利用金属/金属结合制造复合结构的方法转让专利

申请号 : CN201380034211.0

文献号 : CN104412360B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : I·拉杜M·波卡特阿诺德·卡斯泰格维塔兹·戈丹G·里奥

申请人 : 索泰克公司

摘要 :

用于制造复合结构(200)的方法,所述方法包括将至少一个第一晶片(220)与第二晶片(230)直接结合,并且包括发起结合波的传播的步骤,其中在发起结合波的传播之后所述第一晶片(220)和所述第二晶片(230)之间的结合界面具有小于或等于0.7J/m2的结合能量。发起结合波的传播的步骤在如下条件中的一个或多个条件下进行:‑将所述晶片放置在压力小于20毫巴的环境中;‑向这两个晶片中的一个晶片施加0.1MPa至33.3MPa之间的机械压力。在发起结合波的传播的步骤之后,所述方法进一步包括:确定在这两个晶片的结合过程中引起的应力水平的步骤,所述应力水平是基于使用如下公式计算的应力参数Ct确定的:Ct=Rc/Ep,其中:Rc对应于这两个晶片的组件的曲率半径,单位为km;Ep对应于这两个晶片的组件的厚度,单位为μm。该方法进一步包括当所述应力水平Ct大于或等于0.07时确认结合有效的步骤。

权利要求 :

1.一种用于制造复合结构的方法,所述方法包括:将至少一个第一晶片(20)与第二晶片(30)直接结合,所述方法包括发起结合波的传播的步骤,其中在所述结合波传播之后,所述第一晶片(20)和所述第二晶片(30)之间的结合界面具有小于或等于0.7J/m2的结合能量,其特征在于,发起结合波的传播的所述步骤在如下条件中的一个或多个条件下进行:-将所述晶片放置在压力小于20毫巴的环境中;

-向这两个晶片中的一个晶片施加0.1MPa至33.3MPa之间的机械压力;

并且,在发起结合波的传播的所述步骤之后,所述方法进一步包括:-确定在这两个晶片的结合过程中引起的应力水平的步骤,所述应力水平是基于使用如下公式计算的应力参数Ct确定的:Ct=Rc/Ep

其中:

Rc对应于两个晶片的组件的曲率半径,单位为km;以及Ep对应于两个晶片的组件的厚度,单位为μm;以及

-当所确定的应力水平Ct大于或等于0.07时确认结合有效的步骤。

2.根据权利要求1所述的方法,其特征在于,在进行发起结合波的传播的所述步骤的过程中,这两个晶片中的至少一个晶片被平整地保持在支撑件上,该支撑件具有小于或等于2μm的平面度偏差。

3.根据权利要求1或2所述的方法,其特征在于,每个晶片的结合面上都包括选自至少如下材料的材料:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅。

4.根据权利要求1所述的方法,其特征在于,这两个晶片(20,30)中的至少一个晶片由硅基板(21)构成,该硅基板(21)覆盖有由选自至少如下材料的材料构成的材料层:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅,并且所述材料层形成所述至少一个晶片的结合面(20a)。

5.根据权利要求1所述的方法,其特征在于,在确认应力水平有效的情况下,该方法进一步包括至少一个处理两个晶片的组件的步骤,该步骤是选自至少如下步骤的步骤:-在小于或等于500℃的温度下对所述组件进行热处理;

-对这两个晶片中的一个晶片进行化学薄化。

6.根据权利要求1所述的方法,其特征在于,在确认应力水平有效的情况下,该方法进一步包括至少一个处理两个晶片的组件的步骤,该步骤是选自至少如下步骤的步骤:-在小于或等于500℃的温度下对所述组件进行热处理;

-对这两个晶片中的一个晶片进行化学机械薄化。

7.一种复合结构,所述复合结构包括结合至第二晶片(30)的至少一个第一晶片(20),每个晶片的结合面上都包括金属材料,其中所述第一晶片和所述第二晶片之间的结合界面具有小于或等于0.7J/m2的结合能量,其特征在于,在这两个晶片结合之后,所述结构具有大于或等于0.07的应力参数Ct,所述应力参数Ct是使用如下公式计算的:Ct=Rc/Ep

其中:

Rc对应于这两个晶片的组件的曲率半径,单位为km;

Ep对应于这两个晶片的组件的厚度,单位为μm。

8.根据权利要求7所述的结构,其特征在于,每个晶片的结合面上都包括选自至少如下材料的材料:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅。

