管线的强度和技术效果。含金属的聚合物强化管、用于制造所述管的方法以及采用所述管生产的管线转让专利

申请号 : CN201280071457.0

文献号 : CN104185758B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : Y·M·彼得罗夫

申请人 : Y·M·彼得罗夫

摘要 :

本发明涉及一种由金属框架强化的复合物管,其被用于输送油和气、酸、碱产品、饮用水和工业用水,并且还用于输送腐蚀性和中性矿浆,例如在地下对于岩石进行滤出时使用。所要求保护的是:一种金属-聚合物强化管,包括焊接的金属框架和具有基于非晶相的分子结构的聚合物基体。金属-聚合物强化管通过如下方式制造:挤压模塑并同时将复合物熔体和强化金属框架送入到模具腔,随后对模塑成型的管的内表面和外表面进行集中冷却。本发明所解决的技术问题是,提高了金属-聚合物强化管的质量和径向的耐受力限制,提高了用于制造所述管的处理过程的生产率,以及还提高了由生产出的管所构造的

权利要求 :

1.一种通过挤压成型制造金属-聚合物管的方法,包括:将聚合物熔体从挤压头送入到由冷却的心轴和外模具筒形成的模具腔中,同时送入采用至少一个卷筒电极制成的焊接的金属强化框架,其特征在于,在强化框架的焊接过程中,对卷筒电极提供与纵向强化元件和横向强化元件的相互交叉的时间同步、并且与向所述卷筒电极提供电流脉冲的时间同步的脉冲,所述卷筒电极被用作为用于在制造框架时形成线圈的设备,所述卷筒电极确保通过液压致动器所施加的力而将所述横向强化元件向所述纵向强化元件恒定地按压;以及在挤压成型过程中,在所述心轴之前布置耐热的非金属衬套,对模塑成型的管的内表面和外表面进行冷却,以制造具有基于非晶相的分子结构的聚合物基体。

2.根据权利要求1所述的方法,其特征在于,所述管被制造为具有包括占总聚合物体积

60-90%的量的非晶相的聚合物基体结构。

3.根据权利要求1所述的方法,其特征在于,由压缩空气和冷却液体产生的雾形式的冷却剂被用于在外部对金属-聚合物管进行冷却;以及冷却液体被送入模塑成型的金属-聚合物管的内腔,以便对所述心轴和布置在所述管内的插头之间的空间进行填充,用于在内部冷却所述管。

4.一种由根据权利要求1所述的方法生产的金属-聚合物强化管,包括焊接的金属框架和通过挤压成型生产出的聚合物基体,其特征在于,所述聚合物基体由具有基于非晶相的分子结构的聚合物形成。

5.根据权利要求4所述的金属-聚合物强化管,其特征在于,所述聚合物基体由具有分子结构的聚合物形成,所述分子结构包括占聚合物总体积60-90%量的非晶相,并且由纵向强化元件和横向强化元件制成的所述焊接的金属框架中的点焊接连接具有至少35kgf的剪切强度。

6.根据权利要求5所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括具有网格形状的、通过将横向强化元件缠绕到纵向强化元件上而制成的焊接的金属框架,所述金属-聚合物强化管的外径是50-1000mm,所述横向强化元件之间的距离从s到6s,以mm为单位,其中s是所述纵向强化元件和所述横向强化元件的横截面宽度,其范围为0.2-

16mm,节距0.1mm。

7.根据权利要求6所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述焊接的金属框架的纵向强化元件和横向强化元件的各种截面形状的金属丝或杆、或在其横截面上具有可变半径的金属卷筒、或带状形状的平的金属卷筒。

8.根据权利要求7所述的金属-聚合物强化管,其特征在于,所述金属丝或杆是圆形截面、方形截面、梯形截面、或椭圆形截面。

9.根据权利要求7或8所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述焊接的金属框架的纵向强化元件和横向强化元件的金属丝、或杆、或由钢或基于铁基或非铁基金属的合金制成的金属卷筒。

10.根据权利要求9所述的金属-聚合物强化管,其特征在于,所述合金是铁基合金、或铬基合金、或镍基合金、或铜基合金。

11.根据权利要求4所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的热塑性或热固性塑料。

12.根据权利要求11所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括从包括聚乙烯、氟塑料、聚酯酮、聚酯砜、聚氨酯、聚氯乙烯、聚酰胺、热塑性硫化弹性体的组中选取的聚合物作为所述聚合物基体。

13.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的聚乙烯,其耐冲击性是至少427kJ/m2,工作压力为至少

40atm,并且工作温度模式在-50℃到+95℃的范围内。

14.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,在-40℃到+80℃温度循环变化时,所述金属-聚合物强化管的工作长期稳定性大于1200循环周期。

15.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的氟塑料,其工作压力为至少40atm,并且工作温度模式在-

150℃到+260℃的范围内。

16.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的聚酯酮,其工作压力为至少40atm,并且工作温度模式在-

90℃到+260℃的范围内。

17.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的聚酯砜,其工作压力为至少40atm,并且工作温度模式在-

100℃到+200℃的范围内。

18.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的聚氨酯,其工作压力为至少40atm,并且工作温度模式在-

70℃到+170℃的范围内。

19.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的基于聚烯烃的热塑性硫化弹性体,其工作压力为至少

40atm,并且工作温度模式在-60℃到+130℃的范围内。

20.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为聚合物基体的聚氯乙烯,其工作压力为至少40atm,并且工作温度模式在-10℃到+70℃的范围内。

21.根据权利要求11或12所述的金属-聚合物强化管,其特征在于,所述金属-聚合物强化管包括作为所述聚合物基体的聚酰胺,其工作压力为至少40atm,并且工作温度模式在-

60℃到+115℃的范围内。

22.一种用于连续生产金属-聚合物管的装置,包括:挤压机,所述挤压机具有挤压头,所述挤压头具有用于将聚合物熔体送入模具腔内的通道,所述模具腔由冷却的心轴和外模具筒形成,所述冷却的心轴和所述外模具筒都是固定到所述挤压头上的;焊接机,所述焊接机覆盖所述挤压头,并且连接到设计成用于容纳纵向强化元件和横向强化元件的卷轴、以及用于将纵向强化元件和横向强化元件向焊接区域供给的引导设备、以及用于将焊接好的框架送到模具腔的设备;冷却系统;以及拉出机构和切断装置,所述拉出机构和切断装置沿着模塑成型的金属-聚合物管的运动方向连续布置;其特征在于,所述心轴通过分配器和耐热的非金属衬套固定到所述挤压头上,作为连续布置,以及所述焊接机包括与按压装置和冲击机构连接的至少一个卷筒电极,所述按压装置和冲击机构被连接到液压致动器,用于在焊接纵向强化元件和横向强化元件的过程中,从所述液压致动器向所述卷筒电极传送按压力和冲击脉冲,以及用于将冲击脉冲与纵向强化元件和横向强化元件的相互交叉的时间同步并且与对所述卷筒电极提供电流脉冲的时间同步的设备,用于由所述横向强化元件形成线圈的设备是所述卷筒电极,所述卷筒电极被布置成能够绕着其轴线旋转以及绕着强化框架的轴线旋转,并且所述卷筒被布置成能够在由所述液压致动器提供的力的作用下将所述横向强化元件向所述纵向强化元件按压;以及冷却系统做成能够生产具有基于非晶相的分子结构的管聚合物基体,并且还包括位于模具筒外侧的冷却剂发生器、以及具有阀的插头,所述阀被布置在模塑成型的金属-聚合物管内以在其间形成封闭的腔。

23.根据权利要求22所述的装置,其特征在于,所述冲击机构包括连接到所述液压致动器的液压缸,并且所述按压装置被形成为布置在液压缸杆上且抵靠在卷筒电极杆上的弹簧。

24.根据权利要求22所述的装置,其特征在于,所述焊接机包括用于布置在至少一个卷筒电极上的传送带、以及覆盖挤压头主体的毂,其被布置成能够绕着其纵向轴线旋转并且设置有致动器,具有横向强化元件的卷轴可活动地布置在所述焊接机的毂上,并且被形成为能够绕着所述毂的轴线旋转。

25.根据权利要求22所述的装置,其特征在于,所述冷却的心轴被布置成能够沿着安装直径定位在挤压头上。

26.根据权利要求22所述的装置,其特征在于,冷却系统插头经由柔性连接部连接到供给冷却液体的管的一端。

27.根据权利要求22所述的装置,其特征在于,连接到计数装置的位置传感器或者连接到用于自动判断最佳电流参数的处理器上的反馈传感器被布置在焊接机上,作为对冲击脉冲和焊接电流脉冲进行同步的设备。

28.根据权利要求22所述的装置,其特征在于,冷却剂发生器被形成为位于模塑成型的管的外侧的穿孔管,冷却剂发生器的穿孔管中的孔面对所述模塑成型的管。

29.根据权利要求22所述的装置,其特征在于,冷却剂发生器被形成为穿孔螺旋管,其沿着模塑成型的金属-聚合物管的外周覆盖所述模塑成型的金属-聚合物管。

30.根据权利要求22所述的装置,其特征在于,切断装置布置在拉出机构的下游,并且布置成能够以与模塑成型的金属-聚合物管的移动速度的相对应的速度运动;并且重力卷筒支架在模塑成型的金属-聚合物管的移动方向上接续布置在切断装置的下游,并且设置有用于收集冷却液体并使其返回冷却系统的系统。

31.一种由根据权利要求4所述金属-聚合物强化管构成的管线,包括所述金属-聚合物强化管的连接,其特征在于,所述连接采用连接元件形成,布置在所述管的端部的螺纹上,每个连接元件都被形成为由聚合物材料制成的圆柱形套筒,并且设有在金属-聚合物管的端面处覆盖纵向强化元件和横向强化元件的输出的环形内颈圈,其中所述纵向强化元件和横向强化元件的输出为纵向强化元件和横向强化元件的可见部分,并且螺纹牙高被形成为使其小于在金属-聚合物强化管的壁中覆盖强化框架的聚合物外层的厚度。

32.根据权利要求31所述的管线,其特征在于,所述管线包括至少两个金属-聚合物强化管的焊接连接,为了制造所述焊接连接而使用在管端部布置的连接元件,所述管布置成与所述连接元件的端面接头对接头,能够利用位于这些端面之间的加热器同时对这些端面进行加热,并随后移走加热器;然后通过按压管获得所述焊接连接,其中所述按压管指的是向相反的方向移动所述管。

33.根据权利要求31所述的管线,其特征在于,所述管线包括金属-聚合物强化管的法兰连接,为了获得所述法兰连接而在连接元件的外壁上设置斜面槽用于布置法兰,所述法兰具有圆周布置的孔的环形形状,并且所述法兰的内部环形表面设置有互补的圆锥螺纹,所述圆锥螺纹具有与形成在所述连接元件上的斜面的角度相对应的锥角,通过使用螺栓或螺钉和螺母来紧固所述法兰而连接设置有所述法兰的管。

34.根据权利要求32所述的管线,其特征在于,所述管线包括利用连接元件的金属-聚合物强化管的套筒连接,所述连接元件布置在端部且彼此焊接,所述连接是通过在连接元件的套筒的外表面上形成螺纹来形成;具有比待连接的管的直径大的直径的金属-聚合物管的长度被用作为套筒,套筒的内表面在两侧设置有与套筒外表面上的螺纹相对应的互补的螺纹,以将套筒旋到金属-聚合物强化管的焊接连接上。

35.根据权利要求34所述的管线,其特征在于,连接元件的套筒的外表面设置有圆柱螺纹或自密封的圆锥螺纹。

36.根据权利要求34所述的管线,其特征在于,在连接元件的端面之间布置有密封环。

37.根据权利要求34所述的管线,其特征在于,连接元件的端面彼此焊接。

38.根据权利要求31所述的管线,其特征在于,所述管线包括:具有布置在其端部的螺纹上的连接元件的根据权利要求4所述的金属-聚合物管与由玻璃强化塑料制成的管的连接、和/或与由金属箔强化聚合物制成的管的连接、和/或与由金属带强化聚合物制成的管的连接、和/或与由非强化聚合物制成的管的连接。

