一种耐热性有机电负性半导体转让专利

申请号 : CN201410608835.5

文献号 : CN104326971B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李晓常曾纪森

申请人 : 江西冠能光电材料有限公司

摘要 :

本发明披露一种耐热性有机电负性半导体,采用吸电性基团EW1、EW2与芳杂环取代的苯并菲化合结构键接成化合物(I),可应用于有机光电电子器件,获得器件效率提升,器件工作电压降低及高温寿命延长性能。

权利要求 :

1.一种有机半导体化合物,其特征是所述的化合物具有如下结构: 

2.一种有机发光二极管,其特征是所述的有机发光二极管由如下部分组成:(a) 一个阴极

(b) 一个阳极

(c) 一个夹心于阴极与阳极之间的有机半导体发光层(d) 一个紧接发光层并处于阴极与发光层之间的电子传输空穴阻挡层,其特征是所述的电子传输空穴阻挡层含有权利要求 1 所述有机半导体化合物。

3.根据权利要求 2 所述的有机发光二极管,其中的电子传输空穴阻挡层为一混合物材料,含有权利要求 1 所述的有机半导体化合物及另一电子注入材料。

4.根据权利要求 2 所述的有机发光二极管,其特征是发光层中可选含有权利要求 1 所述的有机半导体化合物电子传输材料,其含量小于50%(重量)。

说明书 :

一种耐热性有机电负性半导体

技术领域

[0001] 本发明涉及有机发光材料及其在有机发光器件的应用,尤其是一种耐热性高电子亲有机半导体, 可应用于有机电子器件, 如有机发光器件OLED, 有机光伏OPV, 有机薄膜晶体管OTFT, 改善器件性能。

背景技术

[0002] 有机半导体材料属于新型光电材料,其大规模研究起源于1977年由白川英树,A. Heeger及A. McDiamid共同发现了导电车可达铜水平的掺杂聚乙炔。随后,1987年KodaK公司的C. Tang等发明了有机小分子发光二极管(OLED),和1990年剑桥大学的R. Friend及A. Holmes发明了聚合物发光二极管P-OLED,以及1998年S. Forrest与M. Thomson发明了效率更高的有机磷光发光二极管PHOLED。由于有机半导体材料具有结构易调可获得品种多样,能带可调,甚至如塑料薄膜加工一样的低成本好处,加上有机半导体在导电薄膜,静电复印,光伏太阳能电池应用,有机薄膜晶体管逻辑电路,和有机发光OLED平板显示与照明等众多应用,白川-Heeger-McDiamid三位科学家于2000年获得诺贝尔化学奖。
[0003] 作为下一代平板显示应用的有机发光二极管,有机光电半导体要求有:1. 高发光效率;2. 优良的电子与空穴稳定性;3. 合适的发光颜色;4. 优良的成膜加工性。原则上,大部分共轭性有机分子(包含星射体),共轭性聚合物,和含有共轭性发色团配体的有机重金属络合物都有具备电激发光性能,应用在各类发光二极管,如有机小分子发光二极管(OLED),聚合物有机发光二极管(POLED),有机磷光发光二极管(PHOLED)。磷光PHOLED兼用了单线激发态(荧光)和三线激发态(磷光)的发光机理,显然比小分子OLED及高分子POLED高得多的发光效率。PHOLED制造技术和出色的PHOLED材料都是实现低功耗OLED显示和照明所必不可少的。PHOLED的量子效率和发光效率是荧光OLED材料的3~4倍,因此也减少了产生的热量,增多了OLED显示板的竞争力。这一点提供了使得总体上OLED显示或照明超越LCD显示以及传统光源的可能。因而,现有高端OLED器件中或多或少地掺用了磷光OLED材料。
[0004] 磷光OLED材料是由含有一定共轭性的有机发光团作为二齿螯合,与金属元素形成环金属-配合体络合物,在高能光照下(如紫外光激发)或电荷注入(电激发)条件下,由于环金属-配体电荷转移(MLCT)成为激子,然后回复到基态而导致发光。在OLED器件中电荷的注入是通过在阳极施加电压后,从阳极注入电子,阴极注入空穴,分别经过电子传输层与空穴转输层,同时进入发射层的本体材料中,电子最终进入发光掺杂剂中的最低末占分子轨道(LUMO),空穴进入发光掺杂剂中的最高占有分子轨道(HOMO)而形成激发态发光掺杂剂分子(激子态)。激子态回复剂基态后伴随着发射光能,其发射光能波长正对应着发光分子掺杂剂的能隙(HOMO-LUMO能级差)。
[0005] 已有不少报道的重金属有机配合体络合物,受重金属的影响而增强了自旋轨道作用,使得本应较弱的磷光变得很强而呈现优良磷光发射。例如发绿光的三(苯基吡啶)铱(Ⅲ)配合络合物,简称为Ir(PPY)3,具有结构式为:
[0006] Ir(ppy)3
[0007] 发射蓝光的FirPic具有如下结构式:
[0008] FirPic
[0009] 其中的主配体4,6-二氟代苯基吡啶主宰着发光颜色。发射红光的三(辛烷基喹啉)铱(Ⅲ)配合络合物,具有优异的高效发射性能(Adv. Mater.19,739(2007))其结构式为:
[0010] Ir(piq-hex)3。
[0011] 为获得高效的有机OLED, 通常需在发光层与阳极之间添加电子注入及电子传输层,在发光层与阴极之间添加空穴注及空穴传输层,从而达到在发光层中平衡的电子与空穴。值得注意的是,有机半导体中,电子传输迁移率通常低于空穴传输迁移率。作为电子传输层材料通常是具有较低的LUMO--最低未占据轨道能级,如金属喹啉化合物,如三-(8-羟基)铝(Alq3),噁二唑或三唑类。有机电子传输层材料一般有电负性高的共轭基团组成,因而同时兼具空穴阻挡功能。最近,Kido 等报道了一些由苯环及吡啶构成的电子传输材料(Adv.Func.Mater.,2011, 21,pp36),但电子迁移率还是小于2x10-4 cm2/Vs,且材料的耐热性或在60oC 工作条件下寿命短。 因此,开发兼具耐热性与迁移率高的电子传输材料势在必行。

