固化条件的确定方法、电路器件的生产方法和电路器件转让专利

申请号 : CN201480001533.X

文献号 : CN104428881B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 市村健

申请人 : 索尼公司

摘要 :

一种固化条件的确定方法,用来确定用于对基板与电子组件之间的导电部进行密封的热固性树脂的固化条件。创建固化度曲线。所述固化度曲线针对各加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系。在创建的所述固化度曲线的基础上,计算在第一加热温度时在所述热固性树脂中自然向上运动的空隙的空隙去除时间。所述第一加热温度是所述加热温度中的一个加热温度。

权利要求 :

1.一种用于对基板与电子组件之间的导电部进行密封的热固性树脂的固化条件的确定方法,所述方法包括以下步骤:创建固化度曲线,所述固化度曲线针对各加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;

在创建的所述固化度曲线的基础上,计算在作为所述加热温度之一的第一加热温度时所述热固性树脂中自然向上运动的空隙的空隙去除时间;并且将基于计算的所述空隙去除时间的时间确定为以所述第一加热温度进行加热的加热时间。

2.根据权利要求1所述的固化条件的确定方法,其中,计算空隙去除时间的所述计算包括:

将创建的固化度曲线上的固化度转换为所述热固性树脂的粘度,并且使用从所述转换中获得的粘度作为参数,根据表示所述空隙的自然向上运动的状态的方程来计算所述空隙去除时间。

3.根据权利要求2所述的固化条件的确定方法,其中,表示所述空隙的自然向上运动的所述状态的所述方程还使用所述空隙的直径作为参数,并且所述空隙去除时间的所述计算包括:根据表示所述空隙的直径与施加于所述空隙的压力之间的关系的方程来计算所述空隙去除时间。

4.一种电路器件的生产方法,所述方法包括以下步骤:在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;

将所述热固性树脂设置到基板上以覆盖设置于所述基板上的电极上的焊料部;

以下述方式将电子组件放置在所述基板上:所述电子组件的电极或设置于所述电子组件的电极上的焊料部面对着在设置有所述热固性树脂的所述基板上的电极上设置的所述焊料部;并且以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了基于通过所述计算获得的所述空隙去除时间的时间。

5.根据权利要求4所述的电路器件的生产方法,其中,所述热固性树脂的加热包括既从所述电子组件一侧又从安装基板一侧对所述热固性树脂加热。

6.根据权利要求4所述的电路器件的生产方法,其中,所述热固性树脂是环氧树脂。

7.根据权利要求4所述的电路器件的生产方法,其中,所述第一加热温度是200℃以上并且250℃以下。

8.根据权利要求4所述的电路器件的生产方法,所述方法还包括:在从开始加热已经经过了基于所述空隙去除时间的所述时间之后以第二加热温度对所述热固性树脂加热,所述第二加热温度低于所述第一加热温度。

9.根据权利要求8所述的电路器件的生产方法,其中,所述第二加热温度是100℃以上并且150℃以下。

10.根据权利要求4所述的电路器件的生产方法,其中,计算所述空隙去除时间的所述计算包括:

将创建的所述固化度曲线上的固化度转换为所述热固性树脂的粘度,并且使用从所述转换中获得的所述粘度作为参数,根据表示所述空隙的自然向上运动的上升速率或位置的方程来计算所述空隙去除时间。

11.根据权利要求4所述的电路器件的生产方法,其中,将所述电子组件放置在所述基板上包括以下步骤:

在如下状态下使所述电子组件与所述基板上的所述热固性树脂接触:所述电子组件的布置有电极的电极布置表面或布置有在所述电极上设置的焊料部的焊料布置表面相对于所述基板的布置有所述基板的电极的安装表面成一定角度;并且在所述接触后,以使所述基板的所述安装表面与所述电子组件的所述电极布置表面或所述焊料布置表面之间的角度减小的方式,将所述电子组件压向所述热固性树脂。

12.一种电路器件的生产方法,所述方法包括以下步骤:在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;

将所述热固性树脂设置于基板上以覆盖所述基板上的电极;

以设置于电子组件的电极上的焊料部面对着设置有所述热固性树脂的所述基板上的电极的方式,将所述电子组件放置在所述基板上;并且以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了基于通过所述计算获得的所述空隙去除时间的时间。

13.一种电路器件,所述电路器件是通过如下生产方法而获得的,所述生产方法包括以下步骤:在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;

将所述热固性树脂设置于基板上以覆盖设置于所述基板上的电极上的焊料部;

以电子组件的电极或者设置于所述电子组件的电极上的焊料部面对着设置于设置有所述热固性树脂的所述基板上的电极上的焊料部的方式,将所述电子组件放置在所述基板上;并且以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了基于通过所述计算获得的所述空隙去除时间的时间。

