于预定操作压力范围之外时,将压力控制切换成恒速升压控制;和c.当压力已稳定处于所述预定操作压力范围内时,将恒速升压控制切换成压力控制。

7.根据权利要求6所述的方法,其中,通过操作者干预来实施将恒速升压控制切换成压力控制的切换。

8.根据权利要求6所述的方法,还包括:当所述压力处于所述预定操作压力范围之外并且然后稳定处于所述预定操作压力范围内时,重复实施步骤b)和c)。

说明书 :

控制电动潜水泵的方法

[0001] 相关领域的交叉引用
[0002] 本申请要求在2012年3月2日提交的美国临时申请No.61/605,795的权益,其在此通过引用并入本文。

技术领域

[0003] 本发明涉及一种控制位于海底沉箱中的电动潜水泵的方法。

背景技术

[0004] 在深水油气生产设施中使用电动潜水泵来提供人工升举,使得油和气可上升至水面,以进行进一步处理、存储和/或运送。在油/气混合物的流体性质改变和/或将水引入到泵中期间,在泵操作中可发生很大的摆动。
[0005] 泵操作中的这些摆动可导致延长停机时间、损坏泵部件、密封件和电动机以及缩短泵的使用寿命。当已经允许位于泵抽吸侧中的流体以及位于泵抽吸侧周围的流体有时间分离成不同相时,在启动泵期间常常遭遇这些问题。例如,在启动期间,在电动潜水泵中可能遭遇分离的水相、气/液相和热油相。

发明内容

[0006] 本发明提供了一种控制电动潜水泵的方法,所述方法包括:a)监测泵的抽吸口和排放口处的抽吸压力和排放压力;b)计算排放压力和抽吸压力之间的压差;和c)控制泵,以保持排放压力和抽吸压力之间的压差恒定。
[0007] 本发明还提供了一种启动电动潜水泵的方法,所述方法包括:a)根据压差控制来启动泵,包括:i)监测泵的抽吸口和排放口处的抽吸压力和排放压力;ii)计算排放压力和抽吸压力之间的压差;和iii)控制泵,以保持排放压力和抽吸压力之间的压差恒定;和b)将泵控制切换至压力控制,包括:i)监测沉箱顶部处的压力;和ii)控制泵,以保持沉箱处的压力恒定。
[0008] 本发明还提供了一种控制电动潜水泵的方法,所述方法包括:a)监测沉箱顶部处的压力;b)在启动阶段期间,当泵内部的流体密度变化时,将泵控制切换至压差控制;和c)当系统已稳定处于规定操作压力范围内时,将泵控制切换至压力控制。在某些实施例中,所述方法还可以包括:d)在稳定操作期间,当检测到不稳定性时,自动切换至恒定压差控制,包括:i)监测表示沉箱操作的稳定性的操作变量;和ii)当操作变量超过阈值时,将控制自动切换至恒定压差控制。

附图说明

[0009] 图1描绘了电动潜水泵的一个实施例,其示出了在启动时的不同流体相。

具体实施方式

[0010] 电动潜水泵设计成在一些条件范围下操作,但是它们并不设计成针对在流经泵的流体发生显著变化时可发生大程度的压力摆动。例如,因为泵操作特性随着流体密度不同而改变,所以经过泵的水的段塞、油/气比的变化和不同流体相的快速变化致使压力快速摆动。这些压力摆动可能导致损坏泵部件,并且被认为是造成井田电动潜水泵发生当前电气故障的至少一个成因。
[0011] 经由可变频率驱动(VFD)可以设置电动潜水泵的速度;泵的速度与频率可直接关联。通过操控对VFD的需求可以控制沉箱压力。基于沉箱压力来操控电动潜水泵通常是令人满意的,但是却不能在流体条件改变期间提供快速响应。
[0012] 本发明提供了一种交替的处理控制方案,所述交替的处理控制方案可用于在启动期间并且在流体性质快速改变时更为有效地操控电动潜水泵。这种处理控制方案称被作恒速升压模式,这是因为其基于泵的压差来操控泵速。压差被计算为泵的排放压力和抽吸压力之间的差。
[0013] 以恒速升压模式操控泵提供了针对流体密度波动的更快速的响应,以避免系统的不稳定性。
[0014] 将进一步描述在启动期间所遭遇的问题的一个示例。当启动位于海底沉箱中的电动潜水泵时,典型地,泵中的流体相是油/气混合物。当泵启动时,将油/气混合物泵送出排放口,并且一段时间之后,与油/气混合物分离的水相抵达泵抽吸口。泵送水,然后遭遇另一油/气相。然后热油相经过泵,与此同时井温度逐渐上升并且开始生产,紧接着从井田生产出油/气混合物。随着相的每次变化,密度发生变化;随着水增多,油/气减少,随着热油增多,井田的油减少。
[0015] 图1描绘了电动潜水泵系统100。电动潜水泵系统100可以包括泵110和由沉箱130包围的护罩120。电动潜水泵系统100还可以包括入口101、出气口102和出液口103。
[0016] 在某些实施例中,泵内的流体可以是油/气混合物。分离出的水相可以位于沉箱底部处,其它油/气相在护罩外侧的水相上漂浮。在已经泵送出这些相之后,通过泵来泵送来自地层的新的油/气混合物。
[0017] 一旦已经手动地启动泵,系统将被切换至沉箱压力控制。
[0018] 在一个可替代的实施例中,在操作期间所发现的因泵中的压力摆动而遭遇水或者其它不同相的段塞的情况中,可将泵切换至恒速升压控制。恒速升压模式将有助于泵经历相变,然后,泵在系统处于稳定操作时可恢复到沉箱压力控制。
[0019] 在一个实施例中,压差控制用于在启动期间和在操作期间内当沉箱中的流体密度突然变化时的任何时刻操控电动潜水泵。当通过控制压差控制而使沉箱压力恢复到更为稳定的状态时,可将泵切换回到由沉箱压力控制的操控。
[0020] 通过比较沉箱压力的压差和最后测量的压差或者比较沉箱压力的压差和一系列压差测量值的运行平均值来检测压力的稳定性。应当基于地层的具体特征和电动潜水泵的操作特性来判定稳定系统的关于压差的具体特征。
[0021] 在此描述的压差控制方案提供了针对因流体密度改变(尤其是在启动期间所遭遇的流体密度改变)所导致的压力波动的更为快速的响应。