一种制备甲酰胺的方法转让专利

申请号 : CN201310415260.0

文献号 : CN104447680B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 王峰王业红徐杰张晓辰张超锋

申请人 : 中国科学院大连化学物理研究所

摘要 :

本发明涉及一种制备甲酰胺的方法。该方法采用伯胺或仲胺和CO作为反应物,在催化作用下,通过羰基化反应制备甲酰胺。该方法的特征是以贵金属负载的酸性金属氧化物为催化剂,且在较温和的条件下高效率进行。其反应过程如下:将一定浓度的伯胺或仲胺与一定量的催化剂放入压力容器中,冲入CO气体,密闭,在>100℃的温度下,反应时间>2h,搅拌反应得到甲酰胺。该方法催化剂制备简单,产物和催化剂分离过程简单,催化剂可以多次循环使用;反应过程可控性高,甲酰胺的收率可达到90%以上。

权利要求 :

1.一种制备甲酰胺的方法,其特征在于:所述甲酰胺的制备过程如下:将伯胺或仲胺与贵金属负载的酸性金属氧化物催化剂混合,放入密闭的压力容器中,压力容器中充入CO气体,搅拌反应,得到甲酰胺;

所述的贵金属负载酸性金属氧化物催化剂,其中酸性金属氧化物MoO3、MnO2、CuO、Co3O4、V-P-O、Nb2O5、Al2O3、Fe2O3、Fe3O4、Nd2O3、La2O3、VO2、CeO2中的一种或二种以上;负载的贵金属为:Au、Ru、Pt、Pd、Rh中的一种或二种以上。

2.按照权利要求1所述的方法,其特征在于:其反应过程如下式1所示:其中,R1、R2均为取代基,R1为H原子、1-10个碳原子的烃基、C1-10取代烃基中的一种,取代烃基中的取代基团为-F,-Cl,-Br,-I,-NO2,-NH2,-CN,-OCH3,-OC2H5,-OH或-N(CH3)2,取代基团的个数为1-5个;R2为1-10个碳原子的烃基、C1-10的取代烃基中的一种,取代烃基中的取代基团为-F,-Cl,-Br,-I,-NO2,-NH2,-CN,-OCH3,-OC2H5,-OH或-N(CH3)2,取代基团的个数为1-5个;所述的式1中反应于溶剂存在下进行,溶剂中伯胺或仲胺的浓度为:0.05mol·L-1-

5mol·L-1;所述的充入CO的压力为0.1MPa-4MPa;催化剂中金属负载量为:0.5wt%-10wt%;

所述催化剂的用量为:0.01g·(mmol胺)-1-0.5g·(mmol胺)-1;所述溶剂为:甲苯、对二甲苯、1,4-二氧六环、四氢呋喃、甲醇、乙醇、异丙醇中的一种或是二种以上;

所述反应温度>100℃,反应时间不少于2h。

3.按照权利要求2所述的方法,其特征在于:

所述羰基化反应式中:(式1)中R1=H,R2=噻吩;R1=H,R2=四氢噻吩;

1 2 1 2 1 2 1 2 1 2

R=H,R=吡啶;R=H,R =吡咯;R=H,R =苄基;R=H,R =苯乙基;R=CH3,R=苄基;R1=H,R2=4-甲氧基苄基;R1=H,R2=邻氯苄基;R1=R2=苄基;R1=H,R2=四氢呋喃-2-甲基;R1=H,R2=呋喃-2-甲基;R1=H,R2=苯基;R1=H,R2=邻氯苯基;R1=H,R2=间氯苯基;

R1=H,R2=对氯苯基;

所述的式1中伯胺或仲胺的浓度为:0.1mol·L-1-3mol·L-1;所述的充入CO的压力为:

0.5MPa-4MPa;

所述的贵金属负载酸性金属氧化物催化剂,其中酸性金属氧化物为:MoO3、SnO2、CuO、Co3O4、Nb2O5、La2O3、Fe3O4、CeO2中的一种或二种以上;负载的贵金属为:Ru、Pt、Pd中的一种或二种以上;金属负载量为:0.5wt%-5wt%;所述催化剂的用量为:0.02g·(mmol胺)-1-

0.1g·(mmol胺)-1;

所述溶剂为:甲苯、1,4-二氧六环、甲醇、乙醇、异丙醇中的一种或二种以上;