14.一种电路器件,所述电路器件是通过如下生产方法而获得的,所述生产方法包括以下步骤:在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;

将所述热固性树脂设置于基板上以覆盖所述基板上的电极;

以设置于电子组件的电极上的焊料部面对着设置有所述热固性树脂的所述基板上的所述电极的方式,将所述电子组件放置在所述基板上;并且以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了基于通过所述计算获得的所述空隙去除时间的时间。

说明书 :

固化条件的确定方法、电路器件的生产方法和电路器件

技术领域

[0001] 本发明涉及用于密封基板与电子组件之间的导电部的热固性树脂的固化条件的确定方法、诸如安装有所述电子组件的电路板等电路器件和该电路器件的生产方法。

背景技术

[0002] 在将诸如集成电路和柔性印刷电路板等的电子组件安装到电路板上的过程中,通常使用被称为底层填充材料的环氧基热固性树脂来密封电子组件与电路板之间的间隙。
[0003] 专利文献1公开的技术是关于热固性树脂的热固化处理的加热模式的确定方法。该技术采用对热固性树脂进行DSC(差示扫描量热法),并且找出热固性树脂的热固性反应的速率方程。据此,确定出适当的加热模式(例如,参见专利文献1的第[0018]和[0019]段)。
[0004] 专利文献2公开的技术是关于热固性树脂的固化速率的预测方法。该技术已经改进了KJMA(Kolmogorov-Johnson-Mehl-Avrami)模型以找出热固性树脂的更接近于实际的固化性质(例如,参见专利文献2的第[0005]和[0010]段)。然而,KJMA模型基本上描述化学反应的体积变化;并且它不会总是与可能表现出体积膨胀和收缩的更复杂的反应的环氧树脂的实际情况相一致。
[0005] 专利文献1:日本专利申请特开平第6-88795号
[0006] 专利文献2:日本专利第5048292号