39.根据权利要求36所述的管线,其特征在于,所述管线进一步包含组合T形件、组合支管和停止阀。

40.根据权利要求39所述的管线,其特征在于,所述组合T形件具有金属T形件形状的中心件,由纵向强化元件和横向强化元件制成的圆柱型的金属框架焊接到所述金属T形件形状的中心件的端口边缘,与金属-聚合物强化管的框架相对应,其中所述中心件设置有聚合物壳体。

41.根据权利要求39所述的管线,其特征在于,所述组合支管具有金属支管形状的中心件,由纵向强化元件和横向强化元件制成的金属框架焊接到所述金属支管形状的中心件的端口边缘,与金属-聚合物管的框架相对应,其中所述金属支管的中心件设置有聚合物壳体。

42.根据权利要求40或41所述的管线,其特征在于,在由所述纵向强化元件和横向强化元件制成的金属框架上,金属壳焊接到所述组合T形件或组合支管的中心件的端口边缘。

43.根据权利要求39所述的管线,其特征在于,组合支管取决于转弯角度由两段或更多段金属-聚合物强化管的长度组成,每段金属-聚合物强化管的长度在其两端都设置有连接元件,所述连接元件具有由聚合物材料制成的圆柱形套筒形状,并且在端面处设置有内部环形突出部,所述突出部覆盖纵向强化元件和横向强化元件,并且连接元件的端面设置成具有端部切口的设定角度,使得随后能够以所述角度焊接这些端面。

44.一种用于构造根据权利要求31所述的管线的连接元件,具有由聚合物材料制成的圆柱形套筒的形状,并且在其端面设置有内部环形突出部,其特征在于,在套筒的内侧面上形成螺纹,环形突出部的宽度不大于待连接的金属-聚合物管的侧壁的厚度,但是大于位于所述管的壁中的所述纵向强化元件和横向强化元件的深度。

45.根据权利要求44所述的连接元件,其特征在于,套筒的内表面设置有自密封的圆锥螺纹。

46.根据权利要求44所述的连接元件,其特征在于,所述连接元件由与待连接的金属-聚合物强化管相同的聚合物材料制造。

47.根据权利要求44所述的连接元件,其特征在于,套筒内径比金属-聚合物管的外径小一螺纹牙高;所述螺纹牙高比金属-聚合物强化管的壁中的聚合物层的厚度小,所述聚合物层位于所述纵向强化元件和横向强化元件之上。

48.采用根据权利要求4所述的金属-聚合物强化管来构造气体管线或油管线或用于输送深井产品的现场管线的应用。

49.采用根据权利要求4所述的金属-聚合物强化管来构造用于输送酸、碱、醋酸乙烯酯、干的悬浮物质、块状产品和矿浆的管线的应用。

50.采用根据权利要求4所述的金属-聚合物强化管来构造供水管线、或污水管线、或热水供应系统的应用。

51.采用根据权利要求4所述的金属-聚合物强化管作为套管、或作为桩、或作为支撑的应用。

说明书 :

含金属的聚合物强化管、用于制造所述管的方法以及采用所

述管生产的管线

技术领域

[0001] 本发明涉及由金属框架来强化的聚合物管、用于制造所述管的方法、以及采用所述管的最佳变形。金属框架的强度以及聚合物基体(polymer matrix)的化学稳定性使得能够在各种经济领域中使用金属-聚合物(金属-塑料)管,特别是,用于输送油和气、酸、碱产品、饮用水和工业用水,并且对磨料磨损的高稳定性使得能够使用所述管用于输送腐蚀性和中性矿浆(pulps)以及作为套管(case pipe),例如在地下对于岩石进行滤出时使用。

背景技术

[0002] 已知在1988年1月15日公开的苏联发明人证书第SU1366757号中描述了金属-聚合物强化管,其包括焊接的金属框架和聚合物基体。这种管的缺点是由两步生产得到的聚合物基体的复杂组合结构。首先,形成聚合物基体的内层,将金属框架植入(embed)其中,然后形成上层、覆盖的热塑性层,管的内层和外层被设置有复杂的表面轮廓,以便于所述轮廓能够彼此接合并且所述层能够彼此粘附。
[0003] 从1994年11月16日公开的英国专利GB2277975中已知的金属-聚合物强化管更简单并且更耐用。这种管具有整体的热塑性聚合物基体,所述基体主要具有晶体结构并通过挤压生产得到;以及由纵向强化元件以及至少两个横向螺旋强化元件制成的强化金属框架。
[0004] 这种管的缺点在于其承受热循环负载时的长期强度较低。
[0005] 与所要求保护的发明的最接近的相似解决方案是在1982年5月23日公开的苏联发明人证书第SU929951号中描述的金属-聚合物强化管,其包括:通过在强化元件的交叉点处焊接而刚性固定的金属网框架;以及通过挤压成型生产出的聚合物基体。此外,为了改善对径向负载的抗性,内壁和外壁的厚度在框架厚度的0.2-0.8之间的范围内选择。
[0006] 然而,实践中发现,金属-聚合物强化管的强度,特别是其抵抗径向负载的能力,主要不是由强化框架厚度和管壁厚度的比例决定的,而是由“金属-聚合物”组释放(relax)由施加到管上的负载所产生的内部应力的能力来决定的,该能力能够保持聚合物基体的整体性而使管主体不破裂。
[0007] 在管生产过程中,金属框架和聚合物被加热到相同的温度。在它们接下来的采用相同(接近值)变化率的冷却过程中,金属和聚合物都发生收缩,但是聚合物的收缩的百分比更大。因此,冷却后,在金属框架和聚合物基体之间留有间隙,所述间隙允许结构元件处于相互平衡状态。也就是,具体来说,当框架被施加了负载时,聚合物允许框架的弹性变形,由此释放所产生的应力。此外,这种间隙还允许聚合物的长期松弛,而不产生大的球粒(spherulites)。在这种连接中,在管的横截面中聚合体的量越多,聚合体释放所产生的应力的相对能力越低。也就是说,如发明人证书第SU929951号中所主张的,聚合物的内层和/或外层的增加,并不能改善管的强度性能。
[0008] 另一方面,管框架中聚合物层厚度的显著增加也是不能接受的,因为出于加工目的,例如为了组装管线或管道支线以及为了能够对管线进行修复,就对聚合物基体的限定最小尺寸有所要求。
[0009] 此外,除了SU929951的发明中的关键论述外,可以说根据所执行的实验工作还发现金属-聚合物管的径向强度主要取决于金属框架的物理性能和参数,如:框架晶胞尺寸、纵向和横向的强化元件的尺寸、或者焊接连接的强度,而非取决于管壁厚度的选择。
[0010] 在制造所要求保护的金属-聚合物管的方法中,应该重点关注改善金属-聚合物管的强化框架的强度,这能够消除高质量管的制造中存在的问题,所述问题在现有技术的现有陈述中并没有解决。
[0011] 用于连续制造强化聚合物管的方法及装置在现有技术中是已知的,其在1992年2月29日公开的专利SU1716963中被描述。这种方法包括将聚合物熔体送入挤压机的环形模具腔,同时将强化框架供给到其中。出于降低管壁中残余内应力的目的,聚合物供给到和框架运动方向之间的角度在90°到150°的范围内选择。所述装置包括挤压机,所述挤压机具有头部,所述头部具有用于熔体的中间供给到通道。用于形成管的环形模具腔由心轴和筒组成,并且与挤压通道连通。挤压通道的出口区域设置具有60°到180°范围内的空间角,该角的 顶点面向模具腔的出口。
[0012] 具体来说,在金属-聚合物管的管壁中产生残余内应力的原因是:挤出物和挤压通道壁之间产生的摩擦力;以及离开挤压头之后,挤出物和模具腔壁之间产生的摩擦力,以及由于制造出的管的冷却而造成的在固化过程中应力状态下的聚合物的随后的固定。这种应力状态在宏观结构水平下的特征是聚合物大分子的纵向取向,这特别是在邻近心轴的区域更加明显。假设制造具有从60°到180°范围内的空间角(所述空间角的顶点面向模具腔的出口)的挤压通道出口区域会导致干扰挤压通道内的聚合物熔体层流,因为在离开挤压通道并进入模具腔时熔融的聚合物流会经历急转弯,这样的熔融的聚合物流对在挤压通道内形成的聚合物宏观结构取向产生干扰,并且对以聚合物非取向状态开始的在模具腔中的聚合物宏观大分子的随后取向产生干扰。由于宏观结构取向处理所需的时间与聚合物穿过模具腔的时间相当,因此假设在固化时间中材料内的应力会发展到较小的程度。
[0013] 所述假设并不能证明其价值,并且所述假设是建立在聚合物分子的纵向取向与离开挤压通道的角度无关的事实上,因为在晶化时间开始之前,聚合物熔体结构中的取向过程是平衡的。因此,在挤压通道内的角度和熔体运动方向的改变不会对在聚合物宏观结构中的分子的空间取向过程造成显著变化。
[0014] 这种技术的缺点是聚合物基体的非最优结构,这会引起管的长期强度的低系数(indices)。长期强度是通过样品的热循环负载(热循环)方法来评估的,所述方法为在每一循环中冷却所述样品并且将它们在-40℃保持3个小时,然后再将它们加热到+80℃并保持3个小时。根据SU1716963的说明书,在损坏出现之前的循环次数为从130到245。
[0015] 与所要求保护的关于制造金属-聚合物强化管的方法和装置的发明最接近的相似解决方案是在2008年3月20日公开的专利RU2319886中公开的方法和装置。这个专利教导了一种通过挤压成型来连续制造金属-聚合物管的方法,根据所述专利,强化线圈以预定的节距缠绕在被拉紧并且与挤压出的管一起运动的纵向强化元件上,所述元件在圆周上均匀分布,然后,当缠绕时,利用绕强化线圈的轴线旋转的卷筒电极(roll electrode)通过电接触方法将所述强化线圈焊接到相继交叉的纵向强化元件处。在交叉纵向强化元件的同时供给焊接电流脉冲。形成的强化框架被引入到模具腔中,同时将被挤压聚合物的熔体供 给到其中。强化线圈被布置具有2π/n角度的相互相位移,其中n是强化线圈的数量。通过同时使用多对卷筒电极来实施焊接,卷筒电极的数量对应于强化线圈对的数量。焊接电流被自发地供给到每对卷筒电极。因此,卷筒电极对的数量是n/2,其中n是强化线圈的数量。每对电极对的中心角α是120-240°,所述中心角在电极的接触点和纵向强化线圈之间画出的半径之间测量得到。应当意识到,焊接电流交替地经由每对卷筒电极的一对供电集流器(current-feeding collector)供给到每对卷筒电极。
[0016] 用于执行根据专利RU2319886的方法的装置包括具有直流头的挤压机,所述直流头设置有主轴(arbor),所述主轴具有引导槽,所述引导槽用于纵向强化元件和冷却心轴(mandrel)。设置有安装在轴承上的毂的焊接机器被布置在挤压机的下游。所述毂设置有:用于横向强化元件并能自由旋转的卷轴;用于缠绕强化线圈的偏转卷筒;用于将其焊接到纵向加强元件上的卷筒电极;以及具有与卷筒电极的数量相等的绝缘部的供电集流器。在毂内固定布置有筒,所述筒与心轴一起形成模具腔。
[0017] 卷筒电极对的数量是n/2,其中n是强化线圈的数量;并且每一对的在电极和横向强化线圈之间的接触点之间的中心角α是120-240°。每一对中的每个卷筒电极被安装到具有偏心旋转支撑的杆上。每一对中的偏心旋转支撑的一侧上的杆都具有平衡块,并且在另一侧通过具有焊接力调整器和指示器的气缸而彼此连接。每一对中的卷筒焊接电极都串联地彼此连接,连接到主轴并连接到电源。
[0018] 上述方法和装置的缺点是管的强化金属框架的焊接连接的低强度,这是通过它们的使用而获得的,因为按压焊接卷筒电极的力是由气压致动器提供的,所述气压致动器比液压致动器施加的力要小。还有,焊接机械结构的缺点是脉冲值和向卷筒供给脉冲的时间与横向强化元件交叉纵向强化元件的时间并不对应,因为所描述的装置缺少用于执行同步处理的设备。结果是,管在轴向和径向上都强度低。
[0019] 此外,作为原型的一个缺点,可以说是在挤压通道之后直接布置心轴。离开挤压机头部的供给通道的熔体直接到达冷却的心轴。离开所述通道的熔体具有的温度高于聚合物熔融温度(例如,聚丙烯的熔融温度是大约190-270℃)。到达心轴的端部和后部的熔体将它的一部分热量传递给心轴。在这种情况中, 一方面,发生熔体的过早冷却,这会引起晶化过程的过早开始并且使聚合物粘附到金属框架上,从而导致管横截面强度的降低。另一方面,当处理工艺提供用于熔体的冷却时,熔体高温对心轴的作用并不能控制和调整聚合物冷却处理,准确确定和校正熔体粘附到强化框架的开始点以及熔体晶化的开始点。随之而来的是在管的聚合物基体结构中产生的缺点,所述管由70-90%的晶粒(crystallites)(即,高密度的区域)以及10-30%非结晶区域(即,无序的分子键或者低密度区域)组成。这种聚合物结构的特点是低柔韧性(flexibility)。当在由这种结构的聚合物制成的管上施加显著的径向和轴向负载时,管发生裂纹;因此,根据这种原型生产的管具有较低的长期强度系数。
[0020] 这种原型的另一个明显缺点是用于强化框架的焊接工艺的结构。利用只以成对方式安装的卷筒电极进行焊接。卷筒电极的数量对应于横向强化线圈的数量,并且从偶数(2、4、6……)中进行选择。不可能从奇数中选择强化线圈的数量,这缩小了制造管时的结构可能性的范围。
[0021] 在焊接机构的结构中设置气压缸,所述气缸施加用于将纵向强化元件按压到横向强化元件的所需作用力。一个卷筒电极的杆被固定到气缸缸体,另一个卷筒电极的杆被固定到气缸杆;这些杆形成相互连接的对。当空气被压入气缸中时,将杆固定到气缸杆上的轴线与将杆固定到气缸缸体上的轴线之间的距离增加。按压的均匀性主要依赖于杆机构的旋转支撑的正确布置。如果不能获得它们的正确布置,那么杆机构以及因此的卷筒电极的运动的几何(geometrical)性能将会是不同的。杆机构运动的几何特性的不同会对各个卷筒对线圈的按压质量有影响。这直接导致力矢量相对于计划的对称轴线的方向的不同。如果施加到气缸缸体上的杆支撑的力和施加到气缸杆上的杆支撑的力相同,但是卷筒的按压矢量和对称轴线之间的夹角不同,那么会产生不同的按压力。结果是,根据原型制造的产品是具有强化框架的金属-聚合物强化管,其具有周期性改变的强度和在强化线圈和纵向强化元件之间的焊接连接的周期性改变的质量。
[0022] 所要求保护的发明的目标是要在发展连续制造金属-聚合物强化管的方法以及用于执行所述方法的装置的过程中消除上述缺点,以及保证高质量的金属-聚合物强化管的生产。
[0023] 现有技术中公知的管线由金属-聚合物强化管构成,并且在2005年9月21日公开的专利EP1577077中描述,其中通过使用电焊耦接接头而将管连接。 用于各个连接处的电焊耦接接头的使用造成管线构造的不必要的高成本,此外,管连接被制造成是永久的,这降低了管线的可加工性,使维修工作更困难,并且不能保证能够在聚合物和金属管之间形成有连接。
[0024] Zapsibgasprom Ltd公司所拥有的几项专利教导了通过对接焊与随后结合法兰耦接接头来连接塑料强化管。耦接接头设置有螺纹,并且具有能够轴向运动的可能性。所述耦接接头是金属的。(参见专利RU2202727、RU2217311、RU33634)。金属耦接接头的材料以及塑料强化管的基体的聚合物材料的线性热膨胀系数的不同,导致在外界温度改变或者经由管线输送的产品温度发生改变时,包括有金属耦接接头和金属-聚合物管的这种连接的剥离。
[0025] 为了更加可靠地连接金属-塑料管的两端,有必要为它们提供连接元件,称之为边缘耦接接头,所述边缘耦接接头能够牢靠地固定在管端部。
[0026] 在授权名称为“用于径向摩擦焊接基于聚烯烃的管状部件的方法”的专利专利RU2085383(1997年7月27日公告)的说明书中公开了管线连接元件的最接近的相似解决方案。所述专利的教导显示聚合物边缘部具有背侧的突出部,所述突出部封闭了管上的强化元件出口。边缘部在外表面上具有螺纹,而在内表面上没有螺纹,因为其通过摩擦焊接连接到管上。
[0027] 通过往复运动将边缘部安装到具有预制接触面的固定的管上。这种方法提供了具有必要的强度和密封性的连接。
[0028] 这种连接的缺点是高劳动强度,并且不太可能在不将管线拆卸且运送到生产点的情况下而直接在现场将其用于管线上。
[0029] 所要提出的连接元件和管线不具有上述缺点。

