不锈钢箔制太阳电池基板材料及其制造方法转让专利

申请号 : CN201280073433.9

文献号 : CN104334752B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 山口裕弘本田充孝西山直树中田时夫

申请人 : 杰富意钢铁株式会社

摘要 :

本发明提供防止作为光吸收层的Cu(In1‑XGaX)Se2的被膜的剥离的不锈钢箔制太阳电池基板材料及其制造方法。具体而言,在选自N2气、H2气、Ar气、AX气及HN气中的一种的气氛中或两种以上混合而成的气氛中且在250~1050℃的范围内,对含有7~40质量%的Cr、0~100℃下的线膨胀系数为12.0×10‑6/℃以下、厚度为20~200μm的不锈钢箔实施用于除去应力的预热处理,进而,在实施了该预热处理的不锈钢箔的表面形成由Mo层构成的背面电极后,或者在不锈钢箔的表面形成绝缘被膜、进而在其上形成由Mo层构成的背面电极后,实施被膜形成热处理,在背面电极上形成由Cu(In1‑XGaX)Se2构成的光吸收层。

权利要求 :

1.一种不锈钢箔制太阳电池基板材料的制造方法,在选自N2气、H2气、Ar气、AX气及HN气中的一种的气氛中或两种以上混合而成的气氛中且在250~900℃的范围内,对含有7~40质量%的Cr、0~100℃下的线膨胀系数为12.0×10-6/℃以下、厚度为20~200μm的不锈钢箔实施用于除去应力的预热处理,进而,在实施了该预热处理的所述不锈钢箔的表面形成由Mo层构成的背面电极后,或者在所述不锈钢箔的表面形成绝缘被膜、进而在其上形成由Mo层构成的背面电极后,实施被膜形成热处理,在所述背面电极上形成由Cu(In1-XGaX)Se2构成的光吸收层,其中,所述AX气是指75体积%H2与25体积%N2的混合气体,所述HN气是指3~

10%体积%H2与余量97~90体积%N2的混合气体。

2.如权利要求1所述的不锈钢箔制太阳电池基板材料的制造方法,其中,在250~700℃的范围内实施所述预热处理。

3.如权利要求1或2所述的不锈钢箔制太阳电池基板材料的制造方法,其中,在450~

700℃的范围内实施所述被膜形成热处理。

4.一种不锈钢箔制太阳电池基板材料,在含有7~40质量%的Cr、0~100℃下的线膨胀系数为12.0×10-6/℃以下、厚度为20~200μm、并且在选自N2气、H2气、Ar气、AX气及HN气中的一种的气氛中或两种以上混合而成的气氛中且在250~900℃的范围内实施了用于除去应力的预热处理的不锈钢箔的表面形成由Mo层构成的背面电极后,或者在所述不锈钢箔的表面形成绝缘被膜、进而在其上形成由Mo层构成的背面电极后,实施被膜形成热处理,在所述背面电极上形成由Cu(In1-XGaX)Se2构成的光吸收层,实施所述被膜形成热处理前后的所述不锈钢箔的宽度及长度的变化分别满足下述(1)式及(2)式,

100×|(W1-W0)|/W0≤0.037%  …(1)

100×|(L1-L0)|/L0≤0.037%   …(2)

W0:实施被膜形成热处理前的不锈钢箔的宽度(mm)

W1:实施被膜形成热处理后的不锈钢箔的宽度(mm)

L0:实施被膜形成热处理前的不锈钢箔的长度(mm)

L1:实施被膜形成热处理后的不锈钢箔的长度(mm)

其中,所述AX气是指75体积%H2与25体积%N2的混合气体,所述HN气是指3~10%体积%H2与余量97~90体积%N2的混合气体。

5.如权利要求4所述的不锈钢箔制太阳电池基板材料,其中,实施所述被膜形成热处理前后的所述不锈钢箔的宽度及长度的变化分别满足下述(3)式及(4)式,

100×|(W1-W0)|/W0≤0.018%  …(3)