所述反应温度为:150℃-250℃,反应时间为2h-24h。

4.按照权利要求2或3所述的方法,其特征在于:

所述羰基化反应式中:(式1)中R1=H,R2=苄基;R1=H,R2=苯乙基;R1=CH3,R2=苄基;

R1=H,R2=4-甲氧基苄基;R1=H,R2=邻氯苄基;R1=R2=苄基;R1=H,R2=四氢呋喃-2-甲基;R1=H,R2=呋喃-2-甲基;R1=H,R2=苯基;R1=H,R2=邻氯苯基;

R1=H,R2=间氯苯基;R1=H,R2=对氯苯基;

所述的式1中伯胺或仲胺的浓度为:0.1mol·L-1-1mol·L-1;所述的充入CO的压力为:

0.5MPa-2MPa;

所述的贵金属负载酸性金属氧化物催化剂,其中酸性金属氧化物MoO3、CuO、Co3O4、Fe3O4、CeO2中的一种或二种以上;负载的贵金属为:Ru、Pd中的一种或二种以上;金属负载量为:1wt%-3wt%;

所述催化剂的用量为:0.05g·(mmol胺)-1-0.1g·(mmol胺)-1;所述溶剂为:甲苯、甲醇、乙醇中的一种或二种以上;

所述反应温度为:150℃-180℃,反应时间为5h-24h。

5.按照权利要求1、2或3所述的方法,其特征在于:所述酸性金属氧化物的制备采用水热法、沉淀法或直接焙烧法;贵金属的负载采用浸渍法、沉淀法、还原包覆法或微乳法。

说明书 :

一种制备甲酰胺的方法

技术领域

[0001] 本发明涉及一种制备甲酰胺的方法,具体涉及以伯胺或仲胺与CO作为反应物,催化羰基化反应制备甲酰胺。

背景技术

[0002] 酰胺基团一种非常重要的化学基团,存在于许多天然聚合物中,如:多肽、蛋白质等。此外,酰胺也是优异的合成单体用于制备尼龙等聚合物。
[0003] CN101970675A公布一种生物催化腈化合物制备酰胺化合物的方法。巴斯夫欧洲公司的一项专利(CN102712576A)以磷酸或路易斯酸性金属盐为催化剂催化族胺与甲酸酯转化制备芳族甲酰胺。专利CN101684076B以氨基酸离子液体作为反应介质和催化剂,催化酮肟的贝克曼重排反应制备酰胺。1959年Pettit and Thomas(Pettit,G.R.;Thomas,E.G.J.Org.Chem.1959,24,895896)报道了在N,N-二甲基甲酰胺(DMF)中加入甲醇钠与苯胺或同系物回流制备甲酰胺。Kraus(Kraus,M.A.Synthesis1973,361362.)采用少量硫酸作为催化剂在DMF中催化烷基胺甲酰化制备甲酰胺。Ciera J.Gerack(Ciera J.Gerack and Lisa McElwee-White.Chem.Commun.,2012,48,1131011312)等人以NaIO4为氧化剂,NaI为促进剂在甲醇中进行苄胺及取代苄胺的羰基化反应。
[0004] 虽然目前酰胺的制备方法研究比较多,但是却存在着一些缺点:例如催化剂制备过程复杂,反应时间长,反应收率低,污染环境,反应后催化剂易失活等。因此,开发一种催化剂制备简单,反应过程温和且效率高的甲酰化过程具有重要的意义。

