高强度灰铸铁、铸件及其制备方法转让专利

申请号 : CN201410401741.0

文献号 : CN104195412B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 俞家华

申请人 : 芜湖国鼎机械制造有限公司

摘要 :

本发明公开了一种高强度灰铸铁、铸件及其制备方法,该制备方法包括:1)将生铁、废钢、回炉料和钛在1200‑1300℃下预热的工序;2)将预热后的原料在1460‑1470℃下熔融以制得铁水的工序;3)将硅铁、硅钙孕育剂、硅锶孕育剂加入至所述铁水中并搅拌以制得孕育铁水的工序;4)将高碳锰铁在1490‑1510℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁的工序。由该高强度灰铸铁制备而成的铸件具有优异的机械性能。

权利要求 :

1.一种高强度灰铸铁的制备方法,其特征在于,所述制备方法由以下步骤组成:

1)将生铁、废钢、回炉料和钛在1200-1300℃下预热的工序;

2)将预热后的原料在1460-1470℃下熔融以制得铁水的工序;

3)将硅铁、硅钙孕育剂、硅锶孕育剂加入至所述铁水中并搅拌以制得孕育铁水的工序;

4)将高碳锰铁在1490-1510℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁的工序;

其中,相对于100重量份的生铁,所述废钢的用量为60-75重量份,所述回炉料的用量为

100-120重量份,所述硅铁的用量为2-5重量份,所述硅钙孕育剂的用量为0.5-1.5重量份,所述硅锶孕育剂的用量为0.5-0.9重量份,所述高碳锰铁的用量为1-3重量份,所述钛的用量为1-1.5重量份。

2.根据权利要求1所述的制备方法,其中,所述生铁为牌号为Z18的生铁。

3.根据权利要求1或2所述的制备方法,其中,相对于100重量份的废钢,所述废钢中含有0.2-0.4重量份的碳元素、0.1-0.4重量份的锰元素、0.01-0.02重量份的磷元素、余量为铁元素以及不可避免的微量元素。

4.根据权利要求1或2所述的制备方法,其中,相对于100重量份的回炉料,所述回炉料中含有3.6-3.8重量份的碳元素、2.3-2.8重量份的硅元素、0.05-0.1重量份的锰元素、

0.01-0.03重量份的硫元素、0.01-0.03重量份的磷元素、余量为铁元素以及不可避免的微量元素。

5.根据权利要求1或2所述的制备方法,其中,所述硅铁为牌号为FeSi90Al1.5或FeSi90Al3的硅铁。

6.根据权利要求1或2所述的制备方法,其中,所述高碳锰铁为牌号为65的高碳锰铁。

7.一种高强度灰铸铁,其特征在于,所述高强度灰铸铁是通过权利要求1-6中的任意一项所述的方法制备而成。

8.一种铸件,其特征在于,所述铸件由权利要求7所述的高强度灰铸铁铸造而成。

说明书 :

高强度灰铸铁、铸件及其制备方法

技术领域

[0001] 本发明涉及高强度灰铸铁领域,具体地,涉及一种高强度灰铸铁、铸件以及该高强度灰铸铁的制备方法。

背景技术

[0002] 泵壳、容器、塔器、法兰、填料箱本体及压盖、碳化塔、机床床身、立柱、气缸、齿轮和硝化塔等生产原材料均为灰铸铁,由于现有灰铸件的抗拉强度不高往往导致铸件在加工成型时出现较高的报废率,极大地增大了生产成本。

发明内容

[0003] 本发明的目的是提供一种高强度灰铸铁和其制备方法,由该高强度灰铸铁制备而成的铸件具有优异的机械性能。
[0004] 为了实现上述目的,本发明提供了一种高强度灰铸铁的制备方法,所述制备方法包括:
[0005] 1)将生铁、废钢、回炉料和钛在1200-1300℃下预热的工序;
[0006] 2)将预热后的原料在1460-1470℃下熔融以制得铁水的工序;
[0007] 3)将硅铁、硅钙孕育剂、硅锶孕育剂加入至所述铁水中并搅拌以制得孕育铁水的工序;
[0008] 4)将高碳锰铁在1490-1510℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁的工序。
[0009] 本发明还提供了一种高强度灰铸铁,所述高强度灰铸铁是上述的方法制备而成。
[0010] 本发明还提供了一种铸件,所述铸件由上述的高强度灰铸铁铸造而成。
[0011] 本发明提供的高强度灰铸铁具有优异的抗拉强度和硬度,从而使得由该高强度灰铸铁制备而成的铸件可以作为各类高强度、高冲击机器模具。同时该高强度灰铸铁的制备方法简单,原料易得。
[0012] 本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。

