形成乙烯的方法转让专利

申请号 : CN201380040355.7

文献号 : CN104619677B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : T·J·马克斯谢超

申请人 : 西北大学

摘要 :

本发明涉及一种从甲烷形成乙烯的方法,具体包括使负载型钯和硫化氢接触生成硫化钯催化剂,以及使硫化钯催化剂和甲烷接触,从而形成乙烯。

权利要求 :

1.一种从甲烷形成乙烯的方法,包括:

在200-1500摄氏度的温度进行使负载型钯和硫化氢接触以形成硫化钯催化剂;以及在850-1500摄氏度的温度进行使所述硫化钯催化剂和甲烷接触以形成乙烯,其中所述硫化钯催化剂为Pd16S7。

2.如权利要求1中所述的方法,其中负载型钯的载体选自MO2,二氧化铈(CeO2),二氧化硅(SiO2),氧化镁(MgO),Ln2O3,三氧化二铝(Al2O3),Li2O,或其组合,其中M是钛,锆,铪,或其组合,以及Ln是镧系元素,钇,钪,或其组合。

3.如权利要求1中所述的方法,其中硫化氢以毫升每小时为单位的体积除以负载型钯以克为单位的质量的取值范围是6000-30000mL·g-1·h-1。

4.如权利要求1中所述的方法,其中甲烷以毫升每小时为单位的体积除以硫化钯催化剂以克为单位的质量的取值范围是6000-30000mL·g-1·h-1。

5.如前述权利要求中任一项所述的方法,进一步包括提供惰性载气,用来输送硫化氢和甲烷中的至少一种。

说明书 :

