基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法转让专利

申请号 : CN201410427657.6

文献号 : CN104183665B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王莉卢敏罗林宝吴春艳胡继刚

申请人 : 合肥工业大学

摘要 :

本发明公开了一种基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法,其特征是首先通过热蒸发的方法在三温区管式炉中合成制备p-型ZnSe纳米线,对n-型重掺杂Si片进行预处理,再用镊子将制备所得的p-型ZnSe纳米线呈片状揭下,揭下的片状p-型ZnSe纳米线平铺于备用重掺杂Si片上;所述片状p-型ZnSe纳米线不大于备用重掺杂Si片的面积;最后在片状p-型ZnSe纳米线的四周平辅绝缘层,再在片状p-型ZnSe纳米线上铺石墨烯电极,以使在感光层与石墨烯电极之间为欧姆接触,并且在n-型掺杂Si片与石墨烯电极之间为绝缘。本发明能有效增强纳米光电探测器的电信号,提高其开关比,增大光电探测器感光层面积。

权利要求 :

1.一种基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法,所述光电探测器的结构层自下而上依次为:n-型掺杂Si片(4)、感光层(3)和石墨烯电极(1),所述感光层(3)为p-型ZnSe纳米线,所述感光层(3)与石墨烯电极(1)之间为欧姆接触,在所述感光层(3)的外围、位于n-型掺杂Si片(4)与石墨烯电极(1)之间设置有绝缘层(2),以所述绝缘层(2)在n-型掺杂Si片(4)与石墨烯电极(1)之间进行绝缘,其特征是所述光电探测器是按如下过程制备:a、通过热蒸发的方法在三温区管式炉中合成制备p-型ZnSe纳米线:

采用质量纯度不低于99.9%的ZnSe粉末为原材料,以蒸镀有10nm金的硅片作为衬底,管式炉以温度为1050℃,气压为100托的反应条件保持两个小时;对于n掺杂ZnSe纳米线,在保持阶段持续通入NH3气体,气体流量恒定为15sccm;对于p掺杂ZnSe纳米线,在保持阶段持续通入PH5气体,气体流量恒定为12sccm;待炉腔温度自然冷却到室温时取出样品,硅片衬底上沉积的一层黄褐色绒状产物即为制备所得的p-型ZnSe纳米线;

b、n-型重掺杂Si片预处理

将n-型重掺杂Si片置于质量浓度为5%-10%的氢氟酸溶液中刻蚀2-3分钟,去除n-型重掺杂硅片表面的薄氧化层,然后超声清洗并干燥得到预处理后的备用重掺杂Si片;

c、用镊子将步骤a制备所得的p-型ZnSe纳米线呈片状揭下,揭下的片状p-型ZnSe纳米线平铺于备用重掺杂Si片上;所述片状p-型ZnSe纳米线不大于备用重掺杂Si片的面积;

d、在所述片状p-型ZnSe纳米线的四周平辅绝缘层,再在片状p-型ZnSe纳米线上铺石墨烯电极(1),以使在所述感光层(3)与石墨烯电极(1)之间为欧姆接触,并且在n-型掺杂Si片(4)与石墨烯电极(1)之间为绝缘。

2.根据权利要求1所述的基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法,其特征是所述n-型掺杂Si片(4)采用电阻率为0.005~0.02Ω/cm的n-型重掺杂Si片。

3.根据权利要求1所述的基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法,其特征是所述p-型ZnSe纳米线的掺杂元素为N、Ag、P和Bi中的任意一种,掺杂浓度为

1%-50%原子百分含量,掺杂源分别采用氨气、Ag2S粉末、气态磷烷和铋粉。

4.根据权利要求1所述的基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法,其特征是所述石墨烯电极(1)采用石墨烯薄膜。

说明书 :

基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备

方法

[0001] 本申请是申请号:201210243428X,申请日:2012年7月13日,发明名称:基于p-型ZnSe纳米线/n-型Si异质结的光电探测器及其制备方法,申请人:合肥工业大学的分案申请。