发明内容

[0030] 所要求保护的发明所要解决的问题是,提供一种技术以便通过采用有效的设备来生产高强度和高质量的金属-聚合物强化管,以及保证由这样生产出的管构造管线的可能性。
[0031] 本发明的技术效果是,改善了金属-聚合物强化管的质量以及在径向上的长期强度,并提高了其制造过程的生产率,以及改善了由这样生产出的管所构造的管线的强度和可加工性。
[0032] 对金属-聚合物管的强度特性的改善包括改善金属框架在轴向和径向方向 上的强度以及改善聚合物基体的结构,通过应用所要求保护的技术,可实现柔韧性和弹性以及降低聚合物到加强元件的粘附性,于是因此使得热循环负载(热循环)期间管聚合物基体不会破损。
[0033] 对管质量的改善包括对设置在模塑制造的管的基体中的强化框架的尺寸稳定性指数的改善。
[0034] 所要求保护的工艺的一个优点是,与现有的相似技术方案比,提高了设备的生产率和使用寿命,以及由此带来的金属-聚合物管生产和管线构造的成本降低。
[0035] 对强度和可加工性指数的改善是通过金属-聚合物强化管的高的质量和强度(根据在95-225mm范围内的管直径,管的安全系数在2-4.75的范围),以及管线中的管的可释放连接和永久连接的强度和可靠性来保证,所述管线是通过使用所开发的连接元件来完成的。
[0036] 此外,所构造的管线的可靠性是通过它对磨料磨损的高稳定性以及对自然和工业来源的腐蚀剂(如海水、土壤腐蚀环境、含硫气体、氯化物和其他腐蚀性盐以及各种酸和碱)的作用的高稳定性来确保的。
[0037] 为了解决所列出的目标,要求保护一种金属-聚合物强化管,其包括焊接的金属框架和通过挤压成型方法生产出的聚合物基体,聚合物基体模由这样的聚合物模塑成型,所述聚合物具有基于非晶相的分子结构,优选包括占总聚合物体积60-90%量的非晶相,而金属框架制造成纵向和横向强化元件的每个焊接连接具有至少35kgf的剪切强度。
[0038] 所要求保护的金属-聚合物强化管优选具有下列设计值:它的外径是50-1000mm;横向强化元件之间的距离,即线圈之间的节距,从s到6s,以mm为单位,其中s是纵向强化元件和横向强化元件的横截面值,并且s选自0.2-16mm的范围而节距0.1mm。
[0039] 所要求保护的金属-聚合物强化管可包括作为焊接的金属框架的纵向和横向强化元件各种金属丝或金属杆的变形,或各种截面的金属结构形状,例如圆形截面、梯形截面、椭圆形截面、可变半径的横截面、以及具有带状形状的平的金属卷筒。应当意识到,如果框架元件连接是由强化元件通过平面相互连接而制成的,例如圆形横截面的强化元件,那么框架元件连接的强度会变得更高。
[0040] 金属聚合物强化管包括作为焊接金属框架的纵向和横向强化元件的丝、 杆、或结构金属卷筒,所述结构金属卷筒由钢或者基于铁基或非铁基金属的合金制成,特别是基于钢、铬、镍、或铜的合金。
[0041] 金属-聚合物强化管可包括作为聚合物基体的热塑性和热固性塑料,特别是从包括聚乙烯、氟塑料、聚酯酮(polyesterketone)、聚酯砜(polyestersulfon)、聚氨酯、聚氯乙烯、聚酰胺、热塑性硫化弹性体的组中选取的聚合物。
[0042] 如果所要求保护的金属-聚合物强化管包括聚乙烯作为聚合物基体,其复合材料的耐冲击性是至少427kJ/m2,管的工作压力为至少40atm,并且工作温度模式在-50℃到+95℃的范围内。
[0043] 在工作中,具有聚乙烯基体的金属-聚合物强化管的特点在于在热循环负载时的高的长期强度,在-40℃到+80℃的循环温度变化中,其长期稳定性大于1200循环周期。
[0044] 如果所要求保护的金属-聚合物强化管包括氟塑料作为聚合物基体,其工作压力为至少40atm,并且工作温度模式在-150℃到+260℃的范围内。
[0045] 如果所要求保护的金属-聚合物强化管包括聚酯酮作为聚合物基体,其工作压力为至少40atm,并且工作温度模式在-90℃到+260℃的范围内。
[0046] 如果所要求保护的金属-聚合物强化管包括聚酯砜作为聚合物基体,其工作压力为至少40atm,并且工作温度模式在-100℃到+200℃的范围内。
[0047] 如果所要求保护的金属-聚合物强化管包括聚氨酯作为聚合物基体,其工作压力为至少40atm,并且工作温度模式在-70℃到+170℃的范围内。
[0048] 如果所要求保护的金属-聚合物强化管包括基于聚烯烃的热塑性硫化弹性体作为聚合物基体,其工作压力为至少40atm,并且工作温度模式在-60℃到+130℃的范围内。
[0049] 如果所要求保护的金属-聚合物强化管包括聚氯乙烯作为聚合物基体,其工作压力至少40atm,并且工作温度模式在-10℃到+70℃的范围内。
[0050] 如果所要求保护的金属-聚合物强化管包括聚酰胺(PA-6、PA-12等)作为聚合物基体,其工作压力为至少40atm,并且工作温度模式在-60℃到+115℃的范围内。
[0051] 所要求保护的金属-聚合物强化管可通过将聚合物熔体和强化金属框架同时送入模具腔来挤压成型,随后对模塑成型的管的内外表面进行集中冷却而被制造。
[0052] 用于制造金属-聚合物管的方法包括:将聚合物熔体从挤压头通道送入到由冷却的心轴和外模具筒形成的模具腔中,同时将采用至少一个卷筒电极制成的焊接的金属强化框架送入所述腔中。在强化框架的焊接过程中,对卷筒电极提供与纵向和横向强化元件的相互交叉的时间同步、并且与向卷筒电极提供电流脉冲的时间同步的脉冲。所述卷筒电极被用作为用于在制造框架时形成线圈的设备,所述卷筒能够确保通过液压致动器所施加的力而将横向强化元件向纵向强化元件恒定地按压。
[0053] 应当意识到,为了挤压成型金属-聚合物管,在心轴之前布置耐热的非金属衬套。对模塑成型的管的内表面和外表面进行冷却,以制造具有基于非晶相分子结构的聚合物基体,所述基体包含占聚合物总体积60%-90%的量的非晶相。
[0054] 由压缩空气和冷却液体产生的雾形式的冷却剂被用于在外部对模塑成型的金属-聚合物管进行冷却。此外,冷却液体被送入模塑成型的金属-聚合物管的内腔中,以便在内部对其进行冷却,所述液体填充心轴和布置在所述管内的插头之间的空间。
[0055] 为了连续地生产金属-聚合物管,开发了一种装置,包括具有挤压头的挤压机,所述挤压头具有用于将聚合物熔体供给到由冷却的心轴和外部模具筒形成的模具腔内的通道。所要求保护的装置还包括固定到挤压头的焊接机,其沿着挤压头的外周扣紧挤压头,并且与用于纵向和横向强化元件的卷轴、以及用于将强化元件送入焊接区域的引导设备、以及用于将焊接好的强化框架送入模具腔的设备连接。此外,所要求保护的装置包括冷却系统、拉出机构和切断装置,它们沿着模塑成型的金属-聚合物管的运动方向连续布置。心轴通过连续布置的分配器和耐热的非金属衬套安装到挤压头上。所要求保护的装置的焊接机包括:连接到按压装置和冲击机构的至少一个卷筒电极,所述按压装置和冲击机构连接到液压致动器上,用于在焊接纵向和横向强化元件的过程中,从液压致动器向卷筒电极传送按压力和冲击脉冲;以及用于将冲击脉冲与纵向和横向强化元件相互交叉的时间以及向卷筒电极提供电流脉冲的时间同步的设备。用于由横向强化元件形成线圈的设备是所述卷筒电极,所述卷筒布置成能够绕着其轴线以及绕着强化框架的轴线旋转,以及能够在由液压致动器提供的力的作用下将横向强化元件向纵向强化元件按压。冷却系统被制造成能够生产具有 基于非晶相分子结构的管聚合物基体,并且为此它还包括位于模具筒外侧的冷却剂发生器以及具有阀的插头,所述插头被布置在模塑成型的金属-聚合物管内,用于在所述管内形成封闭的腔。冷却系统的插头可经由柔性连接部连接到提供冷却液体的管子的一端。在所要求保护的装置的冷却系统中使用的冷却剂发生器被制造成位于模塑成型的管的外侧的穿孔管,冷却剂发生器的穿孔管中的孔面向模塑成型的管。特别是,冷却剂发生器可以被制造成穿孔螺旋管,其沿着外周扣紧金属-聚合物管。
[0056] 所要求保护装置的焊接机包括用于布置至少一个卷筒电极的传送带以及扣紧挤压头主体的毂;它们被布置成能够绕着头的纵向轴线旋转并且设置有致动器。作为连接到卷筒电极的冲击机构,其包括:连接到液压致动器的液压缸;以及按压装置,所述按压装置被制成为布置在液压缸杆上且由卷筒电极杆支撑的弹簧。此外,焊接机的毂设置有可转动的卷轴,所述卷轴具有缠绕在其上的横向强化元件,所述卷轴能够绕着毂的轴线旋转。
[0057] 所要求保护的装置的冷却的心轴被布置成能够根据孔径而定位在挤压头上,这对于保证生产出的管的尺寸稳定性以及因此对于其质量是非常重要的。
