用于改质汽油的方法和催化剂转让专利

申请号 : CN201380028173.8

文献号 : CN104334693B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : A.希达戈维瓦斯F.乔恩森

申请人 : 赫多特普索化工设备公司

摘要 :

用于改质包含均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯的汽油的方法和催化剂,所述方法包括汽油中含有的均四甲苯和偏三甲苯在催化剂的存在下的加氢异构化,所述催化剂包含负载在酸性载体上的硫化的贱金属,由此将均四甲苯(1,2,4,5-四甲基苯)转化为偏四甲苯(1,2,3,5-四甲基苯)和连四甲苯(1,2,3,4-四甲基苯),并且将偏三甲苯(1,2,4三甲基苯)转化为均三甲苯(1,3,5三甲基苯)。

权利要求 :

1.用于改质包含均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯(1,2,4三甲基苯)的汽油的方法,所述方法包括:在氢气和催化剂的存在下将汽油中含有的均四甲苯和偏三甲苯加氢异构化,所述催化剂包含负载在酸性载体上的硫化的贱金属,由此将均四甲苯(1,2,4,5-四甲基苯)转化为偏四甲苯(1,2,3,5-四甲基苯)和连四甲苯(1,2,3,4-四甲基苯),并且将偏三甲苯(1,2,4三甲基苯)转化为均三甲苯(1,3,5三甲基苯)。

2.权利要求1的方法,其中所述在催化剂中的硫化的金属包括镍。

3.权利要求2的方法,其中镍的含量为0.5-20 wt%。

4.权利要求1-3任一项的方法,其中所述酸性载体包括沸石。

5.权利要求4的方法,其中所述沸石的SiO2/Al2O3比率为15-300。

6.权利要求4的方法,其中所述沸石包括ZSM-5。

7.权利要求1-3任一项的方法,其中所述酸性载体进一步包含氧化铝。

8.权利要求1-3任一项的方法,其中所述催化剂包含负载在ZSM-5和氧化铝的混合物上的硫化的镍。

9.权利要求8的方法,其中所述催化剂由1-5wt%的镍,50-70wt%的ZSM-5和50-30wt%的氧化铝粘合剂组成。

10.权利要求1-3任一项的方法,其包括进一步的步骤:从汽油中分离轻馏分,并且在加氢异构化中分流所述轻馏分。

11.根据权利要求1-3任一项的方法,其中加氢异构化中的条件包含在250℃和400℃之间的温度。

12.催化剂在加氢异构化汽油中含有的均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯中的用途,所述催化剂包含负载在酸性载体上的硫化的贱金属。

13.权利要求12的用途,其中所述在催化剂中的硫化的金属包括镍。

14.权利要求13的用途,其中镍的含量为0.5-20 wt%。

15.权利要求13-14任一项的用途,其中所述酸性载体包括沸石。

16.权利要求15的用途,其中所述沸石具有25-300的SiO2/Al2O3比率,和大于300 m2/g的总的BET表面积。

17.权利要求15的用途,其中所述沸石包括ZSM-5。

18.权利要求12-14任一项的用途,其中所述酸性载体进一步包含氧化铝。

19.权利要求12-14任一项的用途,其由1-5wt%的硫化的镍, 50-70wt% 的ZSM-5和50-

30 wt%的氧化铝粘合剂组成。

说明书 :