发明内容

[0007] 本发明要解决的问题
[0008] 此外,在热固性树脂的加热期间内,在热固性树脂内会产生空隙,并且这样的空隙可能保持在热固性树脂的内部。因此,假如树脂的内部留下了许多空隙,那么可能引发这样的问题:作为密封材料的树脂的质量将会劣化;例如,可能使树脂更加容易脱落。
[0009] 因此,本发明的目的是提供能够减少热固性树脂中的残留空隙的固化条件的确定方法和电路器件的生产方法;并且提供通过上述的生产方法而生产出的电路器件。
[0010] 解决问题的方法
[0011] 为了解决上述的问题,根据本发明,提供了一种用来确定用于对基板与电子组件之间的导电部进行密封的热固性树脂的固化条件的固化条件确定方法。
[0012] 在所述方法中,创建固化度曲线。所述固化度曲线针对各加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系。
[0013] 在创建的所述固化度曲线的基础上,计算在第一加热温度时在所述热固性树脂中自然向上运动的空隙的空隙去除时间。所述第一加热温度是多个所述加热温度中的一个加热温度。
[0014] 将基于计算的空隙去除时间的时间确定为以所述第一加热温度进行加热的加热时间。
[0015] 在本发明中,将所述空隙去除时间确定为在作为用于加热所述热固性树脂的加热温度的所述第一加热温度时的加热时间的基础。因此可以减少残留的空隙且能够形成高质量的密封材料。
[0016] 在所述计算中,可以将创建的固化度曲线转换为所述热固性树脂的粘度。
[0017] 可以使用从所述转换中获得的粘度作为参数,根据表示所述空隙的自然向上运动的状态的方程来计算所述空隙去除时间。通过将所述固化度曲线转换为粘度,能够得知所述空隙的运动状态;并且这能够求出所述空隙去除时间。
[0018] 表示所述空隙的自然向上运动的所述状态的方程还可以使用所述空隙的直径作为参数。在所述空隙去除时间的所述计算中,可以根据表示所述空隙的直径与施加于所述空隙的压力之间的关系的方程来计算所述空隙去除时间。这能够求出更加精确的空隙去除时间。
[0019] 根据本发明的电路器件的生产方法,其包括:在固化度曲线的基础上,计算在作为加热温度之一的第一加热温度时在热固性树脂中自然向上运动的空隙的空隙去除时间。所述固化度曲线针对各加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系。
[0020] 将所述热固性树脂设置到基板上以覆盖设置于所述基板上的电极上的焊料部。
[0021] 以下述方式将电子组件放置在所述基板上:所述电子组件的电极或设置于所述电子组件的电极上的焊料部面对着在设置有所述热固性树脂的所述基板上的电极上设置的焊料部。
[0022] 以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了基于通过所述计算获得的所述空隙去除时间的时间。
[0023] 因为这个生产方法包括:在固化度曲线的基础上,计算自然向上运动的空隙的所述空隙去除时间;然后对热固性树脂加热,直至从开始加热经过一定的时间,所述一定的时间是基于通过计算获得的所述空隙去除时间的时间,所以能够尽可能大地减少残留的空隙。
[0024] 所述热固性树脂可以是环氧树脂。
[0025] 所述第一加热温度可以是200℃以上并且250℃以下。
[0026] 所述电路器件的生产方法还可以包括:在从开始加热已经经过了所述空隙去除时间之后,以第二加热温度对所述热固性树脂加热。所述第二加热温度低于所述第一加热温度。在已经经过了所述空隙去除时间之后,在所述空隙由于以第一加热温度的加热而已经几乎已经去除的状态下,通过以相对低的第二加热温度对所述热固性树脂加热,能够提高所述热固性树脂的质量。
[0027] 所述第二加热温度可以是100℃以上并且150℃以下。
[0028] 在所述计算中,可以将创建的固化度曲线转换为所述热固性树脂的粘度。使用从所述转换中获得的粘度作为参数,可以根据所述空隙的自然向上运动的上升速率或位置来计算所述空隙去除时间。通过将所述固化度曲线转换为粘度,可以知道所述空隙的运动状态;并且这能够求出空隙去除时间。
[0029] 在将所述电子组件放置在所述基板上的过程中,可以在这样的状态下使所述电子组件与所述基板上的热固性树脂接触:所述电子组件的布置有电极的电极布置表或布置有设置于所述电极上的焊料部的焊料布置表面相对于所述基板的布置有所述基板的电极的安装表面成一定的角度。此外,在所述接触后,以使所述基板的安装表面与所述电子组件的电极布置表面或焊料布置表面之间的角度减小的方式,将所述电子组件压向所述热固性树脂。以这样的方式,能够有效地利用放置所述电子组件的动作将空隙从热固性树脂的内部推出。
[0030] 所述电路器件的生产方法还可以包括:在对所述热固性树脂加热期间或对所述热固性树脂加热之后,使用超声波辐射所述热固性树脂。或者,所述生产方法还可以包括:在对所述热固性树脂加热期间或对所述热固性树脂加热之后,使所述热固性树脂经受交变磁场。这能够使空隙在已经上升至热固性树脂的表面的情况下逸出至空气中。这能够确保空隙的去除。
[0031] 根据本发明,电路器件的另一种生产方法包括:在固化度曲线的基础上,计算在作为加热温度之一的第一加热温度时在热固性树脂中自然向上运动的空隙的空隙去除时间。所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系。
[0032] 将所述热固性树脂设置到基板上以覆盖所述基板上的电极。
[0033] 以设置于电子组件的电极上的焊料部面对着设置有所述热固性树脂的所述基板上的电极的方式,将所述电子组件放置在所述基板上。
[0034] 以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了基于通过所述计算获得的所述空隙去除时间的时间。
[0035] 根据本发明的电路器件是通过上面的各种生产方法获得的电路器件。
[0036] 本发明的效果
[0037] 如上所述,根据本发明,本发明能够减少热固性树脂中残留的空隙。

附图说明

[0038] [图1]图1示意性地说明了根据本发明实施例的电路器件的一部分生产过程。
[0039] [图2]图2是示出了图1的生产过程的流程图。
[0040] [图3]图3是示出了加热条件的创建过程的处理的流程图。
[0041] [图4]图4的A至C示出了用来求出修正的卡玛尔方程(Kamal's equation)的树脂系数的数值分析的方法的示例。
[0042] [图5]图5是示出了基于由数值分析获得的修正的卡玛尔方程的相对于每个树脂温度而示出的环氧树脂的固化度曲线的曲线图。
[0043] [图6]图6是示出了根据方程式3的固化度α与粘度μ之间的关系的曲线图。
[0044] [图7]图7用于在杨-拉普拉斯(Young-Laplace)方程5的基础上说明被施加于空隙上的压力差。
[0045] [图8]图8是表示在通过步骤201至203而获得的计算结果的基础上的固化度α和空隙上升位置相对于加热时间的曲线图。
[0046] [图9]图9示出了本发明人通过在图2的热压接合处理后破坏实际热固化树脂来核查剩余空隙的实验结果。
[0047] [图10]图10的A至C依次示出了根据第三实施例的生产过程。