[0058] 所要求保护的装置的焊接机可设置有连接到计数装置的位置传感器,作为用于对冲击脉冲和焊接电流脉冲进行同步的设备。根据另一实施例,焊接机可设置有连接到用于自动判断最佳电流参数的处理器上的反馈传感器,作为对冲击脉冲和焊接电流脉冲进行同步的设备。
[0059] 生产过程中的模塑成型的管在拉出机构的作用下沿着所要求保护的装置的纵向轴线被连续地传送。此外,切断装置布置在拉出机构的下游,并且被布置成能够以与模塑成型的金属-聚合物管的移动速度相对应的速度运动。重力卷筒支架沿着模塑成型的金属-聚合物管的移动方向继续布置在切断装置的下游,所述重力卷筒支架被设置有用于收集冷却液体并将其返回冷却系统的系统。
[0060] 可根据上述方法生产的管主要意在用于构造在关于腐蚀负载以及高压力输送流体等极端环境中使用的管线。
[0061] 所要求保护的管线由金属-聚合物强化管构成,所述强化管具有焊接金属框架以及具有基于非晶相的分子结构的聚合物基体。所述管是采用挤压成型方法生产的。管通过利用布置在金属-聚合物强化管端部处的螺纹上的连接元件 而在管线中连接。每个连接元件都被制造成圆柱形形状的聚合物衬套,所述衬套在其内表面上具有螺纹,并且在端面处具有环形内颈圈,所述颈圈在金属-聚合物管的端面覆盖金属强化元件的可见部分,螺纹连接的螺纹牙高小于在金属-聚合物管的壁中覆盖强化框架的聚合物外层的厚度。
[0062] 根据使用管线的工艺目的,管线包括金属-聚合物强化管的可拆卸连接或焊接连接,或者其包括永久连接和可拆卸连接的组合。
[0063] 在所要求保护的管线中的两个或更多个金属-聚合物强化管通过使用安装在管端部上的连接元件进行连接。为了制造焊接连接,管利用其连接元件的端面以接头对接头的方式布置,以确保能够利用布置在它们之间的加热器对这些端面同时进行加热,并随后移走加热器;然后通过在相反方向上的平移运动的方式来按压管而实现焊接连接。
[0064] 具体来说,为了生产金属-聚合物强化管的所述焊接连接,可以采用“熨斗”型的平的电加热器,其布置在连接元件的端面之间。
[0065] 可以采用另外的法兰连接来加强管线的焊接连接。为此,在连接元件的外壁上设置有斜面槽,用于容纳环形法兰,所述法兰具有沿周边布置的孔,并且法兰的内部环形表面设置有互补的锥形表面,所述锥形表面具有与在连接元件上形成的斜面的角度相对应的锥角。通过使用螺栓或螺钉和螺母来紧固设置有法兰的管而连接所述管。
[0066] 根据另一实施例,管线可包括用于加强焊接连接的套筒。可以以如下方式形成套筒耦接。首先,如上所述,连接元件布置在金属-聚合物强化管的端部,所述连接元件在其端面处彼此焊接;然后,在所述连接元件的衬套的外表面上形成螺纹。金属-聚合物管的长度被用作套筒耦接,其直径大于待连接的管的直径,并且在套筒的内表面上形成有与衬套的外表面上的螺纹互补的螺纹。这能对金属-聚合物强化管的焊接连接进行螺纹衬套加强。
[0067] 根据另一实施例,管线可包括:至少两个金属-聚合物强化管的可拆卸的法兰连接,所述可拆卸的法兰连接可采用安装在管端部上的螺纹连接元件来形成;在连接元件的端部形成环形槽,其中容纳密封件;在连接元件的外壁上形成槽并布置法兰;待连接的管利用连接元件的端面被接头对接头地布置,其中能够用螺栓或螺钉和螺母来拉紧法兰。
[0068] 根据另一实施例,管线包括至少两个金属-聚合物强化管的可拆卸的套筒 连接,其可采用安装在管端部的螺纹连接元件来形成。用于套筒的螺纹应当附加地形成在连接元件套筒的外表面上,金属-聚合物管的长度被用作套筒耦接,其直径比待连接管的大。互补螺纹形成在套筒内表面的两端,其能使套筒旋紧到连接元件衬套上。制作成金属-聚合物管的长度的套筒还进一步设置有覆盖在套筒端面上的强化元件的保护性聚合物环。
[0069] 当制作用于管线的套筒连接时,连接元件衬套的外表面可设置有例如圆柱螺纹。在这种情况中,管线包括在这个连接中布置在连接元件的端面之间的密封环。
[0070] 根据另一实施例,连接元件套筒的外表面可设置有自密封的圆锥螺纹。在这种情况中,不需要在连接元件的端面之间放置的密封环。
[0071] 所要求保护的管线可包括从金属-聚合物管到金属管的过渡。出于这个目的,管线可包括,例如,用于金属管和金属-聚合物管的可拆卸的连接,其采用螺纹布置在金属-聚合物管端部的聚合物连接元件。连接元件套筒的外表面具有用于附加金属套筒的安装表面的锥形斜面,所述附加金属套筒在外侧扣紧所述连接元件;附加金属套筒的外表面设置有螺纹,并且在适配器筒上形成互补的螺纹,待连接到管线的金属管例如通过焊接而插入并安装到所述筒中。
[0072] 所要求保护的管线可包括用于金属-聚合物管与由玻璃强化塑料制成的管、和/或由金属箔强化聚合物制成的管、和/或由金属带强化聚合物制成的管、和/或由非强化聚合物制成的管的连接,所述金属-聚合物管具有布置在金属-聚合物管端部的螺纹连接元件。
[0073] 根据管线结构的任一上述实施例,具有通用结构的聚合物连接元件被用于连接金属-聚合物强化管;它被制成为在端部具有环形颈圈的圆柱形套筒。同样,套筒的内侧表面设置有螺纹,环形颈圈的宽度不超过待连接的金属-聚合物管的侧壁的厚度,但是被制造为使其比布置在所述管的壁中的强化元件的深度要大。所要求保护的连接元件由与待连接的金属-聚合物强化管的聚合物材料相同的材料制成。连接元件套筒的内径比金属-聚合物管的外径小一螺牙高度。应当意识到形成在连接元件上的螺纹的牙高总是比金属-聚合物强化管的壁中覆盖强化元件的聚合物层的厚度小。
[0074] 所要求保护的金属-聚合物强化管及由此构造的管线具有广泛应用,构造各种目标,如:
[0075] 高压供水线;
[0076] 加压污水管线;
[0077] 热水供水管线(线);
[0078] 用于油和气体生产现场的管线;
[0079] 用于输送钻井流体的管线;
[0080] 用于构造自流井(artesian well)以及用于准备钻井套筒柱的管线;
[0081] 用于输送油产品的管线;
[0082] 用于输送气体的管线,其能够根据管线直径形成40-90atm压力的供气网路;
[0083] 用于输送化学工业中的酸、碱以及具有高含盐量的流体的管线;
[0084] 用于提供有色金属和稀土金属的地下和堆浸解决方案的管线,以及其他用于湿法冶金的管线;
[0085] 用于采用硫酸和其他酸的冶金公司的管线,以及那些具有高含盐量的废水的管线;
[0086] 用于采矿工业的管线,特别是用于矿浆的液压输送;
[0087] 用于混凝土和其他磨料材料的气压输送的管线;
[0088] 用于海洋基础设施,特别用于构造油气生产的平台的承载结构;
[0089] 用于输送待淡化的海水的管线;
[0090] 用于放置在海洋环境中的管线;
[0091] 用于构建各种设施的支撑和桩;
[0092] 用于海岸保护结构特别是那些用于构建港口和码头的的承载结构;
[0093] 构建上述任一管线都既需要生产高强度的金属-聚合物管也需要生产用于连接金属-聚合物强化管的可靠的结构。

附图说明

[0094] 本发明在图1-13中示出:
[0095] 图1示出了所要求保护的金属-聚合物管在纵截面中的结构。
[0096] 图1A示出了所要求保护的金属-聚合物管在沿A-A线的横截面中的结构。
[0097] 图2示出了用于连续制造金属-聚合物管的装置的总体视图。
[0098] 图3示出了挤压头的截面,其具有布置在其上的焊接机。
[0099] 图4示出了在焊接机的传送带上的一个焊接卷筒电极的布置。
[0100] 图5A示出了在生产所要求保护的金属-聚合物管的过程中以及根据原型冷却聚合物熔体的曲线。
[0101] 图5B示出了与非强化聚合物管相对比的用于生产所要求保护的具有增加的管径的金属-聚合物管的成本增加的动态图。
[0102] 图6示出了由所要求保护的金属-聚合物强化管构成的管线。
[0103] 图7A和7B示出了连接元件以及其在金属-聚合物管的一端的布置。
[0104] 图8示出了管线中金属-聚合物强化管的焊接连接。
[0105] 图9示出了管线中金属-聚合物强化管的焊接连接,所述连接采用强化金属-聚合物套筒进行强化。
[0106] 图10示出了金属-聚合物强化管的可拆卸的法兰连接。
[0107] 图11示出了金属-聚合物强化管的可拆卸的套筒连接。
[0108] 图12示出了到金属管的过渡。
[0109] 图13A-13C示出了用于构建所要求保护的管线的T形件和支线管的实施例。