具体实施方式

[0013] 以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
[0014] 本发明还提供了一种高强度灰铸铁的制备方法,所述制备方法包括:
[0015] 1)将生铁、废钢、回炉料和钛在1200-1300℃下预热的工序;
[0016] 2)将预热后的原料在1460-1470℃下熔融以制得铁水的工序;
[0017] 3)将硅铁、硅钙孕育剂、硅锶孕育剂加入至所述铁水中并搅拌以制得孕育铁水的工序;
[0018] 4)将高碳锰铁在1490-1510℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁的工序。
[0019] 在本发明中,各原料的用量刻字宽的范围内选择,为了使得制得高强度灰铸铁具有更优异的机械性能,优选地,其中,相对于100重量份的生铁,所述废钢的用量为60-75重量份,所述回炉料的用量为100-120重量份,所述硅铁的用量为2-5重量份,所述硅钙孕育剂的用量为0.5-1.5重量份,所述硅锶孕育剂的用量为0.5-0.9重量份,所述高碳锰铁的用量为1-3重量份,所述钛的用量为1-1.5重量份。
[0020] 在本发明中,所述生铁可在宽的范围内选择,可为牌号为Z18、Z14或Z22的生铁,为了使得制得高强度灰铸铁具有更优异的机械性能,优选地,所述生铁为牌号为Z18的生铁。
[0021] 在本发明中,所述废钢可为任意的废弃钢材,为了使得制得高强度灰铸铁具有更优异的机械性能,优选地,对于100重量份的废钢,所述废钢中含有0.2-0.4重量份的碳元素、0.1-0.4重量份的锰元素、0.01-0.02重量份的磷元素、余量的铁元素以及不可避免的微量元素。
[0022] 在本发明中,所述废钢可为任意的回炉料,为了使得制得高强度灰铸铁具有更优异的机械性能,优选地,相对于100重量份的回炉料,所述回炉料中含有3.6-3.8重量份的碳元素、2.3-2.8重量份的硅元素、0.05-0.1重量份的锰元素、0.01-0.03重量份的硫元素、0.01-0.03重量份的磷元素、余量的铁元素以及不可避免的微量元素。
[0023] 在本发明中,硅铁是本领域技术人员所熟知的用于阻止铁中形成碳化物、促进石墨的析出和球化的助剂,硅铁可以是市售的任意一种,为了使得制得高强度灰铸铁具有更优异的机械性能,优选地,所述硅铁为牌号为FeSi90Al1.5或FeSi90Al3的硅铁。
[0024] 在本发明中,高碳锰铁是本领域技术人员所熟知的用于促进球墨铸铁中石墨结晶成球形的添加剂,硅铁可以是市售的任意一种,为了使得制得高强度灰铸铁具有更优异的机械性能,优选地,所述高碳锰铁为牌号为65或75的高碳锰铁。
[0025] 本发明还提供了一种高强度灰铸铁,所述高强度灰铸铁通过上述的方法制备而成。
[0026] 本发明还提供了一种铸件,所述铸件由上述的高强度灰铸铁铸造而成。
[0027] 以下将通过实施例对本发明进行详细描述。以下实施例中,抗拉强度参数通过GB 9439-2010的方法测得。
[0028] 生铁为杭州基惠金属材料有限公司牌号为Z18的市售品,废钢是聊城市德昌钢管有限公司的产品,回炉料是莒南县天源钢锶制品厂的产品,增碳剂是济源市澳鑫贸易有限公司的焦炭,硅铁是安阳华拓冶金有限责任公司牌号为FeSi90Al1.5或FeSi90Al3的产品,硅钙孕育剂是安阳市铁发冶金耐材有限公司的产品,硅锶孕育剂是常州市润良铁合金有限公司的产品,高碳锰铁是湘潭伟鑫锰制品有限公司牌号为65的产品,钛是上海南关金属制品有限公司。
[0029] 实施例1
[0030] 首先将牌号为Z18的生铁100kg、废钢70kg、回炉料110kg和钛1.3kg在1250℃下预热30min;接着将预热后的原料在1465℃下熔融以制得铁水;然后将牌号为FeSi90Al1.5的硅铁0.4kg、硅钙孕育剂0.9kg、硅锶孕育剂0.7kg加入至所述铁水中并搅拌以制得孕育铁水;最后将牌号为65的高碳锰铁1.5kg在1500℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁。
[0031] 其中,所述废钢中含有0.3重量%的碳元素、0.3重量%的锰元素、0.01重量%的磷元素、余量的铁元素以及不可避免的微量元素;所述回炉料中含有3.7重量%的碳元素、2.5重量%的硅元素、0.07重量%的锰元素、0.02重量%的硫元素、0.02重量%的磷元素、余量的铁元素以及不可避免的微量元素。焦炭的粒径为0.4mm。
[0032] 该高强度灰铸铁的抗拉强度为215MPa。
[0033] 实施例2
[0034] 首先将牌号为Z18的生铁100kg、废钢60kg、回炉料100kg和钛1kg在1250℃下预热30min;接着将预热后的原料在1460℃下熔融以制得铁水;然后将牌号为FeSi90Al1.5的硅铁0.2kg、硅钙孕育剂0.5kg、硅锶孕育剂0.5kg加入至所述铁水中并搅拌以制得孕育铁水;