9.根据权利要求8所述的结构,其特征在于,这两个晶片(20,30)中的至少一个晶片由硅基板(21)构成,所述硅基板(21)覆盖有由选自至少如下材料的材料构成的材料层:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅,并且所述材料层形成所述至少一个晶片的结合面(20a)。

说明书 :

利用金属/金属结合制造复合结构的方法

技术领域

[0001] 本发明涉及结构制造,该制造包括将至少一个第一晶片与第二晶片直接结合(direct bonding)(或分子粘附结合),其中即使在500℃下进行结合加强烘焙之后所得到的结合界面也具有小于或等于0.7J/m2的有限结合能量。

背景技术

[0002] 在一定数量的直接结合的情况中,在结合界面处得到的结合能量相对有限。例如,当在由自扩散系数D较低(即D<10-50m2/s)的金属材料(例如钨、铝、钽、铁、钼、铬、钌、镍、铂等)制成或覆盖有该金属材料的两个晶片之间进行直接结合时,就是这种情况。还有其他类型的直接结合,诸如疏水Si/Si结合(即,没有结合氧化层)、SiN/SiN结合或结合能量仍有限的其他材料组合。所有这些结合的特征都是,即使在500℃下进行结合增强烘焙之后,结合能量一般也小于0.7J/m2,而在例如氧化物与氧化物结合情况下的结合能量一般大于1J/m2。
[0003] 由于这种较低的结合能量,在随后处理的过程中存在两个晶片之间发生部分甚至全部分离的风险,特别是在涉及温度增加的处理过程中。
[0004] 这种部分或完全分离是由于结合界面处的抵抗结合力的应力增加引起的。在温度增加过程中出现的结合界面处的应力特别是由于两个晶片之间的热膨胀系数之差引起的或者是由于结合面处存在的热膨胀系数之差引起的或者是由于结合面处存在的金属材料的膨胀引起的。由于这种主要应力来源与结合面上存在的材料直接相关,因此不容易将它们降低。
[0005] 然而,申请人还发现,结合界面处存在的应力还起源于结合步骤本身。为了发起结合波(bonding wave)的传播而在两个晶片之间发起机械压力引起积累一定量的能量,该能量抵抗结合能量并因此可能是晶片分离的原因。
[0006] 结合界面处的应力超过一定水平时,在组件的随后处理(热处理、化学处理或化学机械处理)过程中发生分离的风险非常高。
[0007] 因此,既存在减少在结合时存储的应力的需要,也存在评价结合界面处的应力水平(该应力水平可以用作避免分离风险的基础)的需要。

发明内容

[0008] 为此,本发明提供了一种用于制造复合结构的方法,所述方法包括将至少一个第一晶片与第二晶片直接结合,所述方法包括发起结合波的传播的步骤,其中在所述结合波2
传播之后所述第一晶片和所述第二晶片之间的结合界面具有小于或等于0.7J/m的结合能量,
[0009] 其特征在于,发起结合波的传播的步骤在如下条件中的一个或多个条件下进行:
[0010] -将所述晶片放置在压力小于20毫巴的环境中;
[0011] -向这两个晶片中的一个晶片施加0.1MPa至33.3MPa之间的机械压力;
[0012] 并且,在发起结合波的传播的步骤之后,所述方法进一步包括:
[0013] -确定在这两个晶片的结合过程中引起的应力水平的步骤,所述应力水平是基于使用如下公式计算的应力参数Ct确定的:
[0014] Ct=Rc/Ep,
[0015] 其中:
[0016] Rc对应于这两个晶片的组件的曲率半径,单位为km;
[0017] Ep对应于这两个晶片的组件的厚度,单位为μm;以及
[0018] 当所确定的应力水平Ct大于或等于0.07时确认结合有效的步骤。
[0019] 本发明的方法因而不仅提出了通过减少引起的变形来降低可能在所述方法过程中积累在结合界面处的应力,而且还提出了评价残余应力水平并根据该评价来确认结合有效与否的步骤。
[0020] 通过本发明的方法,可以使通过直接金属-金属结合获得的晶片组件合格,从而只有在结合质量足以防止在随后处理过程中发生分离时才继续该组件的处理,换言之,才继续结构的制造。这样,在结构制造过程中实现坏品率显著降低,由此提高生产率。
[0021] 根据本发明的方法的第一方面,在进行发起结合波的传播的步骤的过程中,这两个晶片中的至少一个晶片被平整地保持在支撑件上,该支撑件具有小于或等于2μm的平面度偏差。
[0022] 根据本发明的方法的第二方面,每个晶片的结合面上都包括选自至少如下材料的材料:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅。所述晶片由这些材料中的材料制成或在其结合面上覆盖有这些材料中的材料。
[0023] 根据本发明的方法的第三方面,这两个晶片中的至少一个晶片由硅基板构成,该硅基板覆盖有一层选自至少如下材料的材料:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅,并且所述硅基板形成所述晶片的结合面。
[0024] 根据本发明的第四方面,在确认所述应力水平有效的情况下,该方法进一步包括至少一个处理这两个晶片的组件的步骤,该步骤是选自至少如下步骤的步骤:
[0025] -在小于或等于500℃的温度下对组件进行热处理;
[0026] -对两个晶片中的一个晶片进行化学或化学机械薄化。
[0027] 本发明还提供了一种复合结构,该复合结构包括结合至第二晶片的至少一个第一晶片,每个晶片的结合面上都包括金属材料,其中所述第一晶片和所述第二晶片之间的结合界面具有小于或等于0.7J/m2的结合能量,
[0028] 其特征在于,在这两个晶片结合之后,所述结构具有大于或等于0.07的应力参数Ct,所述应力参数Ct是使用如下公式计算的:
[0029] Ct=Rc/Ep
[0030] 其中:
[0031] Rc对应于这两个晶片的组件的曲率半径,单位为km;
[0032] Ep对应于这两个晶片的组件的厚度,单位为μm。
[0033] 根据本发明的结构的第一方面,每个晶片的结合面上都包括选自至少如下材料的金属材料:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅。所述晶片由这些材料中的材料制成或在其结合面上覆盖有这些材料中的材料。
[0034] 根据本发明的结构的第二方面,这两个晶片中的至少一个晶片由硅基板构成,该硅基板覆盖有由选自至少如下材料的材料构成的材料层:钨、铝、钽、铁、钼、铬、钌、镍、铂、氮化硅和硅,并且所述材料层形成所述晶片的结合面。