具体实施方式

[0110] 金属-聚合物强化管,如图1所示,具有聚合物基体1以及由纵向强化元件2和横向强化元件3制成的焊接的金属框架。框架通过将横向强化元件3螺旋缠绕到纵向强化元件2上而生产得到,并且它们在它们的每个交叉处彼此焊接。金属-聚合物强化管通过挤压成型而制得,在所述挤压成型过程中,焊接的强化框架被送入模具腔,同时向腔内送入聚合物熔体,当模塑成型的管离开模具腔后,其承受双侧集中冷却,其中冷却剂被供给到内侧和外侧。
[0111] 用于连续生产金属-聚合物管的装置,如图2和3所示,包括安装在基座5上并具有挤压头6的挤压机4。卷轴7和8分别用于送入纵向和横向金属强化元件(特别是金属丝)。夹具9具有槽,纵向强化元件2可沿着所述槽运动,夹具9被安装到挤压头6上(图3)。心轴10在内侧被液体持续地冷却,所述心轴10通过耐热衬套11固定到挤压头6上。焊接机的壳体(图中未示出)设置有毂12,所述毂12具有独立的旋转致动器(图中未示出),在所述致动器上可自由旋转地布置有用于焊接横向强化元件3的卷轴(绕线轴)8、引导 机构13、用于将横向强化元件3焊接到纵向强化元件2上的卷筒电极14。毂12容纳固定筒15,所述固定筒15与心轴10一起形成用于对离开挤压机的聚合物进行模塑成型的环形模具腔16。冷却剂发生器17被刚性地布置在模具筒15的外侧。由连接到电源(未示出)上的一个或多个卷筒电极14、偏心杆18以及致动器组成的焊接单元被布置在毂12上。为了连续地供给纵向加强元件2,如从卷轴7上退绕,以及从挤压头6中输出挤出物,具有导轨21的调节力的拉出机构20沿着模塑成型的金属-聚合物管19的运动方向布置在头6之后。
[0112] 为了制造具有特定长度的管,设置有切断装置22。用于启动切断过程的信号由布置在重力卷筒支架24上的位置传感器23来提供。重力卷筒支架24具有多个引导卷筒,并且用作对完成产品的支撑;其结构还提供了用于收集冷却液体并使其返回冷却系统的系统。
[0113] 从挤压头6排出的挤出物,即挤出的聚合物的熔体,落入连续地移动的金属框架上,所述框架由纵向强化元件2和横向强化元件3焊接而成。用挤出物对框架进行填充的过程是在模具腔16中进行的,所述模具腔沿着其内表面由心轴10和布置在其前面的套筒11限定,沿着外表面由模具筒15限定。
[0114] 为了生产具有所需质量(几何排列——与内周、外周以及框架同轴;表面粗糙度)的管内表面,对心轴外表面进行抛光,并且由于增加的孔径使得心轴结构具有可被放置在挤压头上的可能性。
[0115] 纵向强化元件2被拉出机构20张紧且移动。纵向强化元件2相对于管主体的几何排列取决于在夹具9上同心布置的槽。通过同时的毂12进给横向强化元件3的运动以及纵向加强元件2的平移运动来形成强化框架的外线圈。横向强化元件3的线圈具有确定的节距,根据所述方法,处于s-6s的范围内(其中s是外强化元件的横向尺寸),并且所述线圈通过卷筒电极14被焊接到相应的接连交叉的纵向强化元件2上。纵向强化元件和横向强化元件的轮廓可以具有任意截面,并且根据待模塑成型的管的设定性能来进行选择。横向强化元件3从布置在毂12的壳体上的卷轴8上退绕,并经由引导系统13的被送入焊接卷筒14,其中所述卷轴在轴承上自由旋转。液压制动器和液压控制阀与偏心杆18一起起到将卷筒电极14向横向强化元件按压的作用。焊接卷筒14被按压同时提供焊接电流脉冲用于接触焊,从变压器向卷筒电极提供焊接电流脉冲的时间以多种方式确立,例如:
[0116] a)机械地,使用计数装置和位置传感器;
[0117] b)自动地,基于下列各项的确定和协调:模塑成型的管的拉出速度、毂的转速、供给到卷筒电极14的电流的电压和强度。根据实验,采用反馈传感器来确定早期设定的最有效的电流参数。为了同步冲击脉冲和焊接电流脉冲,焊接机设置有连接到处理器上的反馈传感器,用于自动确定最优电流参数。
[0118] 为了获得聚合物基体(基于非结晶相位)的最佳结构,在金属-聚合物管的生产过程中,有必要保证挤出物在离开模具腔16之后的连续冷却。为了冷却模塑成型的金属-聚合物管19的内表面,设置有用于向心轴10供给冷却剂的系统,所述心轴用于对生产出的管的内径进行校准。通过在挤压头6中穿过的管25来供给冷却剂。当模塑成型的金属聚合物管19内的腔被填充时,在其中产生压力,所述压力由布置在插头26上的泄放阀保持,所述插头被安装在管内。为了在外侧冷却,采用冷却剂发生器17,其向模塑成型的金属-聚合物管19的外表面提供由加压气体和冷却液体构成的冷却剂。当聚合物熔体填充由模具筒15在外侧限定的环形模具腔时,从位于发生器17的线圈的内侧上的孔喷射出的冷却剂被从外侧直接提供到模塑成型的金属-聚合物管19上。
[0119] 如果采用与聚烯烃基无关的聚合物来模塑成型管,那么可以采用包括冷却液体和加压气体的冷却混合物,所产生出的冷却剂的温度低于0℃。
[0120] 当离开焊接机之后,模塑成型的金属-聚合物管19穿过拉出装置20,可手动或自动调节所述拉出装置的轨道21的压力,以便避免管的几何特性的缺陷或所述压力的不足的力。然后,管19被供给到重力卷筒支架24,并且在卷筒上运动的同时到达位置传感器23,所述位置传感器23在重力卷筒支架上的位置是由管所需长度来决定的。传感器23向切断装置22提供信号,所述切断装置在沿着导轨与管同步移动的同时,切断加工完的金属-聚合物管。所有的生产过程都是连续的且循环的。
[0121] 通常被用于金属-聚合物管的连续生产的聚合物的熔融温度在130℃到280℃的范围内。为了模塑聚合物,有必要将其加热到其熔融温度以上。金属-聚合物强化管具有增加的长期强度,并且同时能保证它们在“金属框架-聚合物”系统中的柔韧性。
[0122] 根据现有技术的描述,在聚合物离开挤压头之后,管的缓慢冷却有助于聚合物基体晶化过程,这导致作为原型的管的聚合物结构由70-90%的晶粒构成, 并且特点是具有较低的柔韧性和塑性。
[0123] 在所要求保护的管的生产中所采用的快速且深度的冷却,能够获得由不超过10-30体积%的细粒结晶以及70-90体积%的非结晶区域构成的聚合物结构。在长期时间内,由于结晶尺寸的增加,聚合物结构中的结晶因数变得略微提高,但是这并不会对所生产的管的性能带来显著改变,因为固体聚合物内的分散过程是非常缓慢的。加工完的管的所获得的宏观大分子结构具有足够的柔韧性,因为主要的体积是由非结晶区域占据,所述非结晶区域在负载作用下是塑性的;它们会变形,但不会碎裂。
[0124] 高质量和高强度的金属-聚合物管的生产在管线运输方面、以及制造具有优选抗腐蚀力的坚固的、相对轻的负载承受结构方面,开拓了可以预期的应用场合。然而,为了在管线结构(例如如图6所示)以及其他结构中使用所要求保护的金属-聚合物强化管,有必要开发用于在它们之间连接金属-复合物强化管的可靠方式。
[0125] 图7B示出为了连接金属-聚合物强化管来构造管线,首先有必要在各管19的端部提供所谓的端部件,即制成为套筒的连接元件32,所述套筒由与管本身相同的聚合物材料制成。连接元件32的套筒覆盖从管19的端部起的确定长度,并且覆盖金属强化件33的可见部分,从而排出了金属强化件的开口元件上的腐蚀外观。与所要求保护的发明相关的连接元件32可通过在注塑机中制造毛坯(blank)来制成。这种铸造毛坯具有特定的公差和工艺元件,在随后的机加工过程中可移除所述工艺元件,并且所述毛坯具有圆柱套筒的完成外管,在内周具有颈圈)。
[0126] 根据另一实施例,用于制造连接元件32的毛坯可通过作为非强化(单个部件)聚合物管的挤出物来生产,然后这种管被切成部分,此后,图7A所示的端部件形式的连接元件通过车床加工各部分而形成。
[0127] 用于制造连接元件32的材料是焊接聚合物。优选地,相同的材料被用于生产连接的金属-聚合物强化管,这有助于避免不同的热膨胀系数所带来的问题。然而,为了连接由不同聚合物制成的管,可根据所采用的材料的最优组合来选择用于端部件的材料。
[0128] 连接元件32是加工成非强化的;它们应该被刚性地安装到管的端部,以确保所述管在管线中的可靠连接。出于这个目的,在上部聚合物周边上加工有螺纹34,所述螺纹具有能够避免强化框架元件出现在表面上的螺距、牙高以及初始角度。用于加工螺纹的装置包括具有把手的攻丝模和导轨,或者在使所述处理机械化的情况中,具有用于使攻丝模和导轨旋转及运动的驱动的单元。当完成螺纹加工后,连接元件32被旋到管19上,所述连接元件在其内接触表面已具有与管上的螺纹的参数相对应的螺纹35。对具有所要求保护的连接元件的管线的维修处理过程可在现场实施,因为不需要拆卸要进行维修的管,也不需要其他特殊设备。
[0129] 图8示出了管线中金属-聚合物强化管的焊接连接。在所要求保护的管线中的两个金属-聚合物强化管19和36的连接可通过分别在所述管的端部处使用连接元件32和37来实现。为了实施焊接连接,管应该布置成通过连接元件32和37的端面而接头对接头,使得能够采用在它们之间布置的“熨斗”型的平的加热器对端面进行加热。移开加热器之后,通过在相反方向平移运动的方式按压管来获得焊接连接38。
[0130] 图9示出了管线中金属-聚合物强化管的焊接连接,其通过强化的金属-聚合物套筒而被加强。为了完成这种连接,连接元件32和37以上述方式被安装在金属-聚合物强化管19和36的端面上,所述连接元件32和37沿着它们的端表面彼此焊接,从而获得焊点38,然后在连接元件32和37的套筒的外表面上形成螺纹39。直径大于管的直径的金属-聚合物管的长度被用作为连接套筒40,并且在套筒两侧的套筒的内表面设置有与套筒32和37的外表面上的螺纹39相对应的互补的螺纹。然后利用套筒40的螺纹39-41将套筒40旋到焊接在其间的连接元件32-37上,用于获得金属-聚合物强化管的焊接连接的螺纹套筒加强。为了防止腐蚀,在套筒40的端面上形成聚合物环42,其覆盖端面上可见的金属强化部分。
[0131] 图10示出了金属-聚合物强化管的可拆卸的法兰连接,其用于加强管线中的焊接连接。出于这个目的,连接元件43的外壁设置有槽,所述槽具有倒角44,用于布置法兰45,所述法兰45具有环形形状,具有沿其圆周布置的孔,法兰的内部环形表面设置有互补的锥形表面,所述锥形表面具有与在对应的连接元件43处形成的倒角44的角度相对应的锥角。通过使用螺栓46和螺母47紧固法兰45而连接管19、36。
[0132] 图11示出了金属-聚合物强化管19和36的可拆卸的套筒连接,所述连接通过使用安装在这些管的端部的连接元件32和37来实现。这些连接元件的套筒的外表面另外设置有用于套筒的螺纹39。直径大于待连接的管的直径的金属-聚合物管的那部分长度可被用作套筒48。对此,套筒48的内表面应该在两侧设置有互补的螺纹,从而能够将套筒48旋到连接元件32和37的套筒上。套筒48在端部另外设置有覆盖强化件的保护性的聚合物环42。
[0133] 当在管线中进行套筒连接时,连接元件32和37的套筒的外表面上的螺纹可以是,例如圆柱螺纹。在这种情况中,管线中的这种连接包括密封环49,所述密封环被布置在连接元件32和37的端面之间。
[0134] 根据另一实施例,连接元件32和37的套筒的外表面可设置有自密封的圆锥螺纹。在这种情况中,在连接元件的端面之间不需要密封环。
[0135] 图12示出了从金属-聚合物管19到金属管50的过渡,所述过渡可被用在所要求保护的管线中,如果所述管线被连接到城市网络的公共管线中。