具体实施方式

[0048] 在下文中,将参照附图说明本发明的一些实施例。
[0049] 1.第一实施例
[0050] (1)电路器件的生产方法
[0051] 图1示意性地说明了根据本发明实施例的电路器件的一部分生产过程。图2是说明生产过程的流程图。下面,将参照图1和图2依次说明生产过程。
[0052] 如图1的A所示,准备电子组件11和用来安装电子组件11的安装基板21。在安装基板21上,设置有电极22。电子组件11具有一些电极12和设置在电极12上的一些焊料部(例如,预涂覆焊料凸点)13。
[0053] 安装基板21(组件将被安装在其上)通常是刚性基板,或它可以是柔性基板。例如,电子组件11可以是集成电路(IC)或可以是柔性印刷电路(FPC)。
[0054] 如图1的B所示,例如,可以将焊膏涂覆在安装基板21上的电极22上,以形成焊料部(例如,焊料凸点)23(步骤101)。
[0055] 如图1的C所示,以覆盖安装基板21上的焊料部23的方式,将作为底层填充材料的热固性树脂R设置到安装基板上(步骤102)。主要地,可以使用环氧树脂作为热固性树脂R。
[0056] 如图1的D所示,以电子组件11的焊料部13面对着设置有热固性树脂R的安装基板21的焊料部23的方式,即,通过倒装接合法,将电子组件11放置在安装基板21上的热固性树脂R上(步骤103)。
[0057] 如图1的E所示,通过将在后面说明的预定加热条件(预定加热温度和时间)下的热压接合,从图1的D所示的状态使电子组件11和安装基板21接合(步骤104)。
[0058] 例如,具有加热器的压头15可以按压电子组件11,从而通过电子组件11的热传导效应以后面将要说明的预定温度加热热固性树脂R。于是,焊料部13和23熔化。电极12和22(参见图1的A)因此而被接合。热固性树脂R固化,电极12和22因此而被密封。
[0059] 作为对在电子组件11侧加热的构造的替代,可以是对安装基板21(安装基板21的下侧)加热的构造。可替代地,可以是对电子组件11侧和安装基板21侧均可以加热的构造。
[0060] 然后,如图1的F所示,通过固化炉25进行固化处理(步骤105)。固化处理之后,如图1的G所示,例如,进行检查,其中,所述检查包括核查热固性树脂R是否产生有任何裂缝或空隙这一过程(步骤106)。
[0061] (2)热固性树脂的加热条件
[0062] 接着,将说明上述的热固性树脂R的加热条件,即,加热温度和加热时间。在本实施例中,将说明使用例如环氧树脂作为热固性树脂R的情况。下面,将热固性树脂简称为“树脂”,且当有需要时将称为“热固性树脂”。
[0063] 图3是示出了加热条件的创建过程的处理的流程图。在这个处理中,基本上计算固化度曲线,该曲线针对各加热温度表示热固性树脂的加热时间与固化度之间的关系。此外,在这个处理中,在创建的固化度曲线的基础上,计算在作为加热温度之一的第一加热温度时在热固性树脂中自然向上运动的空隙的空隙去除时间。这个空隙去除时间将会是加热时间的基础。所述“空隙”可以是由于树脂的加热等而产生于焊料部13的表面的具有50至100μm直径的水蒸汽。
[0064] 计算机可以在预定程序的基础上自动地计算步骤201至204;并且此外,可以由人计算步骤201至204中的至少一个。可替代地,为了使计算机执行上述各步骤的计算中的至少一个,手动操作可以在此处理的中间进行调停。
[0065] (a)固化度曲线的计算(步骤201)
[0066] 为了获得固化度曲线,使用下面的作为方程式1的卡玛尔方程(修正的卡玛尔方程)和作为方程式2的阿仑尼乌斯(Arrhenius)方程;且因此计算固化度α的随时间变化,即,固化速率(或固化度曲线)dα/dt。
[0067] [方程式1]
[0068] …方程式1
[0069] f1(α)=C1C2α
[0070] α:固化度;
[0071] m、n、C1、C2、A和E:树脂系数。
[0072] [方程式2]
[0073] …方程式2
[0074] T=f2(t)
[0075] T:树脂的温度、加热温度(时间的函数,T=f2(t));
[0076] t:加热时间;
[0077] k(k1、k2):反应速度常数;
[0078] A(A1、A2):频率因子;
[0079] E(E1、E2):活化能。
[0080] 实际上,固化速率随着固化度而变化,所以被普遍使用的卡玛尔方程可能不够精确。鉴于此,使用固化度α的函数(该函数被表示为f1(α)),将普遍使用的卡玛尔方程乘以f1(α),并且将获得的方程式用作“修正的卡玛尔方程”。在阿仑尼乌斯方程和修正的卡玛尔方程中,m、n、C1、C2、A和E均是为每种类型的热固性树脂设置的树脂系数(树脂常数)。