发明内容

[0005] 本发明的意义在于克服了目前制备甲酰胺过程中存在的缺点。该制备方法反应过程简单,反应条件较为温和,转化率与选择性均较高,副产物较少且具有很好的普适性。
[0006] 本发明涉及的甲酰胺通过以下方案制备。一种制备甲酰胺的具体过程如下:将伯胺或仲胺与贵金属负载的酸性金属氧化物催化剂混合,放入密闭的压力容器中,压力容器中冲入CO气体,,搅拌反应,得到甲酰胺。其反应过程如下式1所示:
[0007]
[0008] 其中,R1、R2均为取代基,R1为H原子、1-10个碳原子的烃基、C1-10的取代烃基中的一种,取代烃基中的取代基团为-F,-Cl,-Br,-I,-NO2,-NH2,-CN,-OCH3,-OC2H5或-N(CH3)2,取代基团的个数为1-5个;R2为1-10个碳原子的烃基、C1-10的取代烃基中的一种,取代烃基中的取代基团为-F,-Cl,-Br,-I,-NO2,-NH2,-CN,-OCH3,-OC2H5或-N(CH3)2,取代基团的个数为1-5个;所述的式1中反应于溶剂存在下进行,溶剂中伯胺或仲胺的浓度为:0.05mol·L-1-5mol·L-1;所述的冲入CO的压力为0.1MPa-4MPa;所述的贵金属负载酸性金属氧化物催化剂,其中酸性金属氧化物为MoO3、MnO2、CuO、Co3O4、V-P-O、Nb2O5、Al2O3、Fe2O3、Fe3O4、Nd2O3、La2O3、VO2、CeO2中的一种或二种以上;负载的贵金属为:Au、Ru、Pt、Pd、Rh中的一种或二种以上;催化剂中金属负载量为:0.5wt%-10wt%;所述催化剂的用量为:0.01g·(mmol胺)-1-
0.5g·(mmol胺)-1;所述溶剂为:甲苯、对二甲苯、1,4-二氧六环、四氢呋喃、甲醇、乙醇、异丙醇中的一种或二种以上;所述反应温度>100℃,反应时间不少于>2h。
[0009] 式1中所述羰基化反应式中:R1=H,R2=噻吩;R1=H,R2=四氢噻吩;R1=H,R2=吡啶;R1=H,R2=吡咯;R1=H,R2=苄基;R1=H,R2=苯乙基;R1=CH3,R2=苄基;R1=H,R2=4-甲氧基苄基;R1=H,R2=邻氯苄基;R1=R2=苄基;R1=H,R2=四氢呋喃-2-甲基;R1=H,R2=呋喃-2-甲基;R1=H,R2=苯基;R12 1 2 1 2
=H,R=邻氯苯基;R=H,R=间氯苯基;R=H,R =对氯苯基;所述的较佳的胺浓度为:0.1mol·L-1-3mol·L-1;所述的冲入CO的压力为:0.5MPa-4MPa;所述的贵金属负载酸性金属氧化物催化剂,其中较佳的酸性金属氧化物为:MoO3、SnO2、CuO、Co3O4、Nb2O5、La2O3、Fe3O4、CeO2中的一种或二种以上;较佳的负载贵金属为:Ru、Pt、Pd中的一种或二种以上;较佳的金属负载量-1 -1
为:0.5wt%-5wt%;较佳的催化剂用量为:0.02g·(mmol胺) -0.1g·(mmol胺) ;较佳的溶剂为:甲苯、1,4-二氧六环、甲醇、乙醇、异丙醇中的一种或二种以上;较佳的反应温度为:
150℃-250℃,反应时间为2h-24h。
[0010] 式1中所述羰基化反应式中:R1=H,R2=苄基;R1=H,R2=苯乙基;R1=CH3,R2=苄基;R1=H,2 1 2 1 2 1 2 1 2
R=4-甲氧基苄基;R =H,R=邻氯苄基;R=R =苄基;R =H,R =四氢呋喃-2-甲基;R =H,R=呋喃-2-甲基;R1=H,R2=苯基;R1=H,R2=邻氯苯基;R1=H,R2=间氯苯基;R1=H,R2=对氯苯基;最佳的伯胺或仲胺的浓度为:0.1mol·L-1-1mol·L-1;所述的冲入CO的压力为:0.5MPa-2MPa;贵金属负载酸性金属氧化物催化剂,其中最佳的酸性金属氧化物为MoO3、CuO、Co3O4、Fe3O4、CeO2中的一种或二种以上;最佳的负载贵金属为:Ru、Pd中的一种或二种以上;最佳的金属负载量为:1wt%-3wt%;最佳催化剂的用量为:0.05g·(mmol胺)-1-0.1g·(mmol胺)-1;最佳溶剂为:甲苯、甲醇、乙醇中的一种或二种以上;最佳反应温度为:150℃-180℃,反应时间为5h-
24h。
[0011] 所述酸性金属氧化物的制备可以采用水热法、沉淀法或直接焙烧法;贵金属的负载可以采用浸渍法、沉淀法、还原包覆法或微乳法。
[0012] 以伯胺或仲胺以及CO作为反应物,在贵金属负载的酸性金属氧化物的催化作用下,发生羰基化反应,生成甲酰胺。以Pd/CeO2催化伯胺与CO羰基化反应制备甲酰胺为例,其催化过程大致分为以下几个阶段:带有Lewis酸位的固体酸性氧化物载体吸附活化胺;Pd吸附活化CO分子,形成活泼的络合物;活化后的胺的N原子进攻活化后的Pd-CO络合物的C原子,经历过渡态,发生羰基化反应。
[0013] 采用胺与CO作为反应底物,以贵金属负载的酸性金属氧化物作为催化剂催化其羰基化反应,具体过程如下:在反应釜中加入一定浓度的伯胺或仲胺,同时加入一定量的催化剂催化该反应,在不低于100℃的温度下搅拌反应长于2h,生成产物甲酰胺。该反应为双活性中心活化的催化过程。一、CO的活化,形成CO的活性物种;贵金属对气体分子:如O2、H2、CO等具有较佳的活化解离能力;该反应中优选的负载贵金属为:Ru、Pd;二、底物胺中N-H的活化。固体酸性金属氧化物具有一定量的缺陷位可以作为Lewis酸酸性位催化反应过程,因此适宜的酸强度,是影响催化效率的重要因素,使之表现出较好的活性和选择性。酸强度较高时,原料胺与甲酰胺在其Lewis位发生强吸附,导致产物难以及时脱附而导致催化活性中心失活,降低收率;酸性较弱时,催化剂活性较低,反应时间延长,转化率和选择性降低。因此选择适宜酸强度的催化剂是提高甲酰胺收率的关键。该反应中酸性氧化物的优选为:MoO3、CuO、Co3O4、Fe3O4、CeO2中的一种或几种。