100×|(L1-L0)|/L0≤0.018%   …(4)。

6.如权利要求4或5所述的不锈钢箔制太阳电池基板材料,其中,所述预热处理的温度在250~700℃的范围内。

7.如权利要求4或5所述的不锈钢箔制太阳电池基板材料,其中,所述被膜形成热处理的温度在450~700℃的范围内。

8.如权利要求6所述的不锈钢箔制太阳电池基板材料,其中,所述被膜形成热处理的温度在450~700℃的范围内。

说明书 :

不锈钢箔制太阳电池基板材料及其制造方法

技术领域

[0001] 本发明涉及在不锈钢箔上形成有光吸收层(absorber layer)的太阳电池基板材料(solar cell substrate)及其制造方法。

背景技术

[0002] 太阳电池基板材料的原材广泛使用作为比较廉价的绝缘体(insulator)的玻璃(glass)。但是,由于玻璃较脆,因此,难以大量并且连续地制造在玻璃的表面形成有光吸收层的玻璃制太阳电池基板材料。
[0003] 因此,正在开发使用能够大量生产(mass manufacturing)并且比玻璃更廉价的金属板(例如不锈钢板(stainless steel sheet)等)的太阳电池基板材料。但是,金属板为导电体(conductive material),因此,为了作为集成型的太阳电池(integrated solar cell)的基板材料使用,需要在表面上形成绝缘被膜(insulating layer)。或者,与硅太阳电池(silicon solar cell)同样地安装表面集电电极(power-collecting-surfaced electrode)而将太阳电池单元连接起来,由此,也能够作为栅型(grid type)使用。
[0004] 例如,在专利文献1、2中公开了使不锈钢板的表面光滑并形成有氧化铝被膜(alumina coating)的绝缘性板材(insulating sheet)。在该绝缘性板材上形成由Mo层构成的背面电极(back-contact)并在其上形成作为光吸收层的Cu(In1-XGaX)Se2的被膜时,如果实施用于使该Cu(In1-XGaX)Se2的晶体生长的热处理而作为集成型的太阳电池基板材料使用,则与玻璃制太阳电池基板材料相比,能够实现制造成本(production cost)的降低。
[0005] 或者,在作为栅型的太阳电池基板材料使用的情况下,使不锈钢板的表面光滑而在其上形成由Mo层构成的背面电极、进而在其上形成作为光吸收层的Cu(In1-XGaX)Se2的被膜时,实施用于使该Cu(In1-XGaX)Se2的晶体生长的热处理,得到太阳电池基板材料。需要说明的是,Cu(In1-XGaX)Se2是指使Cu(In)Se2与Cu(Ga)Se2形成混晶而得到的被称为CIGS的物质。
[0006] 对于这些使用不锈钢板的太阳电池基板材料(即,不锈钢板制太阳电池基板材料)而言,在形成绝缘被膜、背面电极时,有时预先在基底上形成被称为阻挡层(barrier layer)的Cr等的层。在该情况下,阻挡层以外的绝缘被膜、背面电极、光吸收层以与上述同样的方式构成。
[0007] 现有技术文献
[0008] 专利文献
[0009] 专利文献1:日本特开平6-299347号公报
[0010] 专利文献2:日本特开平5-306460号公报