附图说明

[0035] 本发明的其他特征和优点将从如下对本发明的具体实施方式的描述中显露出,所述描述是参照所附附图以非限制性实施例给出的,在附图中:
[0036] 图1A和图1B是根据本发明的一个实施方式的直接结合的方法的示意图;
[0037] 图2是根据本发明的另一个实施方式的用于直接结合的方法的示意图;以及[0038] 图3示出了根据本发明的用于计算结合界面处的应力水平的参数的测量。

具体实施方式

[0039] 一般来说,本发明适用于复合结构的制造,该制造包括至少将第一基板或晶片直接结合至第二基板或晶片,其中即使在500℃下进行结合增强烘焙之后所得到的结合界面也具有有限的结合能量,即,结合能量小于或等于0.7J/m2。在直接结合产生之后的这种结合能量限制特别在如下情况下产生:
[0040] -当结合面由金属材料制成或覆盖有自扩散系数D较低(即D<10-50m2/s)的金属材料(例如钨、铝、钽、铁、钼、铬、钌、镍、铂等)制成或覆盖有该金属材料时;
[0041] -当结合面由硅制成或覆盖有硅时并且当进行疏水结合(即不使用氧化物类型的结合层)时;
[0042] -当结合面由氮化硅制成或覆盖有氮化硅时。进行组装的晶片可以特别地具有100mm、150mm、200mm或300mm的直径。
[0043] 直接结合或分子粘附结合本身是一种公知的技术。请记住,直接结合的原理是基于两个表面的直接接触,换言之,不使用特定的材料(粘合剂、蜡、铜等)。这种操作要求待结合在一起的表面应该足够光滑,没有任何颗粒或污染物,并且要求它们足够接近彼此(一般位于小于若干纳米的距离)以发起接触。在这种情况下,两个表面之间的吸引力是相当高的,从而触发分子粘附(由待结合的两个表面的原子或分子之间的电子相互作用的吸引力(德瓦尔斯力)的组合引起的结合)。
[0044] 分子粘附是通过晶片上的至少一个接触点与另一个晶片发起紧密接触而产生的,从而触发结合波从该接触点开始传播。术语“结合波”这里用来指结合力或分子粘附力,该结合力或分子粘附力从发起点传播并且与吸引力(德瓦尔斯力)从接触点在两个晶片之间的整个紧密接触表面(结合界面)上的扩散对应。接触点一般是通过向两个晶片中的一个晶片的暴露表面施加机械压力引起的。
[0045] 根据本发明并且为了减少结合时积累的应力,将要组装的两个晶片(如上所述,所述晶片具有由不会导致大于0.7J/m2的结合能量的材料制成的结合面)之间的结合波的传播是通过将所述晶片放置在压力小于20毫巴的环境中和/或通过将0.1MPa至33.3MPa之间的机械压力施加至两个晶片中的一个晶片而发起的。
[0046] 在结合波的传播是通过将晶片放置在低压环境中而发起的情况下,如图1A所示,第一晶片或基板20放置在结合机器100的腔室110中,该腔室包括基板承载装置40。在这里描述的实施例中,第一晶片20由硅基板21构成,该硅基板21包括金属材料层22,该金属材料层具有低自扩散系数并且形成晶片20的结合面20a。层22在这里是由钨构成的。基板承载装置40包括支撑板40a,该支撑板40a展现优选小于或等于2微米的平面度偏差。支撑板40a通过例如与该支撑板40a相关的静电或吸附系统或仅仅通过重力来保持第一晶片20,以便通过分子粘附将该第一晶片组装到第二晶片或基板30,该第二晶片或基板由硅基板31构成,该硅基板31包括钨层32,该钨层32形成晶片30的结合面30a。用于(静电或通过吸附)保持晶片的相关系统在已经确认它们不会使晶片变形的情况下使用,从而不会引起结合界面处应力积累的问题的任何增加。
[0047] 如图1B所示,然后将晶片30向下放在晶片20上,从而使晶片20和30各自的结合面20a和30a彼此相对。此外,在晶片30向下放在晶片20的过程中可以进行对准操作。