[0136] 金属管50和金属-聚合物管19之间的连接是采用以螺纹布置在金属-聚合物管19的端部的聚合物连接元件51来实现的。连接元件51的套筒的外表面具有锥形倒角52,用做附加的金属套筒53的安装表面,所述套筒53在外侧覆盖连接元件51。附加的金属套筒53的外表面设置有螺纹54。在过渡筒56上形成有互补的螺纹55,将待连接到管线上的金属管50被插入并例如通过焊接部57被固定到所述过渡筒56中。
[0137] 在图6中示出了在所要求保护的管线的一定长度内的金属-聚合物强化管的上述连接,所述长度形成在与金属管50形成过渡的一条支管中和与聚合物非强化管58形成过渡的另一条支管中。图6所示的管线包括通过连接元件的对接焊接(如图9所示)形成的连接部59,所述连接部采用在自密封的圆锥螺纹60上布置在元件上的强化金属-聚合物套筒进行加强。此外,管线包括通过使用法兰连接62来安装的作为停止阀的楔形插头61。此外,楔形连接63在图8中示出。然后,通过利用T形件64而形成支管。此外,所示的套筒连接65通过利用圆柱螺纹而形成为可拆卸的。然后,可拆卸的套筒连接66被安装成包括如图11所示的密封环49。此外,随后的到金属管50的过渡被制造成如图12所示的可拆卸的连接67。为了改变管线方向,使用支管68,其根据各种不同的实施例而被形成为连接元件。
[0138] 图13A示出组合T形件64的一个实施例,图13B-13C示出用于构造所要 求保护的管线的支管68的多个实施例。
[0139] 当建立管线时,需要解决工艺问题,如形成网络支线,连接到主管线,构造旁通管线以及许多其他管线。
[0140] 本发明的技术解决方案提出一种如图13A所示的组合T形件,其意在用于由金属-塑料强化管制成的管线。T形件的材料是金属和聚合物的组合,并且T形件包括金属T形件69,所述金属T形件69由聚合物壳体70覆盖,也就是说,金属T形件被包括在聚合物T形件中。
具有圆柱形状的金属框架71的较短长度被焊接到金属T形件69的三个端口。为了制造组合T形件,金属(冲压、铸造、焊接等)的T形件69被安装到焊接夹具中。金属框架71的长度被随后焊接到其三个端口,其长度与金属-聚合物管19的框架相对应。同样,为了加强焊接,在某些情况中,可以采用焊接在金属框架71上的金属外壳。
[0141] 当金属中心件形成之后,其被放置在模具中,T形件的聚合物主体(即壳体70)在所述模具中被模塑成型。然后,对完成的部件进行处理,即去除浇口(process gates)和工艺毛刺,以及通过车床加工对部件进行处理。
[0142] 所述组合T形件被用于由金属-聚合物强化管19来构造管线。它经连接元件32连接到管19,所述连接元件32由连接套筒40或48完成,或者通过将两个连接元件32对接焊而完成,或者采用图10所示的法兰连接而完成。同样,还可用它来将所要求保护的管线连接到其他类型(如玻璃强化塑料、聚乙烯)的管构成的管线上,通过相应的连接元件32。
[0143] 这种组合T形件64的强度与金属-聚合物管19的强度相似。这使得能够在由金属-聚合物强化管构成的管线中使用组合T形件64,而不降低工作压力。
[0144] 图13B示出了根据与上述组合T形件64相同的工艺制成的组合支管73。其包括包围在聚合物壳体75中的金属支管74。当形成金属中心件时,金属框架71的长度被焊接到金属支管74的端口处,其长度与金属强化管19的框架对应。同样,为了加强焊接,在某些情况中,有可能采用焊接到金属框架71的金属外壳。然后,在模具中形成聚合物壳体75。
[0145] 根据支管68的另一实施例,如图13C所示,其由两个或更多个金属-聚合物管的长度形成(取决于转弯角度),在所述金属-聚合物管上的两端处安装有连接元件32。
[0146] 为了获得所需的转弯角度,连接元件或者在模具中制成,通过使用所述模 具而形成具有特定端部切口角度的端部件,或者连接元件通过切断进行处理,以获得端部切口的设定角度。
[0147] 应该意识到连接元件32不仅仅可被用在金属-聚合物强化管中,还被用于将由金属-聚合物强化管19制成的管线连接到强化玻璃塑料管以及其他类型的管58上,管主要由塑料材料制成,例如由金属箔强化的聚合物制成的管、和/或由金属带强化的聚合物制成的管、和/或由非强化聚合物制成的管。
[0148] 根据本发明的用于构造管线的金属-聚合物强化管19的尺寸范围(外径)是从50mm到1000mm之间,节距为1mm(直径)。所要求保护的连接元件32按照相同的范围制成,在考虑到公差和装配的情况下,其内径与待连接的管的外径相同。
[0149] 接下来的例子解释了用于金属-聚合物强化管的连接的最佳实施例,它们组合能够构造长度不受限制的管线,所述长度对于其具体的各种应用来说会是最优的。
[0150] 例子1
[0151] 使用图2所示的装置,由连续挤压成型方法制造金属-聚合物强化管。
[0152] 为了准备用于模塑成型的聚合物熔体,颗粒状的聚乙烯被装载在挤压机4中,聚合物熔体从挤压头6经由用于输送聚合物的通道送入模具腔16,所述模具腔由冷却的心轴10以及外模具筒15形成,同时向所述腔送入由一个卷筒电极制成的焊接的强化框架,如图4所示。分配器27将熔体沿着与挤压通道的内表面平行的方向引导,所述分配器被布置在进入模具腔16的入口之前。被安装在心轴10之前的耐热的非金属衬套11被固定在分配器27上。耐热衬套11是由低热传导性的材料制成。它能保护冷却的心轴8免受从通道流出的熔体的直接热作用。同时,由于制造衬套11的材料的特性,衬套11对流动熔体的温度状态没有影响。用于制造耐热衬套11的低热传导性材料(聚合物、陶瓷等)的选择是由它在冷却的青铜心轴10和挤压头6之间的中间位置来调节,其中主轴被加热到准备用于模塑成型的聚合物熔体的温度(190℃-240℃)。耐热衬套11的作用是是要防止从挤压头6到心轴10的直接热量传递,这能改善用于对金属-聚合物管模塑成型的温度情况。
[0153] 当金属-聚合物管19离开模具腔16之后,其内表面和外表面被集中冷却。 在模塑成型管的过程中冷却聚合物熔体的曲线如图5A所示。曲线1对应原型;曲线2对应所要求保护的方法。根据原型的聚合物从模塑成型温度到室温的冷却时间是245秒,根据所要求保护的方法是86秒。快速冷却能够使强化管的聚合物基体主要是非结晶结构,这是由于如在从-40℃到+80℃变化的循环温度过程中测量的,根据例子1制成的管的长期强度是大于1200循环周期,根据原型制成的管是130-245循环周期。
[0154] 此外,还应该意识到,为了保证更高的强度,在焊接过程中,按压力和冲击脉冲由液压致动器提供给卷筒电极14,它们与强化纵向元件2和横向元件3的相互交叉的时间同步,也与向卷筒电极14提供电流脉冲的时间同步。
[0155] 为了提供冲击脉冲,使用冲击机构28(图4),所述冲击机构包括布置在与液压致动器相连的杆29内的液压缸。也就是说,冲击脉冲通过液压致动器提供给冲击机构28,其脉冲被转换成杆29向着相反端的平移运动,所述相反端固定有具有卷筒电极14的偏心杆18。因此,焊接处理与铸造工艺结合,这改善了强化框架每个焊接连接的强度。在每个焊接点处,强化框架纵向和横向元件的焊接连接的剪切强度至少为35kgf。
[0156] 此外,为了持续地将卷筒电极14朝待焊接的强化框架元件按压,这里采用按压装置,其形成为布置在液压缸的杆29上的弹簧30,并且抵靠在卷筒电极的杆18上。也就是说,当将强化框架作为形成横向强化元件3的线圈的手段时,使用卷筒电极14,其卷筒能保证在液压致动器所提供的力下,将横向强化元件持续超纵向强化元件按压。具有圆形截面的,且直径为3mm钢丝(钢3)被用于作为横向和纵向强化元件。引导机构31被用于将金属丝直接在电极14的卷筒下方引导。
[0157] 具有圆形截面的,且直径为3mm钢丝(钢3)被用作为横向和纵向强化元件。
[0158] 所制造的金属-聚合物管的尺寸范围(外径)从50mm到1000mm,节距为1mm(每一直径)。
[0159] 选择用于制造所述管的强化框架的下列尺寸范围:
[0160] -强化截面:0.2-16mm,节距0.1mm;
[0161] -在横向强化元件(线圈)之间的节距:s到6s,其中s是横向强化截面(线圈),以mm为单位。
[0162] 应该意识到可根据其内径来校准管尺寸,这与传统的聚合物管和轮廓的生产工艺相反,传统的工艺是根据产品的外径实施校准,。
[0163] 根据例子1所生产的管样品进行的试验,以及对管聚合物基体的宏观大分子结构的分析,能得出如下结论,对内部和外部的同时集中冷却使得能根据模塑成型的聚合物的非结晶相位来调整聚合物冷却的速度和深度,以获得聚合物基体的预定结构。
[0164] 所生产的管聚合物基体的微观体积内的残余应力不超过2kg/cm,并且实际上对其耐久性没有影响。
[0165] 在延长操作期间,聚合物基体中的这些不显著的应力得到释放。
[0166] 在所生产的管的轴向拉伸期间断裂负载比金属-聚合物管的标准值大2倍以上。
[0167] 如在从-40℃到+80℃变化的循环温度中测量的,根据例子1生产的金属-聚合物管的长期稳定性大约1200循环周期。
[0168] 当在壁应力6MPa且温度+80℃时试验,采用接头对接头焊接连接制成的管的长期稳定性为至少1000小时,在13.4MPa时不低于170小时,在19MPa时不低于100小时。
[0169] 如上所述生产的金属-聚合物强化管,显示出对自然和工业腐蚀剂作用的高抵抗力,例如每天20-250mg/L浓度的含硫气体,每天低于0.3mg/L浓度的氯化物,各种酸碱以及海水的作用和土壤腐蚀环境。
[0170] 根据例子1生产的壁厚11.0-12.5mm的金属-聚合物强化管,其特点是具有40atm的工作压力,工作温度状态在-50℃到+95℃,冲击强度为427.4KJ/m2,疲劳比至少0.46×107循6
环周期,至少0.4MPa频率25Hz时循环负载的数量——至少3×10循环周期,热膨胀系数2×
105,在常压下一个小时的拉紧力——至少5-10MPa(取决于管径),并且安全系数从2到4.75(取决于95-225mm范围内的管径)。
[0171] 按照例子1生产的管的物理-机械性能如表1所示。
[0172] 例子2
[0173] 用与例子1相同的方式生产由焊接金属框架强化的金属-聚合物管。用于模塑成型管的聚合物基体的材料是与GOST 16338-85对应的聚乙烯,并且金 属-卷筒、杆和丝的各种变形被用作纵向和横向强化元件。
[0174] 圆形截面、直径3mm;正方形截面、边长2.7mm;梯形截面、底边3mm、横截面面积7.1mm2;椭圆形截面、最小直径2.5mm的金属丝或杆被用于纵向和横向强化元件。基于铁的和非铁金属的各种等级或合金的钢,特别是,铬、镍或铜基合金被用于生产纵向和横向强化元件。用于生产强化件的合金在适用于电接触焊接的情况下进行选择,并且主要依赖于完成产品的目的。
[0175] 根据例子2生产的由焊接的金属框架强化的金属-聚合物管的性能如表2-4所示。
[0176] 分析表示即使在纵向和横向强化元件上存在一个平的面,也能增加焊接强化元件过程中的接触区域,并改善整个焊接框架的强度,以及改善所允许的轴向拉伸负载的系数和所生产的管的最终损坏压力。