[0014] 不同的制备方法制得催化剂的酸性和比表面差别较大。比表面的大小影响催化活性位的暴露程度,影响催化性能。以CeO2为例,不同制备方法制得的CeO2,例如:焙烧法、共沉淀法、浸渍法等方法(1.Journal of Catalysis.1999,186,279 295;2.Chem.Mater.2005,17,4514-4522;3.Applied Catalysis A:General.2002,234,271 282;4.Applied Catalysis A:General.2007,316,107 116;5.Chemical Engineering-Journal.2007,134,
16 22;6.Journal of Hazardous Materials.2011,186,1445 1454;7.Ultrasonics Sonochemistry.2011,18,11181123)其催化反应结果差别较大,转化率在70%-92%之间,而产物甲酰胺的选择性差别不大,均高于90%,具体结果见实施例1-3。
[0015] 本发明具有以下几点优势:
[0016] 1.反应过程简单,反应条件较为温和,转化率与选择性均较高;
[0017] 2.催化材料易得,制备简单,稳定性高,可重复使用;
[0018] 3.固体氧化物催化剂易与反应物和产物分离;
[0019] 4.普适性高,适用于大部分伯胺或仲胺与CO的反应。附图说明:
[0020] 图1为实施例2的产物气相-质谱联用分析谱图,
[0021] 其中图1(a)为色谱图,停留时间为4.9min和8.7min处分别为苄胺和N-苄基甲酰胺;
[0022] 图1(b)为保留时间在8.7min的产物,即N-苄基甲酰胺的质谱图。具体实施方式:
[0023] 为了对本发明进行进一步详细说明,下面给出几个具体实施案例,但本发明不限于这些实施例。
[0024] 实施例1
[0025] 焙烧法所得CeO2过程如下:将硝酸铈铵置于650℃下直接焙烧2h,所得CeO2,记作CEO-1。称取2g CEO-1浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得2wt%Ru/CeO2,应用于苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol苄胺和20ml甲醇,冲入4MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应12h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0026] 实施例2
[0027] 共沉淀法所得CeO2过程如下:将硝酸铈溶解于水中,氨水调节pH=11,过滤分离,将滤饼100℃干燥过夜,500℃焙烧4h,所得CeO2记作CEO-2。称取2g CEO-2浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得2wt%Ru/CeO2,应用于苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol苄胺和20ml甲醇,冲入4MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应12h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0028] 实施例3
[0029] 将硝酸铈铵与聚乙烯基吡咯烷酮溶解于乙二醇中,190℃下回流24h,过滤分离,将滤饼80℃真空干燥,600℃焙烧,所得CeO2记作CEO-3。称取2g CEO-3浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得2wt%Ru/CeO2,应用于苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol苄胺和20ml甲醇,冲入4MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应12h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0030] 实施例4
[0031] 焙烧法所得Nb2O5过程如下:将草酸铌氨置于550℃下直接焙烧2h,所得Nb2O5。称取2g Nb2O5加入至一定量的HAuCl4水溶液中,加入碳酸钠调节pH=10,室温下搅拌0.5h,过滤,
150℃干燥过夜,350℃氢气气氛下还原3h,制得5wt%Au/Nb2O5,应用于苯胺与CO的反应。在