用于改质汽油的方法和催化剂

[0001] 本发明涉及用于改质如通过例如甲醇或甲醇/二甲醚的催化转化获得的合成汽油的方法。更为具体地,本发明提供了一种方法,其中汽油中含有的四甲苯和三甲苯,特别是均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯(1,2,4三甲基苯),在氢气的存在下并在同负载在酸性载体上的硫化的金属催化剂接触的条件下被异构化或被异构化和脱烷基化/歧化,以提供具有改进特性的汽油。
[0002] 均四甲苯(1,2,4,5-四甲基苯)为例如甲醇或甲醇/二甲醚转化成汽油过程中形成的化合物之一。其具有良好的辛烷值(估计的调和RON154),但是其具有非常高的凝固点/熔点(79.2℃)。为了在寒冷天气中避免车辆引擎过滤器中的堵塞问题,必须将汽油中均四甲苯的含量限制至低的值,约4-8wt%,依赖于地区的气候。
[0003] 合成汽油的另一个特性是高浓度的偏三甲苯(1,2,4三甲基苯,调和RON/MON 148/124)。尽管其具有良好的辛烷值,但其异构体之一(均三甲苯,1,3,5三甲基苯,调和RON/MON 
171/137)具有好得多的辛烷等级并且因此其可被看作是辛烷值促进剂。
[0004] 制备均三甲苯(1,3,5三甲基苯)同时减少均四甲苯(1,2,4,5-四甲基苯)能够补偿由汽油中的其他芳香族和烯烃化合物的加氢和脱烷基化/歧化反应导致的任何的辛烷损失,并且甚至改进最终产物中的辛烷值。
[0005] 我们已经发现当加氢处理含有四甲苯和三甲苯(包括均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯(1,2,4三甲基苯))的汽油馏分时,在负载于酸性载体上的硫化金属催化剂存在下,在汽油馏分中减少均四甲苯的含量并且增加均三甲苯(1,3,5三甲基苯)的含量是可能的。
[0006] 因此,本发明提供用于改质含有均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯(1,2,4三甲基苯)的汽油的方法。所述方法包括在催化剂的存在下将汽油中含有的均四甲苯和偏三甲苯加氢异构化,所述催化剂包含由硫化贱金属提供的加氢-脱氢功能,和由将硫化贱金属负载在酸性载体上提供的酸功能,由此将均四甲苯(1,2,4,5-四甲基苯)转化为偏四甲苯(1,2,3,5-四甲基苯)和连四甲苯(1,2,3,4-四甲基苯),并且将偏三甲苯(1,2,4三甲基苯)转化为均三甲苯(1,3,5三甲基苯)和连三甲苯(1,2,3三甲基苯)。
[0007] 除了存在于金属位点上的加氢-脱氢活性外,还存在一定程度的裂化或氢解活性。在本发明中,通过以硫化的方式来减少/控制金属位点的氢解功能来获得对于异构化的高选择性。
[0008] 通过加工含硫进料可以将金属原位硫化,所述含硫进料例如为,带有硫掺杂物的合成汽油,所述硫掺杂物例如为,二甲基二硫醚(DMDS),二叔丁基二硫醚(TBDS)等;或由于仅很少量的硫是必要的,所述含硫进料为含硫的精炼厂直馏石脑油。
[0009] 替代性地,通过简单地加工含H2S的富氢气体可将催化剂硫化。
[0010] 在本发明的一个实施方式中,催化剂中硫化的贱金属为镍。催化剂中的金属含量为0.5-20wt%,优选1-5wt%。
[0011] 在进一步的实施方式中,载体包括酸性沸石。
[0012] 优选地,所述沸石包括ZSM-5,其SiO2/Al2O3比为15-300,优选20-30。
[0013] 在再一个实施方式中,载体包含酸性沸石和氧化铝粘合剂材料的混合物。沸石的重量含量为15wt%- 99wt%,优选20wt%-80wt%,更优选30wt% -75wt%和再更优选40wt% -70wt%。
[0014] 优选地,所述催化剂由1-5wt%的镍,50-70wt% 的ZSM-5,50-30 wt%的氧化铝粘合剂组成。
[0015] 在负载于包含ZSM-5沸石和氧化铝的混合物的载体上的硫化的镍催化剂的存在下,均四甲苯(1,2,4,5-四甲基苯)几乎排它地被异构化为偏四甲苯(1,2,3,5-四甲基苯)和连四甲苯(1,2,3,4-四甲基苯),其具有低得多的熔点并且解决了凝固点的问题。
[0016] 均四甲苯(1,2,4,5-四甲基苯)既不大量的脱烷基化也不氢化,其对于保持产物产率,将氢气消耗限制到最小和避免辛烷值的损失是合意的,同时偏三甲苯(1,2,4三甲基苯)有利地被异构化为均三甲苯(1,3,5三甲基苯)和连三甲苯(1,2,3三甲基苯)。
[0017] 均三甲苯具有非常高的辛烷值并且改进最终汽油产物中的辛烷值。
[0018] 在改质方法中,汽油同富氢气体结合,预热至反应温度(温度为250-400℃,优选290-370℃),并然后在上述公开的在0.1-5MPa,优选为1-3MPa的压力范围下操作的催化剂上进行加工。在反应后,冷却反应器的流出物,例如通过与反应器进料进行热交换。将改质的汽油从气体中分离,然后将所述气体在压缩机中加压并再循环。所述改质的汽油具有低的均四甲苯(1,2,4,5-四甲基苯)的含量,且因此其冷流性质(例如,倾点和浊点)为足够的,同时作为形成均三甲苯(1,3,5三甲基苯)的结果和由于不存在芳烃饱和,辛烷等级同进料相比已经被改进。
[0019] 如上文中提到的,三甲苯和四甲苯在由例如甲醇或甲醇/二甲醚的催化转化制备的合成汽油中为典型的存在。合成汽油还含有烯烃化合物。如果所述烯烃组分被送至加氢异构化过程,其将相当容易的被氢化从而导致辛烷损失。