[0081] 因为难以求出这些树脂系数作为通解,所以可以通过数值分析的离散化(例如,差分法)来求出树脂系数。具体地,通过进行已知的差示扫描量热法(DSC)、对获得的DSC数据(DSC曲线)进行积分以获得实际固化度曲线(表示固化速率的曲线)并且进行曲线拟合,以此求出这些树脂系数。
[0082] 为了更加具体地说明,图4的A示出了上述的DSC数据的示例。在这种情况下,为每种类型的热固性树脂材料示出各DSC曲线。横坐标表示用来加热树脂的加热时间且纵坐标表示热流量。例如,曲线的各向上峰值和向下峰值均表明相变(phase transition)正在发生。
[0083] 一旦获得DSC数据,就对DSC数据进行积分以给出如图4的B所示的表明树脂的固化度的随时间变化的曲线(DSC积分曲线)。即,横坐标表示时间(加热时间)且纵坐标表示固化度。因此,获得的DSC积分曲线表示实际固化度的随时间变化,并且这些将会是参考曲线。
[0084] 然后,如图4的C所示,通过差分法进行离散化,以使通过上述的修正的卡玛尔方程而获得的固化度曲线与上述的参考曲线进行拟合。图4的C关注于图4的B中的以实线曲线表示的一种树脂(在此情况下为环氧树脂)的固化度曲线。通过进行这样的曲线拟合,确定出树脂系数m、n、C1、C2、A和E中的各者。
[0085] 在根据含有由此而确定的树脂系数的修正的卡玛尔方程(参见方程式1)的固化度曲线的基础上,能够获取处于任何温度和时间的固化度。
[0086] 图5是示出了一种树脂(例如,环氧树脂)关于各树脂温度的基于上述获得的修正的卡玛尔方程的固化度曲线的曲线图。从图5的左部开始示出了200℃、180℃和160℃的树脂温度。当固化度α为1时,树脂处于完全固化的状态。
[0087] 关于这些固化度曲线,各树脂温度不是恒定的;并且提供有树脂温度随着时间上升的条件(T=f2(t))。
[0088] (b)热固性树脂的粘度的计算(步骤202)
[0089] 接着,将通过上述修正的卡玛尔方程(方程式1)而获得的固化度α转换成粘度μα。下面的方程式3表达了用于转换的方程式。用于转换的这个方程式是被普遍使用的“Macosko方程”。
[0090] [方程式3]
[0091] …方程式3
[0092]
[0093] μ0:树脂的初始粘度
[0094] μα:当固化度是α时的树脂粘度
[0095] αgel:当成为凝胶时的树脂固化度
[0096] f、ga:粘度的上升常数
[0097] T:树脂温度
[0098] 图6是示出了根据方程式3的固化度α与粘度μ之间的关系的曲线图。树脂温度在这种情况下是200℃。
[0099] (c)空隙的自然向上运动的状态的计算(步骤203)
[0100] 然后,使用上述的粘度μα作为参数,从下面的运动方程(方程式4)中计算空隙的自然向上运动的状态,或换言之,空隙的自然向上运动的上升速率或位置,从而计算用于空隙去除的去除时间。
[0101] 在这里,空隙的形状接近于球体。当以另一种方式说明时,空隙的向上运动的位置是树脂内部的由从焊料部23的表面开始的高度分量(垂直分量)表示的位置。
[0102] [方程式4]
[0103] …方程式4
[0104] m:空隙的质量
[0105] v:上升速率
[0106] g:重力加速度
[0107] r:空隙半径
[0108] ρ:空隙密度
[0109] 可以通过下面的量来计算空隙的自然向上运动中的上升速率:由于空隙在树脂中受到的浮力而造成的自然向上运动的量;由于空隙半径随着温度的上升而增大造成的向上运动的量;和由于拖曳力的增大而造成的下降量。
[0110] 现在,在下面的杨-拉普拉斯方程(方程式5)的基础上,能够将空隙V的半径r(参见图7)表达为Pv-PL(=ΔP)的函数。换言之,取决于树脂内部温度上升的空隙半径与表面张力成比例;并且与空隙的内部与外部之间的压力差成反比例。
[0111] Pv=PL+2σ/r(→r=2σ/ΔP)
[0112] Pv:空隙内部的蒸汽压力
[0113] PL:空隙周围将被施加于空隙上的液体压力
[0114] σ:树脂的表面张力
[0115] 图8是表示基于通过步骤201至203而获得的计算结果的固化度α和空隙上升位置[μm]相对于加热时间的曲线图。也就是说,这意味着基于计算的理论值。示出固化度α的曲线,即,固化度曲线,示出了图5中的树脂温度是200℃的这一条曲线。
[0116] (d)热固性树脂的加热条件的确定(步骤204)
[0117] 理论上,从图8的曲线图中能够发现:当固化度α例如是0.3至0.6(约0.4,在这种情况下)且从开始加热直至此时的时间长度约为14秒时,空隙的上升运动停止。换言之,这表明:在从开始加热起经过了该时间长度的时刻,空隙逸出树脂。该时间长度将是空隙去除时间的理论值。通常,可以将这个空隙去除时间定义为固化度曲线与表示空隙上升位置的曲线的交叉处的时间。