技术领域

[0002] 本发明涉及一种纳米光电探测器的制备方法,更具体地说是一种基于p-型ZnSe纳米线/n-型Si异质结的纳米光电探测器的制备方法。

背景技术

[0003] 光电探测器件可以将感应到的光信号转换为电信号,具有重要的军用价值和广阔的民用市场。纳米光电探测器是采用纳米材料作为感光层的光电探测器,其具有易于集成、低功耗、低成本的特点。更为重要的是,纳米光电探测器与同种材质的薄膜光电探测器相比,具有更高灵敏度和反应速度。
[0004] ZnSe为重要的II-VI族半导体材料,室温禁带宽度为2.7eV,对于蓝绿光非常敏感。但是现有的ZnSe纳米光电探测器是将ZnSe纳米线通过刮蹭的方法随机排布在绝缘衬底上,然后通过复杂的光刻、镀电极过程来实现,工艺复杂且性能不稳定。所完成的ZnSe纳米光电探测器多存在电信号、开关比以及感光层面积小的问题。Si在现代半导体产业中起着主导作用,但是其间接带隙结构限制了它的光电子应用。

发明内容

[0005] 本发明是为避免上述现有技术所存在的不足之处,提供一种基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法,以期有效增强纳米光电探测器的电信号,提高其开关比,增大光电探测器感光层面积。
[0006] 本发明解决技术问题采用如下技术方案:
[0007] 本发明基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的结构形式是所述光电探测器的结构层自下而上依次为:n-型掺杂Si片、感光层和石墨烯电极,所述感光层为p-型ZnSe纳米线,所述感光层与石墨烯电极之间为欧姆接触,在所述感光层的外围、位于n-型掺杂Si片与石墨烯电极之间设置有绝缘层,以所述绝缘层在n-型掺杂Si片与石墨烯电极之间进行绝缘。
[0008] 本发明基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法的特点是按如下过程进行:
[0009] a、通过热蒸发的方法在三温区管式炉中合成制备p-型ZnSe纳米线:
[0010] 采用质量纯度不低于99.9%的ZnSe粉末为原材料,以蒸镀有10nm金的硅片作为衬底,管式炉以温度为1050℃,气压为100托的反应条件保持两个小时;对于n掺杂ZnSe纳米线,在保持阶段持续通入NH3气体,气体流量恒定为15sccm;对于p掺杂ZnSe纳米线,在保持阶段持续通入PH5气体,气体流量恒定为12sccm;待炉腔温度自然冷却到室温时取出样品,硅片衬底上沉积的一层黄褐色绒状产物即为制备所得的p-型ZnSe纳米线;
[0011] b、n-型重掺杂Si片预处理
[0012] 将n-型重掺杂Si片置于质量浓度为5%-10%的氢氟酸溶液中刻蚀2-3分钟,去除n-型重掺杂硅片表面的薄氧化层,然后超声清洗并干燥得到预处理后的备用重掺杂Si片;
[0013] c、用镊子将步骤a制备所得的p-型ZnSe纳米线呈片状揭下,揭下的片状p-型ZnSe纳米线平铺于备用重掺杂Si片上;所述片状p-型ZnSe纳米线不大于备用重掺杂Si片的面积;
[0014] d、在所述片状p-型ZnSe纳米线的四周平辅绝缘层,再在片状p-型ZnSe纳米线上铺石墨烯电极,以使在所述感光层与石墨烯电极之间为欧姆接触,并且在n-型掺杂Si片与石墨烯电极之间为绝缘。
[0015] 本发明基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的制备方法的特点也在于:
[0016] 所述n-型掺杂Si片采用电阻率为0.005~0.02Ω/cm的n-型重掺杂Si片。
[0017] 所述p-型ZnSe纳米线的掺杂元素为N、Ag、P和Bi中的任意一种,掺杂浓度为1%-50%原子百分含量,掺杂源分别采用氨气、Ag2S粉末、气态磷烷和铋粉。
[0018] 所述石墨烯电极采用石墨烯薄膜。
[0019] 与已有技术相比,本发明有益效果体现在:
[0020] 1、本发明采用p-型ZnSe纳米线作为感光层,掺杂可以有效提高ZnSe纳米线中载流子的浓度,改善ZnSe纳米线与电极间的接触,优化p-型ZnSe纳米线/n-型Si异质结性能,大幅提高电信号和提高开关比。
[0021] 2、本发明采用直接用镊子将纳米线成块剥离的方法,将其转移到n-型重掺杂Si衬底上,方法简单且通过调制纳米线面积可以有效提高探测器性能。
[0022] 3、本发明采用石墨烯作为p-型ZnSe纳米线的电极,无需复杂的光刻、蒸镀电极过程且导电性能好。