[0020] 因此,在本发明进一步的实施方式中,汽油在同催化剂接触之前被分馏成含有烯烃组分的轻馏分,和主要为芳香族的重馏分,并且所述重馏分经历依照本发明的改质过程。
[0021] 改质的重馏分随后同含有烯烃材料的轻馏分共混,以制备最终的具有保留的或甚至是改进的辛烷等级的全馏分汽油产物。
[0022] 本发明进一步提供了用于汽油中含有的均四甲苯(1,2,4,5-四甲基苯)和偏三甲苯的加氢异构化的催化剂,所述催化剂包含负载在酸性载体上的硫化的贱金属。
[0023] 在一个实施方式中,催化剂中硫化的金属包括镍。镍的含量优选为0.5 -20 wt%。
[0024] 在进一步的实施方式中,酸性载体包括沸石。
[0025] 合适的沸石为ZSM-5。所述ZSM-5的SiO2/Al2O3比优选为25 – 300。
[0026] 在又一实施方式中,酸性载体进一步包含氧化铝。
[0027] 在优选的实施方式中,催化剂由1-5 wt%硫化的镍, 50-70 wt% ZSM-5 和 50-30 wt% 氧化铝粘合剂组成。
[0028] 实施例1
[0029] 通过用硝酸镍水溶液浸渍包含ZSM-5和氧化铝的圆柱形挤出物,之后在空气中煅烧来制备催化剂。将100 ml催化剂固定床装填至等温固定床反应器(大约1.5 cm内径)中,且通过加氢处理含硫石脑油馏分来进行催化剂的硫化。
[0030] 在硫化完成后,通过如下方式处理具有表1中所示组成的示例的重汽油:将示例的进料同纯氢气混合,加热至反应温度并且在硫化的催化剂存在下进行异构化反应。在高压和低压分离器中分离反应器产物。取出并分析来自低压分离器中的总的液体产物样品。
[0031] 表2示出了试验条件,测量出的氢气损耗和产物产率,而表3中示出了组成,计算出的RON(通过单体烃分析(Detailed Hydrocarbon Analysis)),倾点和浊点。
[0032] 表1. 示例的重汽油
[0033]
[0034] 表2. 条件,H2消耗,产物产率
[0035]
[0036] FF= 新鲜进料。
[0037] 表3. 条件,组成和所选择的性质
[0038]
[0039] FF= 新鲜进料
[0040] TLP =总的液体产物。
[0041] 在30wt%的均四甲苯(1,2,4,5-四甲基苯)的转化率下,倾点可以有20度的改进,并且在50wt%的转化率下有37度的改进。在30wt%和50wt%的均四甲苯的转化率下,(计算出的)RON分别增加了4和6。氢气消耗量小于18 Nl/l (0.11 mol/mol)。
[0042] 实施例2
[0043] 通过用硝酸镍水溶液浸渍包含ZSM-5和氧化铝的圆柱形挤出物,随后在空气中煅烧来制备催化剂。将3.8 g的催化剂装填进反应器。
[0044] 将全馏分合成汽油分馏成轻汽油和硫含量小于10 wppm的重汽油,所述全馏分合成汽油通过在H-ZSM-5上在340-400℃和1.5 MPa压力下转化甲醇来制备。重汽油的性质在表4中示出。然后用二甲基二硫醚(DMDS)掺杂一部分重汽油以使最终的硫含量为138 wt ppm。
[0045] 表4 重汽油的性质
[0046]
[0047] 在试验A中,通过将反应器以5℃/min加热至150℃(H2流=250 Nml/min,P= 50 巴(表压))来进行硫化。然后以 0.1 ml/min 的速率(等价于WHSV=1.36 h-1)进料138 wt ppm的硫掺杂的重汽油。然后将H2流设置为30 Nml/min (H2/油= 300 Nml/ml),并且随后以2℃/min再加热至325℃。在350℃下4小时后,硫化混合物被切换为<10 wt ppm的重汽油。
[0048] 在试验B中,用2.5 wt%DMDS在n-C7中的混合物来硫化催化剂。全部的DMDS在预热器中被热分解为H2S。通过将反应器以 5℃/min加热至150℃(H2流=250 Nml/min,P= 50 巴(表压))来进行硫化。然后以0.3 ml/min 的速率(等价于LHSV=3.3 h-1和H2/油= 833 Nml/ml)进料硫化混合物,并且随后以 2℃/min再加热至350℃。在350℃下4小时后,硫化混合物被切换为138 wt ppm的硫掺杂的重汽油。
[0049] 在试验C中,将反应器以5℃/min加热至150℃(H2流=250 Nml/min,P= 50 巴(表压))。然后以0.1 ml/min 的速率(等价于WHSV=1.36 h-1)进料小于10 wt ppm硫的重汽油。然后将H2流设置为30 Nml/min (H2/油= 300 Nml/ml),并且随后以 2℃/min再加热至325℃ 。
[0050] 在试验A-C中,在WHSV=1.4 h-1和H2/油=300 Nl/l(约1.9mol/mol)下,通过同纯氢气混合来处理重汽油并在两种不同的条件下试验。在条件#1中将温度设置为T=324℃,而条件#2为T=344℃,并且每个条件运行约25小时。
[0051] 在包含高压和低压分离器的系统中分离反应器产物。通过气相色谱来分析高压分离器中液相的组成。
[0052] 在每组试验后,表征用后的催化剂并且将测量出的试验A-C用后的催化剂的硫含量用作催化剂中金属硫化程度的指示参数。
[0053] 附图中的图1示出了,由于在氢气存在下发生改质,有必要向金属镍添加硫以减少形成轻质烃的快速氢解/裂化。
[0054] 附图中的图2示出了,在1,2,4三甲基苯(偏三甲苯)的转变中,通过少量硫的添加,特别是在345℃下,增加了异构化产物,即1,3,5三甲基苯(均三甲苯)和1,2,3三甲基苯(连三甲苯)的选择性。