一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法转让专利

申请号 : CN201410841486.1

文献号 : CN104502507B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郭庆龙王向军徐云峰徐文远

申请人 : 郭庆龙

摘要 :

本发明公开了一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,该方法主要用于测定粮谷、动物源性食品等复杂基质食品农产品中残留的氯虫苯甲酰胺含量的方法。用乙腈或含1%乙酸的乙腈溶液均质提取样品中残留的氯虫苯甲酰胺,C18/PSA固相萃取柱净化浓缩后,气相色谱-负化学离子源-质谱(GC-NCI-MS)检测,采用不含待测农药的空白基质溶液建立校正的标准曲线,外标法定量。本方法平均回收率为86.8%~96.9%,平均相对标准偏差(RSD)为4.0%~9.7%,检出限低于1.41μg/kg,具有操作简便、快速、去杂效果好、灵敏度高、特征性强、重复性好、定性定量准确的优点。能满足美国、日本、欧盟、加拿大等国家对相应食品安全检测的0.01mg/kg残留限量,即“一律标准”的技术要求,将为保障我国人民食品安全及对外出口贸易健康发展提供有力的技术支撑。

权利要求 :

1.一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,其特征在于,所述方法包括以下步骤:(1)提取

称取混匀样品于具塞离心管中,加适量水后,加入乙腈或含1%乙酸的乙腈溶液均质或振荡超声提取后,加入氯化钠或乙酸钠中的一种和无水硫酸镁,剧烈涡旋1min后离心;

(2)净化

移取一定体积样品提取液,浓缩至1mL左右,经C18/PSA固相萃取柱净化,乙腈洗脱,收集洗脱液,浓缩至干后,用体积比为1/1的丙酮/正己烷混合溶剂溶解定容,过膜后,待气相色谱-负化学离子源-质谱(GC-NCI-MS)检测;

(3)标准工作溶液的配制

将不含氯虫苯甲酰胺的同种类基质空白样品按上述步骤(1)、(2)处理,得样品提取净化残渣,加入适量溶剂和标准溶液,涡旋混匀,配制成至少3个浓度的氯虫苯甲酰胺系列标准工作液;

(4)测定和结果计算

GC-NCI-MS分析条件为:色谱柱:HP-5MS毛细管色谱柱,柱长30m,内径0.25mm,膜厚

0.25μm;进样口温度250.0℃;载气:He,不分流模式进样,进样量:1μL;恒流模式,流速

1.0mL/min;升温程序:初温60℃保持2min,以每分钟20℃的速度升至200℃,然后以每分钟2℃的速度升至220℃,再以每分钟20℃的速度升至280℃,保持10min;传输线温度:

280℃;电离模式:负化学电离,即NCI模式,能量70eV;离子源温度150℃;扫描方式:选择离子监测(SIM)模式,监测的离子为:278、279、280;

将步骤(3)中的各浓度梯度的标准工作液进行GC-NCI-MS测定,以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到基质标准工作曲线;在相同条件下将步骤(2)中净化后的样品液注入GC-NCI-MS进行测定,测得样品液中氯虫苯甲酰胺的色谱峰面积,代入基质标准工作曲线,得到样品液中氯虫苯甲酰胺含量,然后根据样品液所代表试样的质量计算得到样品中氯虫苯甲酰胺残留量。

2.根据权利要求1所述的一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,其特征在于,步骤(1)中样品若为粮谷及动物肝脏样品,提取前须加适量水充分浸润。

3.根据权利要求1所述的一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,其特征在于,步骤(1)中采用乙腈提取时需加入氯化钠盐析,采用含1%乙酸的乙腈溶液提取时需加入乙酸钠盐析。

4.根据权利要求1所述的一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,其特征在于,步骤(2)中进行C18/PSA固相萃取柱净化,乙腈洗脱时,洗脱体积为6~8mL。

说明书 :