发明内容

[0012] 本发明提供一种高电子亲有机半导体,由苯并菲衍生物与各类亲电性或吸电性芳杂环组成,其结构通式为:
[0013]
[0014] 其特征是所述的化合物中Ar1-2为苯基,取代苯基,萘基,取代萘基,菲基,取代菲基,吡啶基,取代吡啶基,喹啉基取代喹啉基,噻唑基,取代噻唑基,噁唑基,取代噁唑基,吡嗪基,取代吡嗪基,苯并噻唑基,取代苯并噻唑基,苯并呋喃基,取代苯并呋喃;
[0015] 其特征是所述化合物中Ar3-4为H, D, F,苯基,取代苯基,萘基,取代萘基,菲基,取代菲基,吡啶基,取代吡啶基,喹啉基,取代喹啉基,噻唑基,取代噻唑基,噁唑基,取代噁唑基,吡嗪基,取代吡嗪基,苯并噻吩基,取代苯并噻吩基,苯并呋喃基,取代苯并呋喃基;
[0016] 其特征是所述化合物中EW1与EW2为H, D, 相同或不同的吸电基团,由炭原子少于40个的含N,O,S 的芳环、融合芳环组成。有许多含有N, O, S芳杂环吸电性优选基团,其中优选的为:
[0017]
[0018]
[0019]
[0020] 在一种情况下,所述的化合物具有如下(II)结构:
[0021]
[0022] 其特征在于所述化合物中EW1与EW2为H, D, 相同或不同的吸电子基团,由碳原子少于40个的含N,O,S 的芳环、融合芳环组成,优选基团为:
[0023]
[0024]
[0025]
[0026] EW1 及 EW2 也可为:
[0027]
[0028]
[0029] 其中R, R1和R2为H,烷烃取代,氧烷烃取代,芳杂环取代,
[0030] 优选结构例子为:
[0031]
[0032] 在另一种情况下,本发明所述的化合物具有如下通式(III)结构:
[0033]
[0034] 其特征是所述化合物中EW1与EW2为H, D, 相同或不同的吸电基团,由炭原子少于40个的含N,O,S 的芳环、融合芳环组成,优选结构为:
[0035]
[0036] 。
[0037] 在不违背本发明专利所述范围下,另一类化合物为如下通式所述:
[0038]
[0039] 其特征是所述化合物中EW1与EW2为H, D, 相同或不同的吸电基团,由炭原子少于40个的含N,O,S 的芳环、融合芳环组成,优选结构为:
[0040]
[0041]
[0042]
[0043]
[0044] 。
[0045] 本发明提供一个有机发光器件,包含有一个阴极,一个阳极和一个夹心于阴极与阳极之间的有机半导体,其中含有如下结构式化合物具有如下结构通式:
[0046]
[0047] 其特征是所述的化合物中Ar1-2为苯基,取代苯基,萘基,取代萘基,菲基,取代菲基,吡啶基,取代吡啶基,喹啉基取代喹啉基,噻唑基,取代噻唑基,噁唑基,取代噁唑基,吡嗪基,取代吡嗪基,苯并噻唑基,取代苯并噻唑基,苯并呋喃基,取代苯并呋喃;
[0048] 其特征是所述化合物中Ar3-4为H, D, F,苯基,取代苯基,萘基,取代萘基,菲基,取代菲基,吡啶基,取代吡啶基,喹啉基,取代喹啉基,噻唑基,取代噻唑基,噁唑基,取代噁唑基,吡嗪基,取代吡嗪基,苯并噻吩基,取代苯并噻吩基,苯并呋喃基,取代苯并呋喃基。
[0049] 其特征是所述化合物中EW1与EW2为H, D, 相同或不同的吸电基团,由炭原子少于40个的含N,O,S 的芳环、融合芳环组成,优选基团为:
[0050]
[0051]