发明内容

[0011] 发明所要解决的问题
[0012] 为了进一步削减不锈钢板制太阳电池基板材料的制造成本,要求对所使用的不锈钢板进行薄壁化,研究了在不锈钢箔上形成光吸收层、或者在形成有绝缘被膜的绝缘性箔材上形成光吸收层而作为太阳电池基板材料使用的技术。
[0013] 对于以不锈钢箔作为原材的太阳电池基板材料(以下,称为不锈钢箔制太阳电池基板材料)而言,在栅型的情况下,使不锈钢箔光滑,在其表面形成由Mo层构成的背面电极,在其上形成作为光吸收层的Cu(In1-XGaX)Se2的被膜。或者,在集成型的情况下,在不锈钢箔的表面形成绝缘被膜(例如氧化铝被膜等),得到绝缘性箔材,在该绝缘被膜上形成背面电极,进一步在其上形成作为光吸收层的Cu(In1-XGaX)Se的被膜。
[0014] 在任意一种情况下,均存在由于在形成Cu(In1-XGaX)Se2的被膜时实施的热处理(heat treatment)而使光吸收层、绝缘被膜、背面电极容易剥离的问题。如果作为光吸收层的Cu(In1-XGaX)Se2的被膜发生剥离,则将太阳光转换成电的转换效率(conversion efficiency)降低。另外,如果背面电极、绝缘被膜发生剥离,则形成在其上的光吸收层也脱落,因此导致转换效率的降低。
[0015] 本发明的目的在于提供防止作为光吸收层的Cu(In1-XGaX)Se2的被膜的剥离的不锈钢箔制太阳电池基板材料及其制造方法。
[0016] 用于解决问题的方法
[0017] 发明人对不锈钢箔制太阳电池基板材料中光吸收层、绝缘被膜、背面电极发生剥离的原因进行了考察。结果获知,其原因在于,由于形成Cu(In1-XGaX)Se2的被膜时实施的热处理而引起不锈钢箔变形(deformation)。
[0018] 即,由于在不锈钢箔的制造工序中反复进行冷加工(cold rolling)而在不锈钢箔产生残余应力(residual stress)。在该不锈钢箔上层叠绝缘被膜、背面电极后实施进行用于形成光吸收层的涂覆和加热这两者的处理(以下,称为被膜形成热处理)(集成型),或者在不锈钢箔上层叠背面电极后实施用于形成光吸收层的被膜形成热处理(栅型),由此,不锈钢箔的残余应力释放,不锈钢箔发生变形,在光吸收层、背面电极、绝缘被膜上产生裂纹而剥离。
[0019] 因此,在预先对不锈钢箔实施热处理(以下,称为预热处理(thermal pretreatment))而除去残余应力后,在集成型的情况下,层叠绝缘被膜、背面电极,实施形成光吸收层的被膜形成热处理,或者,在栅型的情况下,在不锈钢箔上层叠背面电极,实施形成光吸收层的被膜形成热处理,由此,能够抑制由被膜形成热处理引起的不锈钢箔的变形,进而能够防止作为光吸收层的Cu(In1-XGaX)Se2的被膜的剥离。
[0020] 本发明是基于这样的见解而完成的。
[0021] 即,本发明为一种不锈钢箔制太阳电池基板材料的制造方法,在选自N2气、H2气、Ar气、AX气及HN气中的一种的气氛中或两种以上混合而成的气氛中且在250~1050℃的范围-6内,对含有7~40质量%的Cr、0~100℃下的线膨胀系数为12.0×10 /℃以下、厚度为20~
200μm的不锈钢箔实施用于除去应力的预热处理,进而,在实施了该预热处理的不锈钢箔的表面形成由Mo层构成的背面电极后,或者在不锈钢箔的表面形成绝缘被膜、进而在其上形成由Mo层构成的背面电极后,实施被膜形成热处理,在背面电极上形成由Cu(In1-XGaX)Se2构成的光吸收层。
[0022] 本发明的不锈钢箔制太阳电池基板材料的制造方法中,优选在250~900℃的范围内实施预热处理。更优选为250~700℃。另外,优选在450~700℃的范围内实施被膜形成热处理。
[0023] 另外,本发明为一种不锈钢箔制太阳电池基板材料,在含有7~40质量%的Cr、0~100℃下的线膨胀系数为12.0×10-6/℃以下、厚度为20~200μm、并且在选自N2气、H2气、Ar气、AX气及HN气中的一种的气氛中或两种以上混合而成的气氛中且在250~1050℃的范围内实施了用于除去应力的预热处理的不锈钢箔的表面形成由Mo层构成的背面电极后,或者在不锈钢箔的表面形成绝缘被膜、进而在其上形成由Mo层构成的背面电极后,实施被膜形成热处理,在背面电极上形成由Cu(In1-XGaX)Se2构成的光吸收层,实施被膜形成热处理前后的不锈钢箔的宽度及长度的变化分别满足下述(1)式及(2)式。
[0024] 100×|(W1-W0)|/W0≤0.037%  …(1)
[0025] 100×|(L1-L0)|/L0≤0.037%  …(2)
[0026] W0:实施被膜形成热处理前的不锈钢箔的宽度(mm)
[0027] W1:实施被膜形成热处理后的不锈钢箔的宽度(mm)
[0028] L0:实施被膜形成热处理前的不锈钢箔的长度(mm)
[0029] L1:实施被膜形成热处理后的不锈钢箔的长度(mm)
[0030] 本发明的不锈钢箔制太阳电池基板材料中,优选实施被膜形成热处理前后的不锈钢箔的宽度及长度的变化分别满足下述(3)式及(4)式。另外,预热处理的温度优选在250~700℃的范围内。此外,被膜形成热处理的温度优选在450~700℃的范围内。
[0031] 100×|(W1-W0)|/W0≤0.018%  …(3)
[0032] 100×|(L1-L0)|/L0≤0.018%  …(4)
[0033] 发明效果
[0034] 根据本发明,能够防止使用廉价并且能够大量生产的不锈钢箔的太阳电池基板材料(即,不锈钢箔制太阳电池基板材料)中形成的光吸收层的剥离。因此,不仅能够有助于太阳电池的制造成本的削减,而且能够提高对太阳光进行电转换的转换效率。