[0118] 重点在于:通过将基于计算的空隙去除时间的时间确定为加热时间,就能够在空隙逸出的时刻在预定的温度(例如,200℃的树脂温度,在这种情况下)停止加热;或者能够在空隙逸出的时刻转为将在后面说明的第二实施例中说明的低温加热处理。因此,通过使在空隙逸出的时刻停止加热成为可能,能够提高加热处理的时间效率,并且可以使生产率增加。
[0119] 基于空隙去除时间的时间可以是空隙去除时间自身,或者可以是通过将关于空隙去除时间的一定范围(例如,误差幅度等)考虑在内而确定的时间。可以在例如加上或减去5秒的范围内确定基于该底线的这样的范围。
[0120] 注意,残留空隙(或被称为“空隙阱”)的发生将会受到抑制的环氧树脂的粘度约为500μPa·s。
[0121] (3)理论值与实验值之间的比较
[0122] 图9示出了本发明人在热压接合处理(步骤104)后通过破坏实际热固化树脂核查剩余空隙的实验结果。这个实验的目的是将空隙去除时间的理论值与实验值进行比较。
[0123] 在图9中,标记“○”表示残留空隙没有发生,标记“×”表示发生了残留空隙。图9的曲线图中的纵坐标对应于上述的三个树脂温度200℃、180℃和160℃。这个曲线图中的曲线是通过测量关于三条固化度曲线(参见图5)中的各者的达到0.1、0.3、0.5和0.7每个固化度所花费的时间并且通过连接相等的固化度点而获得的曲线。
[0124] 从图9能够看出,当树脂温度是200℃时,发生残留空隙的状态与不发生残留空隙的状态之间的边界位于约0.5的固化度处。换言之,空隙去除时间的这个实验值与已经获得的图8中的理论值基本上匹配。
[0125] 关于环氧树脂的情况,本实施例中的加热温度的优选范围可以是200℃以上并且250℃以下。在此情况下,加热时间的范围可以设定为10秒以上并且20秒以下。注意,在以
200℃以上并且250℃以下进行加热的情况下,将选择的焊料材料应当是具有同一温度范围内的焊料熔化温度的焊料材料。
[0126] (4)总结
[0127] 如上所述,根据本实施例,计算基于针对预定加热温度(树脂温度)的固化度曲线而获得的空隙去除时间。然后,从加热处理开始直至空隙去除时间以与固化度曲线相对应的加热温度(第一加热温度)对树脂加热。通过由此减少残留空隙,能够制造具有高质量密封材料的电路器件,这能够提高产品的可靠性。
[0128] 在本实施例中,不是使用普遍使用的卡玛尔方程,而是使用修正的卡玛尔方程,该修正的卡玛尔方程是通过加入了基于DSC数据获得的树脂系数而获得的。因此,即使在使用包含多种固化剂和催化剂的热固性树脂的情况下,也能够基于这个修正的卡玛尔方程来获得理论的固化度曲线以使得理论的固化度曲线尽可能接近实际的固化度曲线。
[0129] 顺便提及地,在日本专利申请特开第2012-81703号文件中,已经说明了在对空隙的生成、增长和流动行为等等的分析的基础上改变树脂的热固化处理的条件的技术。然而,该现有技术是关于当树脂被填充在用于树脂模塑的磨具中时分析“压缩树脂内部的空隙的行为”。该技术可能一点也不适用于本发明,本发明旨在分析在电子组件与安装基板之间的负载状态树脂中的空隙的自然向上运动的状态。
[0130] 因此,通过以往的技术难以预测像本发明中的负载状态树脂中的残留空隙的发生;并且需要通过重复实验的破坏性检查或通过借助于X射线的无损检测来抓取残留空隙。特别地,如图1的F所示,除了在固化之后的树脂的检查时间之外,无法确定是否存在残留空隙,所以在此时需要破坏并核查树脂。如果通过这个检查产品应当被确定为缺陷产品,那么处理应当返回到提供树脂(参见图1的C)并且从这里重新开始,这耗费时间、组件和材料。此外,为了避免这样的损失,需要在实验阶段重复地进行一些实验。
[0131] 与此相比,本发明能够避免这样的时间、组件和材料的损耗。此外,也能够提高用于创建树脂热固化的条件的实验的效率。
[0132] 2.第二实施例
[0133] 根据第二实施例的电路器件的生产方法包括上述的第一实施例的电路器件的生产过程。在此基础上,这个生产方法包括在由固化度曲线的被使用的加热温度(第一加热温度)进行的热处理之后的工序,所述工序是以低于第一加热温度的温度(第二加热温度)对树脂进一步加热的工序。
[0134] 具体地,在热固性树脂是环氧树脂的情况下,第二加热温度的范围可以是100℃以上并且150℃以下。在这种情况下,加热时间的范围可以设定为600秒以上并且1000秒以下。更加期望地,加热时间的范围可以是700秒以上并且900秒以下。
[0135] 在已经经过了空隙去除时间之后,在空隙由于第一加热温度的加热而已经几乎去除的状态下,通过在时限内慢慢地以第二加热温度对树脂加热,能够提高热固性树脂的质量。
[0136] 3.第三实施例