一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法

技术领域

[0001] 本发明涉及一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,更具体地说是采用气相色谱-负化学离子源-质谱(GC-NCI-MS)定性定量测定粮谷、猪肉、牛肉、羊肉、鸡肉等动物肌肉及制品等复杂基质的动植物源性食品中残留的氯虫苯甲酰胺含量的方法,属于农药残留量的测定技术领域。

背景技术

[0002] 氯虫苯甲酰胺(Chlorantraniliprole),商品名康宽,是杜邦公司开发的新型邻甲酰氨基苯甲酰胺类杀虫剂,氯虫苯甲酰胺高效广谱,对鳞翅目的夜蛾科、螟蛾科、蛀果蛾科、卷叶蛾科、粉蛾科、菜蛾科、麦蛾科、细蛾科等均有很好的控制效果,还能控制鞘翅目象甲科,叶甲科;双翅目潜蝇科;烟粉虱等多种非鳞翅目害虫。化学名称为:3-溴-N-[4-氯-2-甲基-6-[(甲氨基甲酰基)苯]-1-(3-氯吡啶-2-基)-1H-吡唑-5-甲酰胺,英文化学名称为
[0003] 3-Bromo-N-[4-chloro-2-methyl-6-[(methylamino)carbonyl]phenyl]-1-(3-chloro-2-pyridinyl)-1H-py razole-5-carboxamide。CAS登录号为500008-45-7,分子量为483.15,结构式为:
[0004]
[0005] 氯虫苯甲酰胺很多国家获得登记,在中国已取得了农药登记销售应用的所有证书,可以大面积推广应用。由于氯虫苯甲酰胺的化学结构具有其他任何杀虫剂不具备的全新杀虫原理,能高效激活昆虫鱼尼丁(肌肉)受体,过度释放细胞内钙库中的钙离子,导致昆虫瘫痪死亡,对鳞翅目害虫的幼虫活性高,杀虫谱广,持效性好。根据目前的试验结果对靶标害虫的活性比其它产品高出10-100倍.并且可以导致某些鳞翅目昆虫交配过程紊乱,研究证明其能降低多种夜蛾科害虫的产卵率,由于其持效性好和耐雨水冲刷的生物学特性,这些特性实际上是渗透性、传导性、化学稳定性、高杀虫活性和导致害虫立即停止取食等作用的综合体现。因此决定了其比目前绝大多数在用的其它杀虫剂有更长和更稳定的和对作物的保护作用。对危害田间作物、果树、蔬菜的其他特种作物和草皮中的咀嚼口器害虫,能提供长效,广谱的防治作用。