[0052] 当电亲性EW1 和EW2与电亲性芳杂环或电亲性连接元相组合形成本发明所述的化合物后,所述的有机半导体化合物呈现N型半导体,具有高电子亲吸电性。高电子亲有机半导体化合物可应用于有机薄膜晶体管,作为高迁移率的逻辑控制应用,如电子书或液晶屏显示的控制。
[0053] 高电子亲有机半导体化合物也可与一有机P-型半导体形成PN结有机光伏电池。
[0054] 在本发明范围内,高电子亲化合物作为电子传输层尤其适合应用于有机发光二极管。在一发达的有机发光二极管芯片中,通常是采用透明导电玻璃,或镀有铟-锡氧化物 ITO 上蒸镀一层空穴注入层HIL,然后依次一层空穴传输层HTL、发光层EML、电子传输层ETL、电子注入层EIL,最后一层金属、如铝作为阳极导电及密封层。(图1)当ITO 结正,铝接负到一定电场后,空穴从ITO 经HIL注入和HTL传输至EML, 而电子从铝接的EIL注入后、经过ETL传输至EML. 电子与空穴在EML 中相遇、复合成激发子(Exciton),然后部分激发子以光辐射形式释放出能量回到基态。光辐射的波长由EML层中的发光掺杂剂的能隙决定。本发明所述的高电子亲有机半导体与低功函的金属,如Ca, Li, Na, K, Cs,或其有机或无机盐结合,可作为电子注入EIL应用, 可以为混和层或临接层应用。本发明所述的高电子亲有机半导体更好的优势是作为电子传输层 ETL 应用于OLED。
[0055] 在一有机发光二极管OLED 中,发光层通常由少量的发光掺杂剂与一主体材料混和而成。有时为了增加电子传输或注入强度, 也可在发光层中在掺如少量(<30% 重量)的电子传输材料。因此,本发明所述的高电子亲化合物也可以少量混如OLED 发光层应用,获得更为优良的发光性能。
[0056] 为获得高效的绿光和红光OLED,通常是使用三线态磷光发光掺杂剂的PHOLED。其中的发光层含有磷光发光材料,如Ir(ppy)3 为绿光,或 Ir(Piq)3 作为红光掺杂剂,用2至15% 的浓度发光(重量)材料,掺杂到一个主体材料中。
[0057]
[0058] 主体材料常用的是含咔唑或芳氨类材料。一种主体材料是4,4’-N,N’-二咔唑-联苯(CBP):
[0059]
[0060] 为达到优良的磷光器件性能,在阳极上,可任选一空穴注入层,如酞青兰(CuPc)或其他含芳氨的化合物 (Appl.Phys.Lett., 69, 2160(1996),如mTDATA。
[0061]
[0062] 同样地,在空穴注入层与发射层EML之间, 还可选择一空穴传输层,如使用4,4’-双[N-(1-萘基)-N-苯氨基]联苯(α-NPD)
[0063]
[0064] 为平衡电子与空穴的注入,提高发光效率,可任选一电子传输空穴阻挡(ETHB) 材料,例子是1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯TPBi,其结构为:
[0065]
[0066] 在ETHL与阴极之间,还通常使用电子注入层。电子注入层通常是功函较低的金属鋰,或其化合物如8-羟基喹啉鋰(Liq):
[0067]
[0068] 因此,OLED发光器件是一复杂的多层结构,图1为一典型的构造,但不是唯一的应用结构。 其中有机半导体层的总体厚度是50-250纳米, 优选总厚度为80-180纳米。使用OLED发光器件,可用于平板屏显示,如手机屏,i-Pad 屏,电视屏,电脑屏等。