[0048] 晶片20和30被放置在密封腔室110中,该密封腔室110配备有诸如真空泵或类似物(没有在图1B中示出)之类的部分真空装置。
[0049] 当晶片20和30准备好结合时,将腔室110中的压力降低到小于或等于20毫巴(优选小于5毫巴)的压力,从而发起两个晶片之间的结合波的传播。在结合波的传播的发起过程中放置有所述晶片的环境的压力是恒定或不恒定的(即在发起步骤过程中可潜在地变化)。结合波的传播在这里是自发地(即没有在晶片上施加机械压力地)发起的,由此使得结合过程中应力最小,并且减少在结合界面处存储的应力水平。
[0050] 在通过施加机械压力发起结合波的传播的情况下,本发明提议控制施加在接触点处的机械压力,从而限制该区域中的应力,同时允许在接触的两个晶片之间发起和传播结合波。根据本发明,在接触点处施加的压力在0.1兆帕(MPa)至33.3MPa之间。发起点可以位于晶片上的任何位置。优选的是该接触点接近晶片的中心。该压力的施加区域的表面面积一般小于几平方毫米,例如1平方毫米。更大的施加表面面积也是可行的,但是有接触表面面积过大(大于5平方毫米,例如)的风险,从而导致变形增加以及结合界面处的存储应力水平增加。这种类型的机械压力的施加足以发起两个晶片之间的接触点,因而足以允许结合波在晶片之间的整个接触表面上传播,而不会引起过度应力。因而,通过控制为发起接触点而施加的机械压力,降低了在晶片中引起的变形。施加在接触点处的压力优选小于10MPa,而更优选的是该压力在0.1至5MPa之间。
[0051] 施加机械压力的持续时间至少与允许启动结合波传播现象最小持续时间对应。该最小持续时间基本对应于结合波在晶片之间的接触表面上传播所需的持续时间。机械压力的施加持续时间通常在1和10秒之间变化,对于组装直径为200mm的晶片来说一般为5秒。
[0052] 控制机械压力的施加可以通过工具来进行。在图2中,第一晶片或基板120被放置在包括支撑板140的结合机器内,该支撑板140具有优选小于或等于2微米的平面度偏差。支撑板140通过例如与支撑板结合的静电或吸附系统或简单地通过重力来保持第一晶片120,以便通过分子粘附将该第一晶片120与第二晶片或基板130组装在一起。如在以上描述的实施例中一样,晶片120或130分别由硅基板121或131构成,硅基板121或131分别涂覆有钨层122或132,钨层122或132分别形成了晶片120的结合面120a或晶片130的结合面130a。
[0053] 晶片120和130的结合面彼此形成紧密接触。通过工具50进行供分子粘附的接触点的发起。如图2中非常示意性地所示,工具50包括诸如触针之类的支撑元件51和弹簧压力表53。支撑元件51连接至弹簧压力表53,并且包括自由端部52,通过该自由端部52在晶片130上施加机械压力,从而发起两个晶片120和130之间的接触点。端部52具有在0.3mm2和1mm2之间的接触表面面积52a。当工具50与晶片130的接触表面面积52a的值已知时,可以通过控制由工具在晶片上施加的支撑力F(支撑力=机械压力×支撑表面面积)来施加0.1MPa和
33.3MPa之间的机械压力。由端部52在晶片130上施加的支撑力通过弹簧压力表53控制。该力在0.1牛顿(N)和10N之间。
[0054] 例如,当希望使用端部具有1mm2的接触表面面积的工具施加3.5MPa的机械压力(该压力足以发起接触点并因而发起两个晶片之间的结合波)时,施加3.5N的支撑力。