[0006] 随着氯虫苯甲酰胺的登记、推广和使用,作为我国蔬菜、水果主要出口市场的美国、欧盟、加拿大和日本等国家对其制定了残留限量标准。2009年10月19日,美国发出G/SPS/N/USA/1935号通报,美国环保署对杀虫剂氯虫苯甲酰胺(Chlorantraniliprole)许可限量制定最终法规。内容包括:氯虫苯甲酰胺在杏仁壳上的残留限量为5.0ppm;在开心果上的残留限量为:0.04ppm;在小葱上的残留限量为:0.20ppm;在草莓上的残留限量为:1.2ppm等。2010年5月4日,美国发布通报,拟延长杀虫剂氯虫苯甲酰胺(Chlorantraniliprole)限时许可限量。本最终法规延长杀虫剂氯虫苯甲酰胺(Chlorantraniliprole)间接或无意残留的限时许可限量:粮谷16组草料、饲料、草秆;韭菜;葱;大葱;花生干草;青葱;大豆饲料;大豆干草和2组叶类根茎、块茎类蔬菜:0.20ppm。
加拿大对氯虫苯甲酰胺(Chlorantraniliprole)的最大残留限量为:
[0007]
[0008] 欧盟和日本也制定了很多食品农产品中氯虫苯甲酰胺的最大残留限量,对没有制定最大允许残留限量的食品农产品,均实行0.01mg/L的“一律标准”。
[0009] 近年来,对各类食品农产品中氯虫苯甲酰胺残留量检测方法的研究很多,报道的检测方法均采用液相色谱(LC)或液相色谱串联质谱(LC-MS/MS)测定蔬菜和水果中氰虫酰胺残留量的检测方法,使用LC-MS/MS测定食品农产品中农药残留具有快速、简便、灵敏度高等优点,但由于其价格较昂贵,很多检测机构、企业或科研院所未配置该仪器或配置台数较少,由于不同的化合物采用LC-MS/MS检测时,需使用不同的流动相或色谱柱,这样需要不断更换色谱柱、流动相并耗费比较长的时间对系统进行平衡,这一定程度上制约了LC-MS/MS的应用。配备负化学电离源的气相色谱质谱(GC-NCI-MS)分析食品农产品中农药残留具有很大优势,负化学离子源(NCI源)被称为质谱“软电离源”,对含电负性集团的分析物具有高选择性和高灵敏度,由于其特征性强,利用其进行残留分析时,基质干扰很少,可很准确地对目标物进行定性和定量分析。现各种检测机构和企业均购置了气相色谱-质谱仪(GC-MS),一般也都配备了负化学离子源(NCI),现很多类农药均含有电负性基团,有机氯和拟除虫菊酯类农药分子大都含有-F、-Cl、-Br或-COO-等强电负性基团;有机磷农药分子大都含有=S、-OR、-P、-O-、-Cl、或-P=O等电负性基团;而近年来开发的新型农药中大多含有-F基团,因此,使用GC-NCI-MS可方便实现多种农药的多残留分析,与GC-NCI-MS相比,能获得更好的抗干扰能力、更低的灵敏度和更好的选择性,氯虫苯甲酰胺属电负性化合物,但迄今为止未见蔬菜和水果中氯虫苯甲酰胺残留量的GC-NCI-MS检测方法的报道,由于粮谷、动物源性食品等食品农产品基质比较复杂,须建立净化效果良好的样品前处理方法和仪器分析条件才能满足检测要求,因此,建立气相色谱-负化学离子源-质谱(GC-NCI-MS)定性和定量分析粮谷和动物源性食品中氯虫苯甲酰胺残留量的检测方法具有重要意义。