附图说明

[0035] 图1是示意地表示本发明的不锈钢箔制太阳电池基板材料的例子的截面图。
[0036] 图2是示意地表示本发明的不锈钢箔制太阳电池基板材料的另一个例子的截面图。

具体实施方式

[0037] 图1、2是示意地表示本发明的不锈钢箔制太阳电池基板材料的例子的截面图。本发明中,在作为不锈钢箔制太阳电池基板材料1的原材的不锈钢箔2的箔轧制之前的制造方法没有特别限定。
[0038] 首先,对不锈钢箔2的成分进行说明。
[0039] Cr量低于7质量%时,长期使用时的耐腐蚀性(corrosion resistance)不足,作为不锈钢箔制太阳电池基板材料的耐久性变差。另一方面,超过40质量%时,不锈钢箔的制造工序中的中间制品(partly-finished product)即热轧钢板的韧性显著降低,存在不能在制造生产线中通板的问题。因此,Cr量需要设定为7~40质量%。
[0040] 不锈钢箔2在上述组成中可以含有Nb和/或Mo。
[0041] 在不锈钢箔2含有Nb的情况下,Nb含量低于0.05质量%时,结晶化热处理中的耐变形效果降低。另一方面,超过1.5质量%时,不锈钢箔的制造工序中的中间制品即热轧钢板的制造时的焊接性显著降低,存在不能在制造生产线中通板的问题。因此,Nb含量优选在0.05~1.5质量%的范围内。
[0042] 在不锈钢箔2含有Mo的情况下,Mo含量低于0.3质量%时,被膜形成热处理中的耐变形效果降低。另一方面,超过3.0质量%时,不锈钢箔的制造工序中的中间制品即热轧钢板的制造时的热加工性降低,存在不能在制造生产线中通板的问题。因此,Mo含量优选在0.3~3.0质量%的范围内。更优选为2.0%以下。
[0043] 作为这样的钢,可以列举:SUS430(17%Cr钢)、SUS447J1(30%Cr-2%Mo钢)、9%Cr钢、20%Cr-5%Al钢、SUS304(18%Cr-8%Ni钢)等。
[0044] 以下,如下例示出除了上述Cr、Nb和Mo以外添加的优选的成分组成。另外,规定钢的成分组成的成分%全部是指质量%。
[0045] C:0.12%以下
[0046] C与钢中的Cr结合而引起耐腐蚀性(corrosion resistance)的降低,因此,越低越优选,但如果为0.12%以下,则不会使耐腐蚀性显著降低。因此,优选为0.12%以下,更优选为0.04%以下。
[0047] Si:2.5%以下
[0048] Si是用于脱氧(deoxidation)的元素,但过量含有时,引起延展性的降低,因此,优选为2.5%以下。更优选为1.0%以下。
[0049] Mn:1.0%以下
[0050] Mn与S结合而形成MnS,使耐腐蚀性降低,因此,优选为1.0%以下。更优选为0.8%以下。
[0051] S:0.030%以下
[0052] 如上所述,S与Mn结合而形成MnS,使耐腐蚀性降低,因此,优选为0.030%以下。更优选为0.008%以下。
[0053] P:0.050%以下
[0054] P引起延展性的降低,因此,越低越优选,但如果为0.050%以下,则不会使延展性显著降低。因此,优选为0.050%以下,更优选为0.040%以下。
[0055] 以上,对必要成分进行了说明,但在本发明中,除此以外,还可以适当含有以下所述的元素。
[0056] 选自Ti、Zr中的至少一种的合计:1.0%以下