附图说明

[0023] 图1为本发明基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的俯视图;
[0024] 图2a为本发明实施例1所合成p-型ZnSe纳米线扫描电子显微镜图,插图为X射线能谱;
[0025] 图2b为本发明实施例1所合成p-型ZnSe纳米线的X射线衍射图;
[0026] 图3为本发明实施例1制备的p-型ZnSe纳米线/n-型Si异质结典型I-V曲线图;
[0027] 图4为本发明实施例1制备的基于p-型ZnSe纳米线/n-型Si异质结在反向偏压为-5V时的光响应的图谱;
[0028] 图5为本发明实施例2制备的基于p-型ZnSe纳米线/n-型Si异质结在反向偏压为-5V时的光响应的图谱。

具体实施方式

[0029] 参见图1,具体实施中,基于p-型ZnSe纳米线/n-型Si异质结的光电探测器的结构层自下而上依次为:n-型掺杂Si片4、感光层3和石墨烯电极1,感光层3采用p-型ZnSe纳米线,感光层3与石墨烯电极1之间为欧姆接触,在感光层3的外围,位于n-型掺杂Si片4与石墨烯电极1之间设置有绝缘层2,以绝缘层2在n-型掺杂Si片4与石墨烯电极1之间进行绝缘。
[0030] 具体实施中,n-型掺杂Si片4采用电阻率为0.005~0.02Ω/cm的n-型重掺杂Si片;p-型ZnSe纳米线的掺杂元素为N、Ag、P和Bi中的任意一种,掺杂浓度为1%-50%原子百分含量,掺杂源分别采用氨气、Ag2S粉末、气态磷烷和铋粉;石墨烯电极1采用石墨烯薄膜。
[0031] 制备步骤:
[0032] a、通过热蒸发的方法在三温区管式炉中合成制备p-型ZnSe纳米线:
[0033] 采用质量纯度不低于99.9%的ZnSe粉末为原材料,取所述原材料ZnSe粉末0.25g和作为掺杂源的纯度不低于99.9%的Ag2S粉末0.05g,或纯度不低于99.9%的铋粉0.05g充分研磨后放入氧化铝瓷舟,以蒸镀有10nm金的硅片作为衬底,将氧化铝瓷舟和衬底放入石英管中并将石英管转移在管式炉中,所述管式炉以温度为1050℃,气压为100托的反应条件保持两个小时结束反应,待炉腔温度自然冷却到室温时取出样品,硅片衬底上沉积的一层黄褐色绒状产物即为制备所得的p-型ZnSe纳米线;
[0034] 或:采用质量纯度不低于99.9%的ZnSe粉末为原材料,以蒸镀有10nm金的硅片作为衬底,管式炉以温度为1050℃,气压为100托的反应条件保持两个小时;对于n掺杂ZnSe纳米线,在保持阶段持续通入NH3气体,气体流量恒定为15sccm;对于p掺杂ZnSe纳米线,在保持阶段持续通入PH5气体,气体流量恒定为12sccm;待炉腔温度自然冷却到室温时取出样品,硅片衬底上沉积的一层黄褐色绒状产物即为制备所得的p-型ZnSe纳米线;
[0035] b、n-型重掺杂Si片预处理
[0036] 将n-型重掺杂Si片置于质量浓度为5%-10%的氢氟酸溶液中刻蚀2-3分钟,去除n-型重掺杂硅片表面的薄氧化层,然后超声清洗并干燥得到预处理后的备用重掺杂Si片;
[0037] c、用镊子将步骤a制备所得的p-型ZnSe纳米线呈片状揭下,揭下的片状p-型ZnSe纳米线平铺于备用重掺杂Si片上;片状p-型ZnSe纳米线不大于备用重掺杂Si片的面积;
[0038] d、在片状p-型ZnSe纳米线的四周平辅绝缘层,再在片状p-型ZnSe纳米线上铺石墨烯电极1,以使在感光层3与石墨烯电极1之间为欧姆接触,并且在n-型掺杂Si片4与石墨烯电极1之间为绝缘。
[0039] 实施例1:
[0040] a、制备p-型ZnSe纳米线
[0041] p-型ZnSe纳米线是通过热蒸发的方法在三温区管式炉中合成的,本实施例采用Ag作为掺杂元素。
[0042] 首先将质量纯度不低于99.9%的ZnSe粉末0.25g和质量纯度不低于99.9%的Ag2S粉末0.05g充分研磨后放入氧化铝瓷舟里,将作为衬底的硅片用酒精和丙酮清洗干净,并用电子束在衬底上蒸镀10nm金作为催化剂。然后把氧化铝瓷舟和衬底放入到管式炉中,衬底位于氧化铝瓷舟下游10cm处。