[0137] 根据第三实施例的电路器件的生产方法包括上述的第一实施例的电路器件的生产过程。在此基础上,在第三实施例的这个生产方法中,电子组件31通过图10的A至C所示的方法被连接至基板。
[0138] 注意,图10的A至C所示的电子组件31是柔性电路板(FPC),但是电子组件31当然可以是如第一实施例已经说明的集成电路。
[0139] FPC 31具有由诸如聚酰亚胺等材料制成的基底层34、金属配线36和多个电极32等。如图10的A所示,热固性树脂R设置在安装基板21上的电极22以及电极上的焊料部23上。在布置有FPC 31的电极32的电极布置表面31a相对于布置有基板21的电极22的安装表面
21a成一定角度的状态下,或换言之,在电极布置表面31a处于倾斜状态的状态下,使FPC 31接触安装基板21上的热固性树脂R。
[0140] 然后,如图10的B所示,在通过置于压头15中的加热器对热固性树脂R加热的同时,以使电极布置表面31a与安装表面21a之间的角度减小的方式将FPC 31压向热固性树脂R。因此,如图10的C所示,焊料部23熔化,且电极22和32被彼此连接。注意,压头15隔着特氟龙(Teflon)片17按压FPC 31。
[0141] 通过这个实施例的安装方法,空隙V在包含水平分量(沿着安装基板21的安装表面21a)的方向上运动,并且被推离出热固性树脂R。因此,能够容易地去除空隙,从而能够减少残留空隙。能够将安装表面区域中的树脂内部的残留空隙的数量减少到小于在安装区域以外的树脂内部的残留空隙的数量。
[0142] 注意,在如图10的B所示当FPC 31接触树脂R的时刻,以第一实施例中所述的第一温度的加热处理开始。
[0143] 如图所示,存在着加热器16布置于安装基板21的下表面的一些情况。
[0144] 尽管本实施例中FPC 31上的电极32上不存在焊料部,但是也可以将电极32设置为具有焊料部。
[0145] 4.其它实施例
[0146] 本发明不限于上述的实施例,且可以做出其它各种实施例。
[0147] 根据本发明的电路器件的生产方法还可以包括在对热固性树脂加热期间(或在对热固性树脂加热之后)使用超声波辐射热固性树脂。或者,所述方法还可以包括在对热固性树脂加热期间或之后使热固性树脂经受交变磁场。这能够使空隙在已经上升至热固性树脂的表面的情况下逸出至空气中。这可能能够确保空隙的去除。
[0148] 在上面的说明中,本发明已经被应用于倒装芯片安装;但是本发明能够被应用于诸如配线接合等其它已知的安装方法。
[0149] 已经针对环氧树脂作为热固性树脂的情况说明了上述的实施例。然而,DSC测量、DSC集成、阿仑尼乌斯方程和修正的卡玛尔方程等等大体上均可应用于树脂的常用技术。因此,本发明也可以应用于诸如酚醛树脂和三聚氰胺树脂等其它热固性树脂。
[0150] 设置有已经应用了本发明的电路器件的电子装置可以包括:个人计算机、智能手机、平板计算机和其它各种已知的电子装置。
[0151] 在上述的实施例的各特征部分之中,至少两个特征部分(诸如,第二和第三实施例的特征)能够组合。
[0152] 本发明可以使用下面的构造。
[0153] (1)一种用于对基板与电子组件之间的导电部进行密封的热固性树脂的固化条件的确定方法,所述方法包括以下步骤:
[0154] 创建固化度曲线,所述固化度曲线针对各加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;
[0155] 在创建的所述固化度曲线的基础上,计算在作为所述加热温度之一的第一加热温度时所述热固性树脂中自然向上运动的空隙的空隙去除时间;并且
[0156] 将基于计算的所述空隙去除时间的时间确定为以所述第一加热温度进行加热的加热时间。
[0157] (2)根据(1)所述的固化条件的确定方法,其中,
[0158] 所述计算包括:
[0159] 将创建的固化度曲线转换为所述热固性树脂的粘度,并且
[0160] 使用从所述转换中获得的粘度作为参数,根据表示所述空隙的自然向上运动的状态的方程来计算所述空隙去除时间。
[0161] (3)根据(2)所述的固化条件的确定方法,其中,
[0162] 表示所述空隙的自然向上运动的所述状态的所述方程还使用所述空隙的直径作为参数,并且
[0163] 所述空隙去除时间的所述计算包括:根据表示所述空隙的直径与施加于所述空隙的压力之间的关系的方程来计算所述空隙去除时间。
[0164] (4)一种电路器件的生产方法,所述方法包括以下步骤:
[0165] 在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;
[0166] 将所述热固性树脂设置到基板上以覆盖设置于所述基板上的电极上的焊料部;