发明内容

[0010] 本发明的目的是提供一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,主要用于测定粮谷、动物源性食品等复杂基质食品农产品中氯虫苯甲酰胺残留量。
[0011] 为实现以上目的,本发明所采用的技术方案是:一种氯虫苯甲酰胺残留量的GC-NCI-MS测定方法,包括如下步骤:
[0012] (1)提取
[0013] 称取混匀样品于具塞离心管中,加入适量水复苏后,定量加入乙腈或含1%乙酸的乙腈溶液均质或振荡超声提取,然后加入氯化钠或乙酸钠中的一种和无水硫酸镁,剧烈涡旋1min后离心。
[0014] (2)净化
[0015] 移取一定体积样品提取液,浓缩至1mL左右,经C18/PSA固相萃取柱净化,乙腈洗脱,收集洗脱液,浓缩至干后,用体积比为1/1的丙酮/正己烷混合溶剂溶解定容,过膜后,待气相色谱-负化学离子源-质谱(GC-NCI-MS)检测。
[0016] (3)标准工作溶液的配制
[0017] 将不含氯虫苯甲酰胺的同种类基质空白样品按上述步骤(1)、(2)处理时,得样品提取净化残渣,加入适量溶剂和混合标准溶液,涡旋混匀,配制成至少3个浓度的氯虫苯甲酰胺系列混合标准工作液。
[0018] (4)气相色谱-负化学离子源-质谱法(GC-NCI-MS)测定
[0019] 将步骤(3)中的各浓度梯度的标准工作液进行GC-NCI-MS测定,以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线;在相同条件下将步骤(2)中净化后的样品液注入GC-NCI-MS进行测定,测得样品液中氯虫苯甲酰胺的色谱峰面积,代入标准曲线,得到样品液中氯虫苯甲酰胺含量,然后根据样品液所代表试样的质量计算得到样品中氯虫苯甲酰胺残留量。
[0020] 步骤(1)中样品若为粮谷及动物肝脏等含水量较少的样品,提取前须加适量水充分浸润。
[0021] 步骤(1)中采用乙腈提取时加入氯化钠盐析,采用含1%乙酸的乙腈溶液提取时加入乙酸钠盐析。
[0022] 步骤(2)中进行C18/PSA固相萃取净化,乙腈洗脱时,洗脱体积为6~8mL。
[0023] 步骤(4)中气相色谱条件为:色谱柱:HP-5MS毛细管色谱柱,柱长30m,内径0.25mm,膜厚0.25μm;进样口温度250℃;载气:He,不分流模式进样,进样量:1μL;恒流模式,流速1.0mL/min;升温程序:初温60℃保持2min,以每分钟20℃的速度升至200℃,然后以每分钟2℃的速度升至220℃,再以每分钟20℃的速度升至280℃,保持10min;传输线温度:280℃。
[0024] 步骤(4)中质谱条件为:离子源温度150℃;四极杆温度150℃;电离模式:负化学电离,即NCI模式,能量70eV;扫描方式:选择离子监测(SIM)模式监测的离子为:278、279、280。
[0025] 步骤(4)中测定样液和基质标准工作溶液时,若样液中农药色谱峰保留时间与标准溶液中相应农药保留时间相一致,并且在扣除背景后的样品质谱图中,所选择的离子均出现,而且离子丰度比与标准溶液的离子丰度比相一致,则可判断样液中存在这种农药;若上述两个条件不能同时满足,则判断不含该种农药。
[0026] 本发明的有益效果在于:
[0027] 本发明利用分散固相萃取技术,建立了简便、快速并能有效避免样品中基质干扰的样品前处理方法,将此前处理方法结合GC-NCI-MS应用于粮谷、动物源性食品中氯虫苯甲酰胺定性确证和定量检测,平均回收率为86.8%~96.9%,平均相对标准偏差(RSD)为4.0%~9.7%,检出限低于1.41μg/kg,具有操作简便、快速、准确、灵敏度高及重复性好的优点。能满足美国、日本、欧盟、加拿大等国家对相应食品安全检测的0.01mg/kg残留限量,即“一律标准”的技术要求,将为保障我国人民食品安全及对外出口贸易健康发展提供有力的技术支撑。

附图说明

[0028] 图1为浓度为100ng/mL的氯虫苯甲酰胺标液的GC-NCI-MS选择离子色谱图。
[0029] 图2为不含氯虫苯甲酰胺的小麦空白样品的GC-NCI-MS选择离子色谱图。
[0030] 图3为添加在空白小麦基质中的氯虫苯甲酰胺的GC-NCI-MS选择离子色谱图。
[0031] 图4为以不含氯虫苯甲酰胺的小麦空白样品为基质配制的氯虫苯甲酰胺标准工作曲线。