[0043] 对管式炉抽真空至10-3帕斯卡,接着对炉腔加热一个半小时,使温度达到1050℃,保持此温度2个小时后关闭反应程序,整个过程中持续通入50sccm的氩氢混合气体,按体积比的氩气∶氢气为95∶5,炉腔压强恒定在100Torr。待管式炉温度冷却到室温时,取出样品可看到衬底上沉积了一层黄褐色绒状产物,即为p-型ZnSe纳米线;
[0044] b、n-型重掺杂Si片预处理
[0045] 将n-型重掺杂Si片置于质量浓度为5%-10%的氢氟酸溶液中刻蚀2-3分钟,去除n-型重掺杂硅片表面的薄氧化层,然后超声清洗并干燥得到预处理后的备用重掺杂Si片;
[0046] c、用镊子将步骤a制备所得的p-型ZnSe纳米线呈片状揭下,揭下的片状p-型ZnSe纳米线平铺于备用重掺杂Si片上;所述片状p-型ZnSe纳米线不大于备用重掺杂Si片的面积;
[0047] d、在片状p-型ZnSe纳米线的四周平辅绝缘层,再在片状p-型ZnSe纳米线上铺石墨烯电极1,以使在所述感光层3与石墨烯电极1之间为欧姆接触,并且在n-型掺杂Si片4与石墨烯电极1之间为绝缘。
[0048] 本实施例制备的基于p-型ZnSe纳米线/n-型Si异质结的光电探测器示意图如图1所示。所合成的Ag掺杂p-型ZnSe纳米线的扫描电子显微镜图、X射线能谱图、X射线衍射图如图2所示。图3所示为p-型ZnSe纳米线/n-型Si异质结的性能测试,其中插图为其半对数坐标。从中可以看出所制备异质结具有较高的整流特性,电压在-5V~5V整流比达到103,开启电压为0.5V,且从明暗电流曲线对比中可以看出在光照下电流明显上升,开关比约1.2×103;图4是异质结光电探测器在反向偏压为-5V时的光响应的图谱,从图中可以看出这种异质结探测器具有较高的响应速度。有光照射下,电流会迅速上升,撤去入射光,光电流迅速消失,光暗电流的开关比达到103左右,这种高的响应速度对于制备高性能的光电探测器具有很好的使用价值。
[0049] 实施例2:
[0050] a、制备p-型ZnSe纳米线
[0051] p-型ZnSe纳米线是通过热蒸发的方法在三温区管式炉中合成的,本实施例采用P作为掺杂元素。
[0052] 首先将质量纯度不低于99.9%的ZnSe粉末0.25g充分研磨后放入氧化铝瓷舟里,将作为衬底的硅片用酒精和丙酮清洗干净,并用电子束在衬底上蒸镀10nm金作为催化剂。然后把氧化铝瓷舟和衬底放入到管式炉中,衬底位于氧化铝瓷舟下游10cm处。
[0053] 对管式炉抽真空至10-3帕斯卡,接着对炉腔进行加热一个半小时,使温度达到1050℃,保持此温度2个小时后关闭反应程序,整个过程中持续通入50sccm的氩氢混合气体(按体积比氩气∶氢气为95∶5)与10sccm的磷烷,保持炉腔压强在100Torr。待管式炉温度冷却到室温时,取出样品可看到衬底上沉积了一层黄褐色绒状产物,即p-型ZnSe纳米线;
[0054] b、n-型重掺杂Si片预处理
[0055] 将n-型重掺杂Si片置于质量浓度为5%-10%的氢氟酸溶液中刻蚀2-3分钟,去除n-型重掺杂硅片表面的薄氧化层,然后超声清洗并干燥得到预处理后的备用重掺杂Si片;
[0056] c、用镊子将步骤a制备所得的p-型ZnSe纳米线呈片状揭下,揭下的片状p-型ZnSe纳米线平铺于备用重掺杂Si片上;所述片状p-型ZnSe纳米线不大于备用重掺杂Si片的面积;
[0057] d、在所述片状p-型ZnSe纳米线的四周平辅绝缘层,再在片状p-型ZnSe纳米线上铺石墨烯电极1,以使在所述感光层3与石墨烯电极1之间为欧姆接触,并且在n-型掺杂Si片4与石墨烯电极1之间为绝缘。
[0058] 经制备所得基于p-型ZnSe纳米线/n-型Si异质结的纳米光电探测器光响应图谱见图5。说明掺杂材料种类对于器件性能影响较小。