[0057] Ti、Zr均是使钢中的C、N形成碳化物、氮化物或者碳氮化物而固定、从而对改善耐腐蚀性有用的元素。但是,含量超过1.0%时,延展性(ductility)的降低变得显著,因此,这些元素在单独添加或复合添加中的任意一种情况下均限定为1.0%以下。另外,为了充分发挥这些元素的添加效果,优选含有0.02%以上。
[0058] Al:0.20%以下
[0059] Al是用于脱氧的元素,但过量含有时,引起延展性的降低,因此,优选为0.20%以下。更优选为0.15%以下。
[0060] 但是,在使用有意地添加了Al的20Cr-5Al钢等的情况下,没有该限定。
[0061] N:0.05%以下
[0062] N与钢中的Cr结合而引起耐腐蚀性的降低,因此,越低越优选,但如果为0.05%以下,则不会使耐腐蚀性显著降低。因此,优选为0.05%以下。更优选为0.015%以下。
[0063] 另外,除此以外,为了改善耐腐蚀性,也可以含有分别为1.0%以下的Ni、Cu、V、W。另外,为了提高热加工性(hot workability),也可以含有分别为0.1%以下的Ca、Mg、REM(Rare Earth Metals,稀土金属)、B。
[0064] 余量为Fe及不可避免的杂质。不可避免的杂质中,O(氧)优选为0.02%以下。
[0065] 不锈钢箔2的0~100℃下的线性膨胀率超过12.0×10-6/℃时,由于被膜形成热处理而发生光吸收层的剥离。因此,不锈钢箔2的0~100℃下的线性膨胀率设定为12.0×10-6/℃以下。
[0066] 这样的不锈钢箔通过对与例如JIS标准的SUS430(所谓的17%Cr钢)、SUS444(所谓的18Cr-2Mo钢)、SUS447J1(所谓的30Cr-2Mo钢)等相当的不锈钢进行箔轧制而得到。
[0067] 接着,对不锈钢箔2的厚度进行说明。
[0068] 不锈钢箔2的厚度小于20μm时,不锈钢箔2极容易弯折或者破裂,因此,在后述的绝缘被膜、光吸收层上容易自不锈钢箔2的折痕、裂痕起产生裂纹而剥离。另一方面,超过200μm时,与玻璃基板相比成本增高。因此,不锈钢箔2的厚度设定在20~200μm的范围内。
[0069] 在具有这样的组成和厚度的不锈钢箔2上形成绝缘被膜3、背面电极5等之前,实施预热处理,除去不锈钢箔2的轧制工序中产生的残余应力。预热处理在选自N2气、H2气、Ar气、AX气及HN气中的一种的气氛中或两种以上混合而成的气氛中进行。通过在这样的惰性气体气氛或还原性气体气氛中进行预热处理,可防止不锈钢箔2的氧化。另外,AX气是指75体积%H2与25体积%N2的混合气体,HN气是指3~10%体积%H2与余量97~90体积%N2的混合气体。
[0070] 预热处理的温度低于250℃时,不能充分地除去不锈钢箔2的残余应力。另一方面,超过1050℃时,不锈钢箔2的晶粒变得粗大,不锈钢箔2的表面粗糙,因此导致转换效率的降低。另外,在未添加Nb或Mo的情况下,超过900℃时会发生相变,因此,不能得到充分的耐腐蚀性。另外,为了不使不锈钢箔2软质化而保持硬度、从而提高不锈钢箔2的刚性,优选为700℃以下。因此,预热处理的温度设定在250~1050℃的范围内。优选为250~900℃,更优选为250~700℃。通过在该温度范围内进行预热处理,能够在防止不锈钢箔2变形的同时除去残余应力。为了显著发挥该效果,预热处理的时间只要在到达温度下保持数秒就足够。