[0055] 支撑元件以及更具体地说用于与晶片接触的该支撑元件的端部可以由诸如硅酮或聚合物之类的材料制成或覆盖有该材料。一般来说,支撑元件的端部由足够刚性以通过受控方式施加压力的材料制成或覆盖有该材料。其原因在于,太软的材料可能发生变形并导致接触表面面积不精确,并因而导致所施加的压力缺乏精度。此外,太硬的材料可能导致晶片表面处形成缺陷(凹陷)。
[0056] 可以在结合机器中自动地采用本发明的用于发起分子粘附的方法。在这种情况下,该机器包括连接至致动器(例如气缸或机械臂)的支撑元件。该机器进一步包括力传感器(弹簧压力表、应变仪等)和用于操纵致动器的伺服控制器。伺服控制器操纵致动器,从而控制由支撑元件施加的机械压力。更具体地说,伺服控制器从力传感器接收数据并将该数据与预定的支撑力值进行比较,所述预定的支撑力值是期望应该施加的机械压力以及支撑元件端部的表面面积的函数。
[0057] 可以将如上所述的用于发起结合波传播的装置组合,这意味着可以在两个晶片被放置在维持在小于20毫巴的压力的环境内的同时以0.1MPa至33.3MPa之间的支撑压力在两个晶片之间施加机械压力点。
[0058] 在进行结合之前,可以特别地通过化学机械抛光准备晶片的结合面。
[0059] 一旦已经进行直接结合,则本发明的方法进一步包括测量两个晶片之间的结合界面处的应力水平的步骤以及确定该应力水平是否可接受以允许在没有任何结合失效的情况下向两个晶片组件施加随后处理的控制步骤。
[0060] 为此,本发明提出了基于使用如下公式计算的应力参数Ct来评估在两个晶片的结合过程中引起的应力水平:
[0061] Ct=Rc/Ep              (1)
[0062] 其中:
[0063] Rc对应于两个晶片组件的曲率半径,单位为km;
[0064] Ep对应于两个晶片组件的厚度,单位为μm。
[0065] 图3示出了通过将由硅基板221(该硅基板221在其结合面上覆盖有钨层222)构成的第一晶片220和由钨制成的第二晶片230直接结合产生的组件200。为了确定晶片220和230之间的结合界面处的应力水平,通过如下近似公式确定由组件200呈现的曲率半径Rc。
[0066] Rc=D2/8B
[0067] 其中:
[0068] B对应于该组件的曲率或“弯曲”,单位为μm;
[0069] D为组件中的晶片的直径,单位为mm。
[0070] 此外,测量组件的厚度Ep,该厚度Ep对应于被结合的晶片220和230的累积厚度。以km为单位测量曲率半径Rc,而组件的厚度以μm为单位进行测量。然后使用以上给出的公式(1)计算应力参数Ct。
[0071] 当已经计算好应力参数时,将其与参考值Cref(该参考值为0.07)比较。如果所计算的应力水平Ct大于0.07(优选大于0.15),则确认结合有效,这意味着该组件内存在的应力水平足够低以至于能够在随后处理过程(更具体地说,在热处理、化学处理或化学机械处理)中防止晶片的分离(disbond)。
[0072] 如果所计算的应力参数Ct小于所述参考值,则确认结合无效,从而可在结合之后在执行的处理过程中晶片分离之前将缺陷批次从制造过程移除。被拒组件中的晶片可以被分离并且可以再次重新结合,以给出满意的应力水平。
[0073] 根据本发明,当确认结合有效时,通过对组件进行如下处理中的一个或多个可以继续复合结构的生产:
[0074] -以小于或等于500℃的温度执行的热处理;
[0075] -通过对两个晶片中的一个晶片进行化学时刻或化学机械抛光而使两个晶片中的一个晶片变薄;
[0076] -在组件上沉积或生长另外的层。
[0077] 下表示出了针对多个批次(每个批次都对应于通过分子粘附形成的两个晶片的组件)在应力水平方面获得的模拟结果。
[0078]
[0079] 对于批次3、4、5、9、10以及15,发现所计算出的应力参数小于参考值0.07,而其他批次具有大于该参考值的应力参数。