150ml的聚四氟衬里的反应釜中,分别加入30mmol苯胺和20ml甲醇,冲入2MPa的CO,称取1g Au/Nb2O5催化该反应,在180℃下搅拌反应24h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0032] 实施例5
[0033] MoO3的制备过程如下:15g钼酸铵溶解于500mL水中,导入大量丙酮,出现白色沉淀,离心,洗涤,干燥,350℃下焙烧4h,得到MoO3。称取2g MoO3加入至一定量的HAuCl4水溶液中,加入碳酸钠调节pH=10,室温下搅拌0.5h,过滤,150℃干燥过夜,350℃氢气气氛下还原3h,制得1wt%Au/MoO3,应用于二苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入10mmol二苄胺和20ml甲醇,冲入3MPa的CO,称取1g Au/MoO3催化该反应,在150℃下搅拌反应48h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0034] 实施例6
[0035] CuO的制备过程如下:15g硝酸铜溶解于500mL水中,加入1:1(v/v)氨水调节pH=11,将所得沉淀离心,洗涤,干燥,500℃下焙烧4h,得到CuO。称取2g CuO加入至一定量的H2PtCl6水溶液中,加入尿素调节pH=10,室温下搅拌0.5h,过滤,150℃干燥过夜,350℃氢气气氛下还原3h,制得5wt%Pt/CuO,应用于间苯二胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入10mmol间苯二胺和20ml甲醇,冲入4MPa的CO,称取1.5g Pt/CuO催化该反应,在180℃下搅拌反应24h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0036] 实施例7
[0037] 共沉淀法所得CeO2过程如下:将硝酸铈溶解于水中,氨水调节pH=11,过滤分离,将滤饼100℃干燥过夜,500℃焙烧4h,所得CeO2记作CEO-2。称取2g CEO-2浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得5wt%Ru/CeO2,应用于苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol苄胺和20ml乙醇,冲入1.8MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应24h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0038] 实施例8
[0039] 共沉淀法所得CuO过程如下:将硝酸铜溶解于水中,氨水调节pH=11,过滤分离,将滤饼100℃干燥过夜,500℃焙烧4h,即得CuO。称取2g CuO浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得8wt%Ru/CuO,应用于苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol苄胺和20ml甲醇,冲入4MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应24h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0040] 实施例9
[0041] 共沉淀法所得CeO2过程如下:将硝酸铈溶解于水中,氨水调节pH=11,过滤分离,将滤饼100℃干燥过夜,500℃焙烧4h,所得CeO2记作CEO-2。称取2g CEO-2浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得2wt%Ru/CeO2,应用于间甲基苄胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol间甲基苄胺和20ml甲醇,冲入4MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应12h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0042] 实施例10
[0043] 共沉淀法所得CeO2过程如下:将硝酸铈溶解于水中,氨水调节pH=11,过滤分离,将滤饼100℃干燥过夜,500℃焙烧4h,所得CeO2记作CEO-2。称取2g CEO-2浸渍于一定量的RuCl3水溶液中,室温下搅拌20h,150℃干燥过夜,350℃氢气气氛下还原3h,制得2wt%Ru/CeO2,应用于苯胺与CO的反应。在150ml的聚四氟衬里的反应釜中,分别加入15mmol苯胺和20ml甲醇,冲入4MPa的CO,称取1g Ru/CeO2催化该反应,在150℃下搅拌反应12h,反应结束后,色谱检测产物,其转化率与选择性见表1。
[0044] 表1催化羰基化反应评价结果
[0045]  胺转化率/% 甲酰胺选择性/%
实施例1 85 90
实施例2 92 95
实施例3 72 90
实施例4 65 91
实施例5 70 85
实施例6 80 80
实施例7 85 69
实施例8 90 92
实施例9 85 90
实施例10 60 80