最后将牌号为65的高碳锰铁1kg在1490℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁。
[0035] 其中,所述废钢中含有0.3重量%的碳元素、0.3重量%的锰元素、0.01重量%的磷元素、余量的铁元素以及不可避免的微量元素;所述回炉料中含有3.7重量%的碳元素、2.5重量%的硅元素、0.07重量%的锰元素、0.02重量%的硫元素、0.02重量%的磷元素、余量的铁元素以及不可避免的微量元素。焦炭的粒径为0.4mm。
[0036] 该高强度灰铸铁的抗拉强度为210MPa。
[0037] 实施例3
[0038] 首先将牌号为Z18的生铁100kg、废钢75kg、回炉料120kg和钛1.5kg在1250℃下预热30min;接着将预热后的原料在1470℃下熔融以制得铁水;然后将牌号为FeSi90Al1.5的硅铁0.6kg、硅钙孕育剂1.5kg、硅锶孕育剂0.9kg加入至所述铁水中并搅拌以制得孕育铁水;最后将牌号为65的高碳锰铁1.5kg在1510℃下加入至所述孕育铁水中并搅拌以制得高强度灰铸铁。
[0039] 其中,所述废钢中含有0.3重量%的碳元素、0.3重量%的锰元素、0.01重量%的磷元素、余量的铁元素以及不可避免的微量元素;所述回炉料中含有3.7重量%的碳元素、2.5重量%的硅元素、0.07重量%的锰元素、0.02重量%的硫元素、0.02重量%的磷元素、余量的铁元素以及不可避免的微量元素。焦炭的粒径为0.4mm。
[0040] 该高强度灰铸铁的抗拉强度为210MPa。
[0041] 实施例4
[0042] 按照实施例1的方法进行制得高强度灰铸铁,不同的是所述废钢中含有0.2重量%的碳元素、0.1重量%的锰元素、0.01重量%的磷元素、余量的铁元素以及不可避免的微量元素。
[0043] 该高强度灰铸铁的抗拉强度为209MPa。
[0044] 实施例5
[0045] 按照实施例1的方法进行制得高强度灰铸铁,不同的是所述废钢中含有0.4重量%的碳元素、0.4重量%的锰元素、0.02重量%的磷元素、余量的铁元素以及不可避免的微量元素。
[0046] 该高强度灰铸铁的抗拉强度为212MPa。
[0047] 实施例6
[0048] 按照实施例1的方法进行制得高强度灰铸铁,不同的是所述回炉料中含有3.6重量%的碳元素、2.3重量%的硅元素、0.05重量%的锰元素、0.01重量%的硫元素、0.01重量%的磷元素、余量的铁元素以及不可避免的微量元素。
[0049] 该高强度灰铸铁的抗拉强度为213MPa。
[0050] 实施例7
[0051] 按照实施例1的方法进行制得高强度灰铸铁,不同的是所述回炉料中含有3.8重量%的碳元素、2.8重量%的硅元素、0.1重量%的锰元素、0.03重量%的硫元素、0.03重量%的磷元素、余量的铁元素以及不可避免的微量元素。
[0052] 该高强度灰铸铁的抗拉强度为211MPa。
[0053] 实施例8
[0054] 按照实施例1的方法进行制得高强度灰铸铁,不同的是焦炭的粒径为0.15mm。
[0055] 该高强度灰铸铁的抗拉强度为208MPa。
[0056] 实施例9
[0057] 按照实施例1的方法进行制得高强度灰铸铁,不同的是焦炭的粒径为0.6mm。
[0058] 该高强度灰铸铁的抗拉强度为205MPa。
[0059] 对比例1
[0060] 按照实施例1的方法进行制得高强度灰铸铁,不同的是不含有硅钙孕育剂。
[0061] 该高强度灰铸铁的抗拉强度为187MPa。
[0062] 对比例2
[0063] 按照实施例1的方法进行制得高强度灰铸铁,不同的是不含有硅锶孕育剂。
[0064] 该高强度灰铸铁的抗拉强度为195MPa。
[0065] 对比例3
[0066] 按照实施例1的方法进行制得高强度灰铸铁,不同的是制备孕育铁水的工序的温度为1440℃。
[0067] 该高强度灰铸铁的抗拉强度为183MPa。
[0068] 对比例4
[0069] 按照实施例1的方法进行制得高强度灰铸铁,不同的是孕育铁水的工序的温度为1480℃。
[0070] 该高强度灰铸铁的抗拉强度为177MPa。
[0071] 对比例5
[0072] 按照实施例1的方法进行制得高强度灰铸铁,不同的是制得高强度灰铸铁的工序的温度为1485℃。
[0073] 该高强度灰铸铁的抗拉强度为175MPa。
[0074] 对比例6
[0075] 按照实施例1的方法进行制得高强度灰铸铁,不同的是制得高强度灰铸铁的工序的温度为1530℃。
[0076] 该高强度灰铸铁的抗拉强度为179MPa。
[0077] 通过上述实施例和对比例可知,本发明提供的高强度灰铸铁具有优异的抗拉强度,从而使其具有优异的机械性能。以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术