具体实施方式

[0032] 现以以下实施实例来说明本发明,但并不是限制本发明的范围。
[0033] 实施例中使用的仪器与试剂
[0034] T18Basic均质器(IKA,Germany);CR21GⅢ离心机(日立,Japan);MS3基本型旋涡混合器(IKA,Germany);TurboVap LV型样品自动浓缩仪(Caliper,USA);7890N气相色谱-5975C质谱仪(Agilent,USA);C18/PSA固相萃取柱(6mL,500mg/500mg)购于天津博纳艾杰尔科技有限公司。
[0035] 试剂:乙腈、丙酮、正己烷(HPLC级,Merke,Germany);乙酸(HPLC级,CNW,Germany);无水硫酸镁、氯化钠和乙酸钠为分析纯,均购自国药集团化学试剂有限公司。
[0036] 标准物质:纯度≥98.0%,购自德国Dr.Ehrenstorfer公司。
[0037] 实施例1:小麦中氯虫苯甲酰胺残留量的检测
[0038] (1)样品前处理
[0039] 提取
[0040] 称取经充分混匀的5g小麦样品于50mL离心管中,加入5mL水混匀,放置30min,准确加入20mL乙腈,均质提取2min,加入3g无水硫酸镁和2g氯化钠,涡旋1min后,7000r/min离心5min。离心后,取8mL乙腈提取液于40℃旋蒸或氮气吹至约1mL,待净化。
[0041] 净化
[0042] 用5mL乙腈预洗C18/PSA固相萃取柱,当液面到达吸附剂的顶部时,将上述提取溶液转入柱中,用2mL乙腈洗涤试管,并将洗涤液移入SPE柱中,待溶液达到吸附剂顶部时,加入4mL乙腈至柱子上进行洗脱,洗脱液全部接收到定量试管中,氮气吹干后用体积比为1/1的丙酮/正己烷混合溶剂定容至1mL,过0.22μm滤膜后,待GC-NCI-MS测定。
[0043] (2)标准工作溶液的配制
[0044] 准确称取25±0.1mg标准品于25mL容量瓶中,用乙腈溶解,定容得1000.0μg/mL标准储备液;移取1.0mL标准储备液置于100mL容量瓶中,用用体积比为1/1的丙酮/正己烷混合溶剂定容得到10.0μg/mL标准中间液;将10μg/mL标准溶液稀释配成5、2、1、0.5、0.2、0.1μg/mL标准溶液。将不含螺虫乙酯的草莓空白样品按上述前处理步骤处理,得样品提取净化残渣,在此残渣中加入900μL体积比为1/1的丙酮/正己烷混合溶剂和100μL上述混合标准溶液,涡旋混匀,配成10、20、50、100、200、500μg/L基质标准工作溶液。
[0045] (3)气相色谱-负化学离子源-质谱法(GC-NCI-MS)测定
[0046] 将不同浓度梯度的标准工作液分别注入GC-NCI-MS,以外标法进行氯虫苯甲酰胺含量的定量分析,即以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准曲线;在相同条件下将样品提取液注入GC-NCI-MS进行测定,测得样品液中氯虫苯甲酰胺的色谱峰面积,代入标准曲线,得到样品液中氯虫苯甲酰胺含量,然后根据样品液所代表试样的质量计算得到样品中氯虫苯甲酰胺残留量。
[0047] 其中色谱条件为:
[0048] 色谱柱:HP-5MS毛细管色谱柱,柱长30m,内径0.25mm,膜厚0.25μm。
[0049] 进样口温度:250.0℃,进样模式:不分流进样,进样量:1μL。
[0050] 载气:He,恒流模式,流速1.0mL/min。
[0051] 炉箱升温程序:初温60℃保持2min,以每分钟20℃的速度升至200℃,然后以每分钟2℃的速度升至220℃,再以每分钟20℃的速度升至280℃,保持10min。
[0052] 传输线温度:280℃。
[0053] 其中,质谱参数为:
[0054] 电离模式:负化学电离,即NCI模式,能量70eV。
[0055] 离子源温度:150℃;四极杆温度150℃。
[0056] 扫描方式:选择离子监测(SIM)模式;SIM监测的离子为:278、279、280;
[0057] 定量离子为278;
[0058] 定性鉴定:在相同的条件下,如果样液中农药色谱峰保留时间与标准溶液中相应农药保留时间相一致,并且在扣除背景后的样品质谱图中,所选择的离子均出现,而且离子丰度比与标准溶液的离子丰度比相一致,则可判断样液中存在这种农药;若上述两个条件不能同时满足,则判断不含该种农药。