[0167] 以下述方式将电子组件放置在所述基板上:所述电子组件的电极或设置于所述电子组件的电极上的焊料部面对着在设置有所述热固性树脂的所述基板上的电极上设置的焊料部的方式;并且
[0168] 以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了通过所述计算获得的所述空隙去除时间。
[0169] (5)根据(4)所述的电路器件的生产方法,其中,
[0170] 所述热固性树脂的加热包括既从所述电子组件的一侧又从安装基板的一侧对所述热固性树脂加热。
[0171] (6)根据(4)所述的电路器件的生产方法,其中,
[0172] 所述热固性树脂是环氧树脂。
[0173] (7)根据(4)至(6)中任一项所述的电路器件的生产方法,其中,
[0174] 所述第一加热温度是200℃以上并且250℃以下。
[0175] (8)根据(4)至(7)中任一项所述的电路器件的生产方法,所述方法还包括:
[0176] 在从开始加热已经经过了基于所述空隙去除时间的所述时间之后以第二加热温度对所述热固性树脂加热,所述第二加热温度低于所述第一加热温度。
[0177] (9)根据(8)所述的电路器件的生产方法,其中,
[0178] 所述第二加热温度是100℃以上并且150℃以下。
[0179] (10)根据(4)至(9)中任一项所述的电路器件的生产方法,其中,[0180] 计算所述空隙去除时间的所述计算包括:
[0181] 将创建的所述固化度曲线转换为所述热固性树脂的粘度,并且
[0182] 使用从所述转换中获得的所述粘度作为参数,根据所述空隙的自然向上运动的上升速率或位置来计算所述空隙去除时间。
[0183] (11)根据(4)至(10)中任一项所述的电路器件的生产方法,其中,[0184] 将所述电子组件放置在所述基板上包括以下步骤:
[0185] 在如下状态下使所述电子组件与所述基板上的所述热固性树脂接触:所述电子组件的布置有电极的电极布置表面或布置有在所述电极上设置的焊料部的焊料布置表面相对于所述基板的布置有所述基板的电极的安装表面成一定角度;并且
[0186] 在所述接触后,以使所述基板的所述安装表面与所述电子组件的所述电极布置表面或所述焊料布置表面之间的角度减小的方式,将所述电子组件压向所述热固性树脂。
[0187] (12)一种电路器件的生产方法,所述方法包括以下步骤:
[0188] 在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;
[0189] 将所述热固性树脂设置于基板上以覆盖所述基板上的电极;
[0190] 以设置于电子组件的电极上的焊料部面对着设置有所述热固性树脂的所述基板上的电极的方式,将所述电子组件放置在所述基板上;并且
[0191] 以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了通过所述计算获得的所述空隙去除时间。
[0192] (13)一种电路器件,所述电路器件是通过如下生产方法而获得的,所述生产方法包括以下步骤:
[0193] 在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;
[0194] 将所述热固性树脂设置于基板上以覆盖设置于所述基板上的电极上的焊料部;
[0195] 以电子组件的电极或者设置于所述电子组件的电极上的焊料部面对着设置于设置有所述热固性树脂的所述基板上的电极上的焊料部的方式,将所述电子组件放置在所述基板上;并且
[0196] 以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了通过所述计算获得的所述空隙去除时间。
[0197] (14)一种电路器件,所述电路器件是通过如下生产方法而获得的,所述生产方法包括以下步骤:
[0198] 在固化度曲线的基础上,计算在作为多个加热温度中的一个加热温度的第一加热温度时热固性树脂中自然向上运动的空隙的空隙去除时间,其中,所述固化度曲线针对各所述加热温度表示所述热固性树脂的加热时间与所述热固性树脂的固化度之间的关系;
[0199] 将所述热固性树脂设置于基板上以覆盖所述基板上的电极;
[0200] 以设置于电子组件的电极上的焊料部面对着设置有所述热固性树脂的所述基板上的所述电极的方式,将所述电子组件放置在所述基板上;并且
[0201] 以所述第一加热温度对所述热固性树脂加热,直至从开始加热经过了通过所述计算获得的所述空隙去除时间。
[0202] 附图标记的说明
[0203] 11、31   电子组件
[0204] 12、22和32  电极
[0205] 13、23   焊料部
[0206] 21   安装基板
[0207] 21a  安装表面
[0208] 31   FPC(电子组件)
[0209] 31a   电极布置表面