[0177] 如下所述,用于生产由焊接的金属框架强化的金属-聚合物管的所要求保护的方法可采用用于形成管主体(基体)的各种聚合物来实施,特别是,使用氟塑料、聚酯酮、聚酯砜、聚氨酯、热塑硫化弹性体、聚酰胺以及其他聚合物。
[0178] 例子3
[0179] 用与例子1相同的方式生产由焊接金属框架强化的金属-聚合物管。但是,作为用于模塑成型管聚合物基体的材料,使用密度2.12-2.17kg/m3的、张力屈服点为12-20MPa的氟塑料-4。氟塑料被选为与其他聚合物相比,具有更高化学稳定性和热抗性的聚合物。在处理氟塑料-4的过程中,添加组分来提高聚合物冷流动水平,而不对其物理-化学性能有所损害。这些添加剂包括石墨、金属硫化物以及其他润滑材料。
[0180] 所制造的管具有115mm的外径,并且能被用在-150℃到+260℃范围内的工作温度。所述管的最终损坏压力为7.0MPa,允许的轴向拉伸负载为14.6吨力(ton-force)。管的性能如表5所示。
[0181] 例子4
[0182] 采用同例子1相同方式由装置(图2-3)来实施由焊接的金属框架强化的金属-聚合3
物管的生产方法。为了形成管聚合物基体,采用密度为1.28-1.31kg/m 且张力屈服点为91-
112MPa的聚酯酮(PEKK)。
[0183] 所生产的管的外径160mm,并可用于-90℃到+260℃范围内的工作温度下。所述管的最终损坏压力为14.0MPa,允许轴向拉伸负载为20.4吨力。管的性能如表6所示。
[0184] 例子5
[0185] 采用同例子1相同方式由装置(图2-3)来实施由焊接的金属框架强化的金属-聚合物管的生产方法。为了形成管聚合物基体,采用密度为1.36-1.58kg/m3且张力屈服点为83-126MPa的聚酯砜(PES)。
[0186] 所产生的管的外径为140mm,并可用于-100℃到+200℃范围内的工作温度下。所述管的最终损坏压力为16.0MPa,允许轴向拉伸负载为16.0吨力。管的性能如表7所示。
[0187] 例子6
[0188] 采用与例子1相同的方式来实施由焊接金属框架强化的金属-聚合物管的生产方法。但是,用于形成管聚合物基体的材料是TPU等级的聚氨酯,其密度为1.12-1.28kg/m3且张力屈服点为12-70MPa。
[0189] 所产生的管的外径为115mm,并可用于-70℃到+170℃范围内的工作温度下。所述管的最终损坏压力为14.1MPa,允许轴向拉伸负载为15.0吨力。管的性能如表8所示。
[0190] 例子7
[0191] 采用与例子1相同方式由所要求保护的装置来实施由焊接的金属框架强化的金属-聚合物管的生产方法。用于形成管聚合物基体的材料是热塑性弹性体TPV(基于聚烯烃),其密度为0.97kg/m3且张力屈服点为2-28MPa。
[0192] 所产生的管的外径为200mm,并可用于-60℃到+130℃范围内的工作温度下。所述管的最终损坏压力为9.4MPa,允许轴向拉伸负载为24.0吨力。管的性能如表9所示。
[0193] 例子8
[0194] 采用与例子1相同方式由所要求保护的装置来实施由焊接的金属框架强 化的金属-聚合物管的生产方法。用于形成管聚合物基体的材料是聚氯乙烯(PVC-S),其密度为3
1.13-1.58kg/m且张力屈服点为4-7MPa。
[0195] 所产生的管的外径为115mm,并可用于-10℃到+70℃范围内的工作温度下。所述管的最终损坏压力为14.4MPa,允许轴向拉伸负载为13.8吨力。管的性能如表10所示。
[0196] 例子9
[0197] 采用与例子1相同方式的所要求保护的装置来实施由焊接金属框架强化的金属-聚合物管的生产方法。用于形成管聚合物基体的材料是聚酰胺(PA-6、PA-12等级),其密度为1.02-1.13kg/m3且张力屈服点为80-100MPa。
[0198] 所产生的管的外径为225mm,并可用于-60℃到+115℃范围内的工作温度下。所述管的最终损坏压力为18.6MPa,允许轴向拉伸负载为10.2吨力。管的性能如表11所示。
[0199] 例子10
[0200] 为了用于构造如图8所示的管线,由金属-聚合物强化管19和36形成焊接连接。为此,连接元件32和37被安装在各管的螺纹上。然后,放置平的加热“熨斗”(图中未示出),使得其位于连接元件32和37的端面之间,“熨斗”被管19和36一起挤压,然后连接元件32和37的端面被同时加热。当达到所需温度后,管19和36被分开一小段距离,移走“熨斗”,并且两根管由相反的力进行挤压;由此产生了焊接点38。当所述连接达到环境温度后,就可以使用了。
[0201] 在6MPa的壁压力和+80℃的温度下试验,用上述焊接连接制成的聚乙烯强化管的长期稳定性至少是1000小时;在13.4MPa压力下至少170小时,在19MPa压力下至少100小时。
[0202] 例子11
[0203] 为了构造管线,如图9所示,利用强化套筒40,采用连续强化加强焊接连接来制造用于金属-聚合物强化管19和36的焊接永久连接。
[0204] 这个连接实施例能够由大直径(275mm及以上)的金属-聚合物强化管构 造管线,因为采用焊接连接以及螺纹连接来实现来连接。这个方法对于大直径的管线以及套管柱(casing column)是非常有效的,由于随着管外径的增加,连接处的负载也增加了。
[0205] 当将连接元件(端部件)32和37安装到管19和36上之后,用同例子10相同的方式,用加热熨斗在它们的端面处进行焊接以制造焊接点38,并且焊接连接元件32和37的外表面设置有螺纹39。下一步是拧上连接套筒40。作为套筒40,可以使用金属-聚合物管的直径比待连接的管8和9的直径大的那部分长度,即套筒40的内径等于连接元件32和37的外径。互补的螺纹41形成在套筒40两端的内表面上,这能将套筒40旋到连接元件32和37的衬套上,用于加强管19和36的焊接连接38。为了保护强化元件不受腐蚀,制造成金属-聚合物管的长度的套筒40包括覆盖端面处的可见的强化元件的保护性聚合物环42。
[0206] 例子12
[0207] 这个例子(图10)提出一种金属-聚合物强化管19和36的可拆卸的法兰连接,其通过采用所要求保护的连接元件43而制成。
[0208] 通过形成具有倒角44的外槽来对连接元件43进行加工以用于布置法兰45,如图10所示。法兰45是具有圆周布置的孔的环。每个法兰45的内部环形表面设置有锥形倒角,所述锥形倒角具有与连接元件43的外侧上的倒角44的锥角相对应的锥角。
[0209] 设置有法兰45的两根管19和36用螺栓46和螺母47组装成管线。为了密封管法兰连接,在连接元件43的端面形成的环形槽内布置密封垫76。
[0210] 例子13
[0211] 为了构造管线,采用连接元件32和37来制造金属-聚合物强化管19和36的可拆卸的衬套连接。连接元件32和37的外表面设置有圆柱形螺纹39。使用连接套筒48,即金属-聚合物管的的直径比待连接的管19和36的直径大的那部分长度。套筒48的内径对应于连接元件32和37的外径。套筒48的金属强化框架在其端部由焊接环42进行保护,所述焊接环由与套筒48相同的聚合物材料制成。在套筒48的内表面,在其两端设置与连接元件32和37的外表 面上的螺纹39互补的螺纹。
[0212] 安装在连接处的聚合物环49用作密封环,并且能消除管线纵向截面中的凹处。
[0213] 例子14
[0214] 所述例子举例说明在所要求保护管线中从金属-聚合物管19到金属管50的过渡,采用通过螺纹连接在管19的一端固定的连接元件41,如图12所示。
[0215] 连接元件51的后部设置有用于金属衬套53的锥形安装表面的倒角52,所述金属衬套53覆盖连接元件51的外周,并紧密安装连接元件51上。沿着螺纹54、55将金属筒56旋到衬套53上直到停止。当衬套53和筒56被安装之后,沿着外轮廓用焊接57将筒56焊接到金属管50上。
[0216] 根据另一实施例,用螺纹(图中未示出)将连接元件51和衬套53彼此连接。
[0217] 例子15
[0218] 这个例子举例说明所要求保护的金属-聚合物强化管能够用于构造管线,所述管线如图6所示在管线的上部支线处具有凸缘连接,所述连接包括从金属-聚合物管19到聚乙烯非强化管的过渡,非强化管的外径(Φ)为200mm,内径(Di)为150mm,并且设计成工作压力(Po)可达到12atm。所述连接是通过聚乙烯管58的端面和连接元件32的接头焊形成。根据上面所述,通过在焊接连接上的螺纹上安装的衬套来强化焊接连接。
[0219] 所构造的管线用于供水管线所需(以及用于下水或热水供给的管线)。出于这些目的,使用由聚乙烯或聚丙烯制成的聚合物管、玻璃强化塑料的管、金属管(铁合金)或复合材料管。在这些管线中输送的介质包括水,含有固体杂质的水,蒸汽。管线工作压力达到16atm,工作温度从5℃到75℃。
[0220] 让我们来看一下用从聚乙烯非强化管58到所要求保护的金属-聚合物管的过渡所构造的供水管线所能获得的优点,其中非强化管的外径200mm,壁厚25mm(壁厚指数SDR=管径/壁厚=9)。根据包括材料强度和管壁厚的计算,由PE-100等级聚乙烯制成的供水管线具有12atm的工作压力(1.2MPa)。为了完成连接,我们选择相应内径(名义孔)等于180mm,壁厚12.5mm,Di 为155的金属-聚合物强化管。
[0221] 在这种情况中,金属-聚合物管19对聚乙烯管的主要优点是在相等通过量时大的强度和大的柔韧性。通过轴向、径向和其他负载的抵抗能力来测量金属-聚合物管的强度。在这种情况中,金属-聚合物强化管MPT-180能够承受内压力Pmax=80atm,轴向方向的抵抗能力是F=227.5kN(聚乙烯管大约58kN)。
[0222] 同时,有必要考虑金属-聚合物强化管,适当考虑其强度,具有用于抵消外部负载的足够柔韧性。这有可能是由于强化管中所起作用的“框架-聚合物”系统。聚乙烯非强化管没有充足的柔韧性,并且这个因数随着壁厚的增加成比例的降低。相反,金属框架随着管径的增加而成比例的加强,这是因为纵向强化元件数量的增加,同时管的壁厚仍然保持不变。
[0223] 在由所要求保护的金属-聚合物强化管构造的管线内输送的产品压力的增加,能够提升使用这种管线的效率,降低成本并且提高收益率。
[0224] 图5B示出了生产管的一延米(linear meter)的材料成本的对比。这个对比是基于对应材料的特定重量和价钱而计算的。在生产金属-聚合物管时,用于制造框架的钢St3的成本是28RUR/kg,等级100的聚乙烯的成本是67RUR/kg,因次我们得到金属-聚合物管MPT-180的一延米的成本是588.60RUR,而聚合物非强化管PE-100的成本是676.70RUR。管的一延米的重量分别是13.5kg和10.1kg。
[0225] 聚合物非强化管的壁厚的增加会导致聚合物体积的增加,这会分担到其生产;这意味着用于制造管一延米的材料成本增加。因此,如果有必要增加管内径,从图5B所示的曲线4的经济点来看,由所要求保护的金属-聚合物强化管构成的管线的构造更有利。图5B中的曲线3示出了聚合物非强化管的成本的增加与管内径增加的关系。
[0226] 例子16
[0227] 这个例子示出了如果一条气体管线用从聚乙烯非强化管58到所要求保护的金属-聚合物管的过渡所构造,其所能获得的优点,其中非强化管的外径500mm.