[0059] 以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线如表1。
[0060] 表1小麦空白基质中氯虫苯甲酰胺的标准曲线
[0061]名称 保留时间(min) 回归方程 相关系数
[0062]氯虫苯甲酰胺Chlorantraniliprole 23.39 Y=59.505X-280.78 0.9998
[0063] 加标回收率和重复性:
[0064] 在不含氯虫苯甲酰胺的小麦中加入10、20和200μg/kg3个浓度水平的氯虫苯甲酰胺标准溶液,待农药添加30min后按上述处理步骤进行残留量测定。将测定浓度与农药理论添加浓度进行比较,得到农药添加回收率,每个添加水平平行测定6次,得其相对标准偏差,测定结果见表2。由表2可以看出,在3个加标水平上,氯虫苯甲酰胺的平均回收率为86.8%~90.0%,平均相对标准偏差(RSD)为6.2%~9.7%,说明本发明方法的回收率较高,重复性好。
[0065] 表2氯虫苯甲酰胺的回收率和重复性(n=6)
[0066]
[0067] 检出限:
[0068] 将不同浓度的氯虫苯甲酰胺基质标准工作溶液注入GC-NCI-MS,以最低浓度基质标准溶液色谱峰的3倍信噪比和样品处理过程的浓缩倍数(小麦的浓缩倍数为2.0倍)计算检出限,氯虫苯甲酰胺的检出限为1.07μg/kg。
[0069] 实施例2:猪肉中氯虫苯甲酰胺残留量的检测
[0070] (1)样品前处理
[0071] 提取
[0072] 称取经充分混匀的5g猪肉样品(研磨成面粉)于50mL离心管中,加入20mL水复苏30min后,准确加入20mL含1%乙酸的乙腈溶液,振荡提取20min,超声提取5min,加入3g无水硫酸镁和2g乙酸钠,涡旋1min后,7000r/min离心5min。离心后,取8mL乙腈提取液于40℃旋蒸或氮气吹至近干,加入1mL乙腈涡旋后,待净化。
[0073] 净化
[0074] 用5mL乙腈预洗C18/PSA固相萃取柱,当液面到达吸附剂的顶部时,将上述提取溶液转入柱中,用2mL乙腈洗涤试管,并将洗涤液移入SPE柱中,待溶液达到吸附剂顶部时,加入4mL乙腈至柱子上进行洗脱,洗脱液全部接收到定量试管中,氮气吹干后用体积比为1/1的丙酮/正己烷混合溶剂定容至1mL,过0.22μm滤膜后,待GC-NCI-MS测定。
[0075] (2)标准工作溶液的配制
[0076] 将10μg/mL标准溶液稀释配成5、2、1、0.5、0.2、0.1μg/mL标准溶液。将不含氯虫苯甲酰胺的猪肉空白样品按上述前处理步骤处理,得样品提取净化残渣,在此残渣中加入900μL体积比为1/1的丙酮/正己烷混合溶剂和100μL上述混合标准溶液,涡旋混匀,配成10、20、50、100、200、500μg/L基质标准工作溶液。
[0077] (3)气相色谱-负化学离子源-质谱法(GC-NCI-MS)测定
[0078] 操作步骤、色谱和质谱条件与上述猪肉样品中氯虫苯甲酰胺的测定一致。
[0079] 定性鉴定:同上述猪肉样品中氯虫苯甲酰胺的测定一致。
[0080] 线性关系:
[0081] 以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线为Y=174.7X-2149,相关系数为0.9992。
[0082] 加标回收率和重复性:
[0083] 在不含氯虫苯甲酰胺的猪肉中加入10、20和200μg/kg 3个浓度水平的氯虫苯甲酰胺标准溶液,待农药添加30min后按上述处理步骤进行残留量测定,将测定浓度与农药理论添加浓度进行比较,得到农药添加回收率,每个添加水平平行测定6次,得其相对标准偏差,测定结果见表3。由表3可以看出,在3个加标水平上,氯虫苯甲酰胺的平均回收率为88.6%~96.9%,平均相对标准偏差(RSD)为4.0%~6.7%,说明本发明方法的回收率高,重复性好。
[0084] 表3氯虫苯甲酰胺的回收率和重复性(n=6)
[0085]
[0086] 检出限:
[0087] 将不同浓度的氯虫苯甲酰胺基质标准工作溶液注入GC-NCI-MS,以最低浓度基质标准溶液色谱峰的3倍信噪比和样品处理过程的浓缩倍数(猪肉的浓缩倍数为2.0倍)计算检出限,氯虫苯甲酰胺的检出限为1.41μg/kg。
[0088] 以上的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。