形成乙烯的方法

[0001] 本发明涉及形成乙烯的方法,以及特别是从甲烷形成乙烯的方法。
[0002] 乙烯作为一种大宗化工产品,是化工行业的基础原料。乙烯可用来制造的产品包括但不限于食品包装材料,眼镜,汽车零部件,医疗器械,润滑剂,发动机冷却液以及液晶显示器。
[0003] 当前形成乙烯的工艺是将氧气作为氧化剂,通过甲烷氧化偶联实现。在甲烷氧化偶联工艺中,甲烷在催化剂表面实现不均匀的活化,生成甲基自由基,然后在气相中偶联生成乙烷。然后,乙烷通过脱氢生成乙烯。但是,使用氧气作为氧化剂的甲烷氧化偶联,显示出对乙烯形成的选择性差,以及不希望的过度氧化(生成二氧化碳)。
[0004] 图1中的扫描是通过将部分硫化钯催化剂执行X射线衍射获取的。图1中所示的扫描表明了相关曲线,其代表强度,单位:每秒计数(cps),以及相对角度(2θ)。
[0005] 图2表明了甲烷转化率和时间(小时)之间的关系,与实施例1,实施例2和对比性实施例A相关联。
[0006] 图3表明了乙烯选择性和时间(小时)之间的关系,与实施例1,实施例2和对比性实施例A相关联。
[0007] 本发明提供了一种从甲烷形成乙烯的方法,包括使负载型钯和硫化氢接触,以形成硫化钯催化剂,以及使硫化钯催化剂和甲烷接触,从而形成乙烯。值得一提的是本申请方法能够实现理想的甲烷转化率和理想的乙烯选择性。
[0008] 本申请方法包括使负载型钯和硫化氢接触。负载型钯可被称为催化剂前体。负载型钯的载体选自MO2,二氧化铈(CeO2),二氧化硅(SiO2),氧化镁(MgO),Ln2O3,三氧化二铝(Al2O3),Li2O,或其组合,其中M是钛,锆,铪,或其组合,以及Ln是镧系元素,钇,钪,或其组合。钯的含量可以为钯和载体总重量的1-50wt.%。
[0009] 本申请方法的条件包括重时空速(WHSV),其被定义为进料(例如硫化氢或甲烷)的质量流率,单位质量催化剂或催化剂前体,例如硫化钯催化剂或负载型钯。例如,重时空速可通过甲烷以克每小时为单位的质量除以 硫化钯催化剂以克为单位的质量或硫化氢以克每小时为单位的质量除以负载型钯的质量计算得出。
[0010] 硫化氢可以在0-2000摄氏度的温度和负载型钯接触。硫化氢可以在200-1500摄氏度的优选温度和负载型钯接触。硫化氢以毫升每小时为单位的体积除以负载型钯以克为单位的质量的取值范围是6000-30000mL·g-1·h-1。硫化氢(H2S)可以在101.32-1013.2KPa的绝对压力和负载型钯接触。
[0011] 通过使负载型钯和硫化氢接触生成硫化钯催化剂。本发明使用的硫化钯催化剂可以包括钯硫化物和/或钯多硫化物(subsulfide),例如Pd4S,Pd3S和/或Pd16S7。
[0012] 本申请方法包括使硫化钯催化剂和甲烷接触生成乙烯。甲烷可以在850-2000℃的温度和硫化钯催化剂接触。甲烷可以在900-1500℃的优选温度和硫化钯催化剂接触。甲烷以毫升每小时为单位的体积除以硫化钯催化剂以克为单位的质量的取值范围是6000--1 -130000mL·g ·h 。甲烷可以在101.32-1013.2KPa的绝对压力和硫化钯催化剂接触。
[0013] 本申请方法可包括提供惰性载气,以输送硫化氢和甲烷中的至少一种,例如输送到硫化钯催化剂。惰性载气的实例包括但不限于氩气,氦气,氮气,或者其组合。本申请方法中,甲烷和硫化氢所使用的摩尔比的取值范围可以是2.9:1至17.4:1。本申请方法中,甲烷和硫化氢的摩尔比的取值范围也可以是5:1至7:1。实施例
[0014] 原材料包括:甲烷(Airgas,Inc.);氩气(Airgas,Inc.);硫化氢(Sigma-);负载型钯:Pd/ZrO2(10wt.%钯,Sigma- )。所需设备包括一多相催化反应器体系(Altamira仪器公司),此多相催化反应器体系具有蒸汽发生器,反应器预热器和管式反应器。
[0015] 催化剂1形成
[0016] 将负载型钯(100毫克)加入管式反应器(10毫米内径)。用氩气(35毫升/分钟)吹扫此反应器系统1小时。保持氩气流(35毫升/分钟)吹扫此反应器系统,并将反应器系统组件以10℃/分钟的速度加热到实验温度(900℃)。将硫化氢/氩气混合物(1vol.%硫化氢)以25毫升/分钟的速度注入到反应器内历时2个小时,同时保持反应器内容物在实验温度和101.32KPa 的绝对压力,生成硫化钯催化剂(催化剂1)。对部分催化剂1执行X射线衍射(XRD)。X射线衍射表明形成了催化剂1,包含Pd16S7。
[0017] 催化剂2形成
[0018] 重复催化剂1的形成步骤,不同之处是:催化剂2形成使用的实验温度是1000℃,而不是900℃。
[0019] 催化剂3形成
[0020] 重复催化剂1的形成步骤,不同之处是:催化剂3形成使用的实验温度是800℃,而不是900℃。
[0021] 图1表明了通过对部分硫化钯催化剂执行X射线衍射而获取的扫描。图1中所示的扫描表明了相关曲线,其代表强度,单位:每秒计数(cps),以及相对角度(2θ)。在图1中,曲线102对应催化剂1,曲线104对应催化剂2,以及曲线106对应催化剂3。曲线102描绘了在大约37.6度处的峰108,以及在大约42.9度处的峰110,分别对应Pd16S7,表明催化剂1通过使负载型钯和硫化氢接触而形成。类似的,曲线104描绘了在大约37.6度处的峰112,以及在大约42.9度处的峰114,表明催化剂2的形成,曲线106描绘了在大约37.6度处的峰116,以及在大约42.9度处的峰118,表明催化剂3的形成。
[0022] 实施例1
[0023] 将负载型钯(100毫克)加入管式反应器(10毫米内径)。用氩气(35毫升/分钟)吹扫此反应器系统1小时。保持氩气流(35毫升/分钟)吹扫此反应器系统,并将反应器系统组件以10℃/分钟的速度加热到实验温度(900℃)。将硫化氢/氩气混合物(1wt.%硫化氢)以25毫升/分钟的速度注入到反应器内历时2个小时,同时保持反应器内容物在实验温度和101.32KPa的绝对压力,生成硫化钯催化剂。将甲烷/氩气混合物(10vol.%甲烷)以15毫升/分钟的速度注入到反应器,同时保持反应器内容物在实验温度和101.32KPa的绝对压力,生成乙烯。保持反应条件一段时间,然后用安捷伦7890气相色谱系统分离和分析相关产物,其中安捷伦7890气相色谱系统包括火焰离子化检测器,热导检测器和火焰光度检测器。分析表明,形成了乙烯,二硫化碳和硫化氢。
[0024] 实施例2
[0025] 重复实施例1,不同之处是:实施例2使用的实验温度是1000℃,而不 是900℃。
[0026] 对比性实施例A
[0027] 重复实施例1,不同之处是:对比性实施例A使用的实验温度是800℃,而不是900℃。
[0028] 图2表明了甲烷转化率和时间(小时)之间的关系,与实施例1,实施例2和对比性实施例A相关联。实施例1,实施例2和对比性实施例A中,甲烷转化率可通过下列公式计算得出:
[0029]
[0030] 在图2中,曲线220对应实施例1,曲线222对应实施例2,曲线224对应对比性实施例A。曲线220表明了在900℃时发生了甲烷的转化。曲线222表明了在相对较高的温度1000℃时发生了甲烷的转化。曲线224表明了在800℃时,甲烷的转化可以忽略不计。
[0031] 图3表明了乙烯选择性和时间(小时)之间的关系,与实施例1,实施例2和对比性实施例A相关联。实施例1,实施例2和对比性实施例A中,乙烯选择性可通过下列公式计算得出:
[0032]
[0033] 在图3中,曲线326对应实施例1,曲线328对应实施例2,曲线330对应对比性实施例A。曲线326表明了在900℃时,乙烯生成的选择性。曲线328表明了在相对较高的温度1000℃时,乙烯生成的选择性。曲线330表明了在800℃时,乙烯的生成可以忽略不计。