[0228] 由聚乙烯非强化管(外径500mm,内径Di=388.8mm,设计工作压力Pn=12atm)构造的管线可以同等地替代由金属-聚合物强化管MPT-450制成的 管线,其具有下列物理-工艺性能:外径为450mm,Di为416mm,壁厚为17mm,工作压力Pn为30atm。管的一延米的比较重量:MPT-450是40.7kg,聚乙烯(非强化)管PE-500是78.32kg。
[0229] 这个比较证明由金属-聚合物强化管构成的管线的总重量降低,其中输送的产品的工作压力增加。此外,如前面所提到的,聚乙烯非强化管随着壁厚的增加,失去了其柔韧性和容量来承受弹性变形,在这种情况中,这是对于评估管线强度的一个负面因素。金属-聚合物管的强化框架能在增加内径的同时不增加管壁厚,因为其能承受最多的负载,同时保证管主体的足够柔韧性和容量来释放应力。
[0230] 由金属-聚合物强化MPT管制成的供气网络是比聚合物和复合管多几倍的可靠性,特别是具有复杂地理状况的地震危险区域。
[0231] 例子17
[0232] 所述例子示出了如果一条油管线用从金属管50到所要求保护的金属-聚合物管19的过渡所构造,其所能获得的优点,其中金属管的外径500mm(内径Di=468mm,工作压力Pn=20atm)。
[0233] 与金属管(材料为钢20)比较,金属-聚合物强化管具有下列优点:化学稳定性、抗腐蚀性、重量及成本。
[0234] 为了代替所述金属管,选择金属-聚合物强化MPT-500管(外为径500mm,内径Di=464mm,工作压力Pn=20atm)。
[0235] 金属-聚合物强化MPT-500管一延米的重量是46.8kg,由钢20制成的500mm直径的管是191.2kg。与金属-聚合物强化MPT管相比,金属管的大重量是管线安装、操作和维修过程中非常重要的不利因素。
[0236] 制造金属-聚合物强化MPT-500管所需的材料成本是2191.8RUR/延米,由钢20制成的500mm直径的管是5353.6RUR/延米。
[0237] 从上述数据可以得出对于径向强度来说,金属-聚合物强化MPT管并不比金属管低。聚合物的化学稳定性使管线能比金属管制成的相似管线使用更长的时间,而没有大的修理和替换。
[0238] 如果,出于增加钢管线的工作周期的目的,使用抗腐蚀钢和合金的管来代替由例如钢20或类似的优质钢制成的管,那么比较材料成本的话,则比MPT 管的成本高了大约30倍,因此铺设这样的管线的成本将大大增加。
[0239] 根据直到下次大修或替换时所述网络的花费和操作周期,由金属-聚合物强化管来替代金属管的成本有效性是非常明显的。
[0240] 同样,当比较由钢合金制成的管以及MPT管一延米的重量时,在管运输和安装费用方面的差距也出现了,金属管比MPT管重2.5倍,相应地,需要更多的设备和劳动力。
[0241] 从管内表面的质量来看,应该意识到金属-聚合物MPT管的沿着内径的表面由挤压头内的心轴抛光表面形成,这导致完工的管的内表面的粗糙度为Ra0.25,Rz 1.25。金属管内表面的粗糙度是受各自的标准控制,且被限制在Ra 6.3到Ra 50的限制内。因此,由金属制成的管线内的液压动态损失比由金属-聚合物MPT管制成的管线内的明显要大。
[0242] 例子18
[0243] 管线,图6中示出了其片段,其用连接元件32,由根据所要求保护的发明所述的金属-聚合物强化管19构成。在对深井产品的输送,同时生产油和气体的需要进行考虑的情况下来构造所述管线。出于这些目的,由聚乙烯、玻璃强化塑料或者金属(钢合金)、或者复合材料制成聚合物管。输送的介质有油、气、可燃气体、工业液体。管线内的工作压力达到40atm,工作温度从10℃到80℃。
[0244] 在油气工业中使用管线输送的一个特定特征是深井产品对管线施加强化学作用。因此,腐蚀过程的结果是金属管在它们更换前具有相对较短的使用寿命。在这些情况中,聚合物管线更加有效。
[0245] 由金属-聚合物强化管构成的管线可用于氢化硫浓度高于16%的环境中,这使得当在具有高硫含量的现场构造管线时,能用它们来替代由特殊金属和铝合金制成的管。
[0246] 普通聚合物管不能用在这些情况中,因为它们的低强度。
[0247] 复合管(玻璃强化塑料)在连接处具有较低的轴向强度,也不能保证管线操作的足够可靠性。
[0248] 例子19
[0249] 管线,图6中示出了其片段,其用连接元件32,由根据所要求保护的发明所述的金属-聚合物强化管19构成。在对用于湿法冶金中有色和稀土金属的地下和堆浸的管线的需要进行考虑的情况下来构造所述管线。
[0250] 轴向和径向强度的组合以及化学稳定性允许考虑金属-聚合物强化管作为湿法冶金中用于过滤矿石的聚合物管中最可靠的管。在湿法冶金中,可以使用金属-聚合物强化管,特别是当处理沉淀物时作为壳体圆柱,作为用于保存矿石的管道支线,作为用于输送金属盐溶液的管线。由金属-聚合物强化管制成的所要求保护的管线能够承受9级地震。只有由高合金不锈钢制成的管线是与之相当的,而这种管比金属-聚合物强化管贵30倍。
[0251] 例子20
[0252] 管线,图6中示出了其片段,其用连接元件32,由根据所要求保护的发明所述的金属-聚合物强化管19构成。在对用于水泥和研磨材料的气动输送的管线的需要进行考虑的情况下来构造所述管线。
[0253] 目前,由钢或复合管制成的管线通常被用作水泥和研磨材料的气动输送。
[0254] 与由金属-聚合物强化管制成的管线相比,由金属管制成的管线的一个缺点是金属管的很大特定重量,且它们较差的耐磨性。金属-聚合物强化管的耐磨性比钢管的高4-10倍。从经济角度来看,表现为金属管线的短的工作期限。
[0255] 关于上述目的,聚合物非强化管不具有足够的硬度,因此对于水泥和研磨材料的气动输送来说,由聚合物非强化管制成的结构需要进一步用梁和支撑来进行强化,这使得所述目标的构造复杂化,成本增加。
[0256] 例子21
[0257] 管线,图6中示出了其片段,其用连接元件32,由根据所要求保护的发明所述的金属-聚合物强化管19构成。在对化学工业、特别是用于输送浓的酸碱的管线的需要进行考虑的情况下来构造所述管线。
[0258] 化学工业对管线运输设定了更高的要求,首先涉及管材料的化学(腐蚀)稳定性,管线中连接的强度和密封性。
[0259] 普通的钢管以及由它们制成的管线并不适合输送浓的酸碱。在这种情况中,只有抗腐蚀的合金,对腐蚀性介质稳定的才能使用。同样,涂敷在金属管 表面上的,用于保持它们完好的特殊涂层也是需要的。
[0260] 用于由不锈钢和合金来制造管的材料的成本,以及这些管线的构造成本明显比用于制造金属-聚合物强化管的材料成本以及由它们构造管线的花费要高许多。在工艺上,由金属-聚合物强化管(MPT)构造的用于输送化学试剂的管线结构与用于供水或油产品输送的MPT构造的管线结构没有什么不同,因为MPT制成的管线都是防漏的,且都不需要任何额外的措施来保证密封性。MPT聚合物的化学稳定性对于在不损害管壁完整性的情况下输送腐蚀性试剂来说是足够的。对于这种管线的内外表面来说也不需要任何特殊的涂层。用连接元件32、连接套筒40和48、法兰连接45以及其他说明书描述的结构来完成的管连接能保证在所述应用中所需的可靠密封。
[0261] 例子22
[0262] 这个例子描述了根据所要求保护的发明而生产的,用于与海水接触的腐蚀性环境中的金属-聚合物强化管19的应用,例如用于制造海水基础结构以及用于建造港口和码头的成本保护。所要求保护的金属-聚合物强化管还能用于构造用于传送盐水以进行淡化的管线,用于构造在盐土中的管线,用于将任何管线放置在海洋环境中以及用于建造产油和产气的平台。
[0263] 金属-聚合物强化管的高强度以及在它们内部空间中填满混凝土的可能性,使得能够使用MPT管作为对在外部腐蚀环境情况中各种设备的支撑。焊接金属框架,其为所要求保护的管提供高强度特性,所述框架由周围的聚合物进行保护,因此,在与盐水接触期间,在管内以及管外,在金属框架上都没有氧化过程出现,由此管的强度保持不变的参数。
[0264] 对在海洋环境中使用的管以及由它们制成的管线的强度和稳定性的需要与那些用于化学工业的管相似。
[0265] 与聚乙烯管相比,金属-聚合物强化管具有多个优点,如已证实的增加的管径,包括生产材料的更低成本,更低的重量和更小的壁厚以及在轴向和径向上更高的强度系数值。
[0266] 例子23
[0267] 这个例子示出了金属-聚合物强化管作为建筑和结构建设的支撑和桩的应 用。
[0268] 在建设各种建筑和结构的过程中,有必要对地基下的土壤进行稳定,以防止土壤层可能彼此相对位移,这会导致地基以及整个结构的破环。用于这种目的的常见桩是由强化混凝土制成。然而,在多个建筑情况中,有可能用金属-聚合物强化管来代替强化混凝土制成的桩或支撑。
[0269] 在多个情况中,这是基于环境,经证实金属-聚合物强化管比混凝土桩具有多个优点。例如,如果存在地下水冲刷土壤的可能,那么普通的强化混凝土桩的使用寿命被缩短,这会导致它们的破环,从而危害结构地基的稳定性。此外,当处于土壤潮湿环境中时,桩的金属强化元件承受腐蚀并失效,从而失去它保持桩的完整性的能力。与之相反,所要求保护的管的焊接框架的高强度性能是通过在周围覆盖框架的聚合物来保证的。因此,在与地下水接触期间,在金属框架上没有氧化过程发生,由此管的强度不随着时间的推移而发生改变。
[0270] 金属-聚合物强化管的主要应用在表12中示出。
[0271] 表1由所要求保护的方法生产的管的物理-机械性能
[0272]
[0273] 表2由所要求保护的方法生产的管的性能,当金属框架包括圆形截面的金属强化件以及聚乙烯基体时。
[0274]
[0275] 表3由所要求保护的方法生产的管的性能,当金属框架包括方形截面的金属强化件以及聚乙烯基体时。
[0276]
[0277] 表4由所要求保护的方法生产的管的性能,其采用具有梯形截横的金属强化件作为纵向元件,具有直径3mm的圆形截面的金属强化件作为横向元件以及聚乙烯基体。
[0278]
[0279] 表5由所要求保护的方法生产的管的性能,其采用氟塑料-4作为聚合物基体。
[0280]
[0281] 表6由所要求保护的方法生产的管的性能,其采用PEKK等级的聚酯酮作为聚合物基体。
[0282]
[0283] 表7由所要求保护的方法生产的管的性能,其采用PES等级的聚酯砜作为聚合物基体。
[0284]
[0285] 表8由所要求保护的方法生产的管的性能,其采用TPU等级的聚氨酯作为聚合物基体。
[0286]
[0287] 表9由所要求保护的方法生产的管的性能,其采用热塑性硫化弹性体作为聚合物基体。
[0288]  外径 轴向拉伸负 最终损坏压力, 使用温度,℃ 一延米的重
[0289]   mm 载,吨力 MPa   量,kg
1. 200 24.0 9.4 -60-+130 15.2
[0290] 表10由所要求保护的方法生产的管的性能,其采用PVC-S(悬浮液聚氯乙烯)作为聚合物基体。
[0291]
[0292] 表11由所要求保护的方法生产的管的性能,其采用聚酰胺PA-6和PA-12作为聚合物基体。
[0293]
[0294] 表12金属-聚合物强化管的主要应用。
[0295]