[0071] 对于如图2所示的集成型而言,在实施预热处理后,在不锈钢箔2上形成绝缘被膜3。绝缘被膜3的形成方法没有特别限定。另外,绝缘被膜3的材质没有特别限定,但优选以往广泛使用的氧化铝被膜。接着,在绝缘被膜3上形成由Mo层构成的背面电极5,在其上形成作为光吸收层4的Cu(In1-XGaX)Se2的被膜。
[0072] 对于如图1所示的栅型而言,在实施预热处理后,在不锈钢箔2上形成背面电极5。接着,在背面电极5上形成作为光吸收层4的Cu(In1-XGaX)Se2的被膜。
[0073] 在任意一种情况下,均可以在实施了预热处理的不锈钢箔2上形成绝缘被膜3、背面电极5时预先形成被称为阻挡层的Cr等的层。在该情况下,阻挡层以外的绝缘被膜、背面电极、光吸收层的构成也与上述相同。
[0074] 另外,本发明中,绝缘被膜3、背面电极5、光吸收层4的形成方法没有特别限定,但作为光吸收层4的被膜形成热处理方法,例如有:(A)固相法(solid phase method)、(B)气相法(gas phase method)、(C)蒸镀法(evaporation method)。关于各种方法,以下示出其概要。
[0075] (A)固相法
[0076] 固相法为如下方法:通过溅射(sputtering)在基板上层叠In/(CuGa),进而通过蒸镀法层叠Se,形成Se/In/(CuGa)后,在450~500℃下实施热处理,由此,形成Cu(In1-XGaX)Se2的被膜。
[0077] (B)气相法
[0078] 气相法为如下方法:在H2Se气的气氛中对In/(CuGa)进行加热处理,形成CIGS膜(Copper Indium Gallium DiSelenide film,铜铟镓硒膜)后,进而在约500℃的温度下实施热处理,由此,形成Cu(In1-XGaX)Se2的被膜。
[0079] (C)蒸镀法
[0080] 蒸镀法为如下方法:在350~500℃的基板温度下照射In、Ga、Se后,将基板温度升温至500~550℃,仅照射Se、Cu,进而在500~550℃下照射In、Ga、Cu,或者在约500℃的基板上同时蒸镀In、Ga、Se、Cu,由此,形成Cu(In1-XGaX)Se2的被膜。
[0081] 被膜形成热处理的温度低于450℃时,Cu(In1-XGaX)Se2的晶体不会充分生长。另一方面,超过700℃时,不锈钢箔2的变形量增大,因此,绝缘被膜3、背面电极5、光吸收层4容易剥离。因此,被膜形成热处理的温度优选在450~700℃的范围内。通过在该温度范围内进行被膜形成热处理,能够在防止不锈钢箔2变形的同时使Cu(In1-XGaX)Se2的晶体生长。
[0082] 这样,在不锈钢箔2上形成绝缘被膜3并在该绝缘被膜3上形成背面电极5和光吸收层4而得到的不锈钢箔制太阳电池基板材料1(图2),在形成绝缘被膜3之前实施预热处理而除去残余应力,因此,由被膜形成热处理引起的变形得到抑制。另外,在不锈钢箔2上形成背面电极5并在该背面电极5上形成光吸收层4而得到的不锈钢箔制太阳电池基板材料1(图1),在形成背面电极5之前实施预热处理而除去残余应力,因此,由被膜形成热处理引起的变形得到抑制。
[0083] 即,将实施被膜形成热处理前的不锈钢箔2的宽度设为W0(mm),将实施被膜形成热处理后的不锈钢箔2的宽度设为W1(mm),将实施被膜形成热处理前的不锈钢箔2的长度设为L0(mm),将实施被膜形成热处理后的不锈钢箔2的长度设为L1(mm)时,宽度和长度的变化满足下述(1)式及(2)式,能够抑制光吸收层4、背面电极5、绝缘被膜3的剥离。