附图说明

[0069] 图1为有机发光二极管结构示意图。

具体实施方式

[0070] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合实施例子对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施例的限制。
[0071] 实施例1:电子传输材料38的合成
[0072]
[0073] 化合物TM-1的合成: 将20.50g菲醌,48g溴单质,1.0g过氧化苯甲酰和300ml的硝基苯,加入回流2-3小时,降温至室温,过滤,固体用400ml的乙醇洗涤后干燥得到29.21g TM-1,收率为82%。
[0074] 化合物TM-2的合成:将29.21g TM-1,18.44g 二苄基甲酮,5.00g 氢氧化钾和350ml的甲醇,升温至50度,反应5-6小时,降温至室温,过滤,固体先用水洗涤,然后用甲醇洗涤,干燥得到32.5g TM-2,收率为76%。
[0075] 化合物TM-3的合成:将32.5g 的TM-2,9.2g的三甲基硅乙炔和250ml 的二甲苯,反应回流过夜,然后降至室温,过滤,固体过柱纯化,得到16.86g TM-3,收率为46%。
[0076] 化合物TM-4的合成:将14.00g 的TM-3,34.4ml的4-正丁基氟化铵(1.0M)和200ml的四氢呋喃,室温反应过夜,过滤,母液浓缩过滤,共得到10.14g TM-4,收率为82%。
[0077] 化合物38的合成:1.00g TM-4,1.14g 3-吡啶硼酸片呐酯,0.10g 醋酸钯,0.20g S-Phos,1.32g的碳酸钾,15ml的乙二醇二甲醚和10ml的水,氮气置换,然后升温至回流,然后降温至室温,分成,粗品过柱得到0.70g纯度为99.9%的产品化合物38,收率为:71%,产品表征:DSC=297.4度,Tg=145度,TGA=456度,PL=420nm,MS=330度。
[0078] 实施例2:电子传输材料45 的合成
[0079] 。
[0080] 化合物2的合成:1.00g TM-4,2.22g片呐酯,0.10g 醋酸钯,0.20g S-Phos,1.32g的碳酸钾,15ml的乙二醇二甲醚和10ml的水,氮气置换,然后升温至回流,然后降温至室温,分成,粗品过柱得到1. 0g的产品化合物45,收率为:60%,产品表征: Tg=200度,PL=417nm,MS=370度。
[0081] 实施例3:电子传输材料51的合成
[0082]
[0083] 化合物51的合成:1.00g TM-4,2.00片呐酯,0.10g 醋酸钯,0.20g S-Phos,1.32g的碳酸钾,15ml的乙二醇二甲醚和10ml的水,氮气置换,然后升温至回流,然后降温至室温,分成,粗品过柱得到0. 9g的产品51,收率为:64%,产品表征: Tg=193度,PL=418nm,MS=400度。
[0084] 实施例4:电子传输材料57 的合成
[0085]
[0086] 化合物57的合成:1.00g TM-4,1.50g片呐酯,0.10g 醋酸钯,0.20g S-Phos,1.32g的碳酸钾,15ml的乙二醇二甲醚和10ml的水,氮气置换,然后升温至回流,然后降温至室温。粗品过柱得到1.1g的纯度为99.4%产品化合物57,收率为:70%,产品表征: DSC=376度,TGA>
500度,PL=442nm。
[0087] 实施例5. 器件应用实例:
[0088] 在一个本底真空达10-5 帕的多源蒸发OLED 制备设备中,采用如下的器件结构:ITO/mTDATA(100Å)/NPD(400 Å)/CBP:Ir(ppy)3 9%(300 Å )/TPBi(300 Å)/LiF(10 Å)/Al 作为对比, 然后取代TPBi换用本发明所述的化合物为电子传输材料, 使用不同的ETL OLED 发光器件以便做比较。其中各有机层及电极的真空沉积速度于时间列于表1。
[0089]  表1:磷光OLED 器件制备条件 (发光层中掺杂wt浓度 9%)
[0090]
[0091] 表2:OLED 绿光器件性能 (1000 Cd/cm2 照度下)
[0092]
[0093] 对比已知的电子传输材料TPBi, 表2说明本发明化合物38, 45和51为例的绿光掺杂发光OLED具有明显降低工作电压和提升发光效率作用。
[0094] 以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案的保护范围内。