[0084] 100×|(W1-W0)|/W0≤0.037%   …(1)
[0085] 100×|(L1-L0)|/L0≤0.037%   …(2)
[0086] 为了进一步提高抑制光吸收层4、背面电极5、绝缘被膜3的剥离的效果,需要进一步抑制由被膜形成热处理引起的不锈钢箔2的变形,因此,优选将不锈钢箔2的宽度和长度的变化控制在下述(3)式及(4)式的范围内。
[0087] 100×|(W1-W0)|/W0≤0.018%   …(3)
[0088] 100×|(L1-L0)|/L0≤0.018%   …(4)
[0089] 如以上所说明的那样,本发明的不锈钢箔制太阳电池基板材料1,通过减小由被膜形成热处理引起的不锈钢箔2的变形,能够抑制光吸收层4、背面电极5、绝缘被膜3的剥离。其结果,由本发明的不锈钢箔制太阳电池基板材料1制造的太阳电池能够有效地对太阳光进行电转换。
[0090] 实施例
[0091] 制造图1所示的不锈钢箔制太阳电池基板材料1,对不锈钢箔2的变形进行考察。进一步安装电极,制作太阳电池,对其转换效率进行考察。以下说明其步骤。
[0092] 对表1所示成分的不锈钢箔2(厚度为50μm)实施预热处理(温度为400~700℃),形成作为背面电极5的Mo层后,通过实施利用固相法的被膜形成热处理,形成作为光吸收层4的Cu(In1-XGaX)Se2的被膜。另外,固相法中的热处理温度设定为550℃。将这样制作的材料作为不锈钢箔制太阳电池基板材料1。此时,在实施被膜形成热处理前,在不锈钢箔2的中央部沿宽度方向和长度方向分别画线,在被膜形成热处理后测定这些线的长度,计算出100×(W1-W0)/W0及100×(L1-L0)/L0,作为不锈钢箔2的变形进行评价。将其结果示于表2。
[0093] 在这样得到的不锈钢箔制太阳电池基板材料1上形成作为缓冲层(buffer layer)的CdS被膜,接着,形成作为透明传导膜(transparent conducting film)的ZnO被膜,最后,真空蒸镀(vacuum deposition)Ni-Al电极,制作太阳电池。测定该太阳电池的转换效率。将其作为发明例。
[0094] 另外,对太阳光进行电转换的转换效率利用由发电的电流、电圧测定得到的输出值除以入射光强度(intensity of incident light)而得到的值来计算。
[0095] 另一方面,不实施预热处理,其他的工序与发明例同样,制作太阳电池,测定其转换效率。将其作为比较例。
[0096] 关于发明例和比较例,将不锈钢箔的变形和太阳电池的转换效率示于表2。在此,不锈钢箔2的宽度和长度的变化中,+表示膨胀侧,-表示收缩侧。
[0097] 表1
[0098]
[0099] 表2
[0100]
[0101] 由表2可知,发明例的不锈钢箔的变形小,其结果,抑制了光吸收层的剥离,因此,太阳电池的转换效率高。
[0102] 产业上的可利用性
[0103] 根据本发明,能够防止在使用廉价并且能够大量生产的不锈钢箔的太阳电池基板材料(即,不锈钢箔制太阳电池基板材料)上形成的光吸收层的被膜的剥离。因此,不仅能够有助于太阳电池的制造成本的削减,而且能够提高对太阳光进行电转换的转换效率,因此,在产业上发挥显著的效果。
[0104] 标号说明
[0105] 1   不锈钢箔制太阳电池基板材料
[0106] 2   不锈钢箔
[0107] 3   绝缘被膜
[0108] 4   光吸收层
[0109] 5   背面电极