晶粒取向电磁钢板的制造方法转让专利

申请号 : CN201280075991.9

文献号 : CN104662180B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 千田邦浩渡边诚新垣之启大村健

申请人 : 杰富意钢铁株式会社

摘要 :

本发明提供一种晶粒取向电磁钢板的制造方法,对以质量%表示含有C:0.001%~0.20%、Si:1.0%~5.0%、Mn:0.03%~1.0%、S以及Se的1种或2种的合计:0.005%~0.040%、sol.Al:0.003%~0.050%、N:0.0010%~0.020%的钢坯进行热轧,并实施冷轧而形成最终板厚,进行一次再结晶退火,然后,涂覆以MgO为主要成分的退火分离剂,实施最终退火,在上述晶粒取向电磁钢板的制造方法中,上述一次再结晶退火的升温过程的500℃~600℃区间的升温速度S1为100℃/s以上,600℃~700℃区间的升温速度S2为30℃/s~(0.5×S1)℃/s的范围,优选500℃~700℃中的气氛的氧势(PH2O/PH2)为0.05以下,由此在制品卷材全长范围使二次再结晶晶粒细粒化,而低铁损化。

权利要求 :

1.一种晶粒取向电磁钢板的制造方法,对含有C:0.001~0.20质量%、Si:1.0~5.0质量%、Mn:0.03~1.0质量%、从S以及Se中选择的1种或2种的合计:超出0.01质量%且为

0.040质量%以下、sol.Al:0.003~0.050质量%、N:0.0010~0.020质量%且剩余部分由Fe以及不可避免的杂质构成的组成成分的钢坯进行热轧,并实施1次或夹着中间退火的2次以上的冷轧而形成最终板厚,进行一次再结晶退火,然后,涂覆以MgO为主要成分的退火分离剂,实施最终退火,所述晶粒取向电磁钢板的制造方法的特征在于,

所述一次再结晶退火的升温过程的500℃~600℃区间的升温速度S1为150℃/s以上,

600℃~700℃区间的升温速度S2为30℃/s~(0.5×S1)℃/s的范围。

2.根据权利要求1所述的晶粒取向电磁钢板的制造方法,其特征在于,所述一次再结晶退火升温过程的500℃~700℃区间的气氛的氧势PH2O/PH2为0.05以下。

3.根据权利要求1所述的晶粒取向电磁钢板的制造方法,其特征在于,除所述组成成分之外,还含有从Cu:0.01~0.5质量%、Ni:0.01~1.0质量%、Cr:0.01~1.0质量%、Sb:0.01~0.3质量%、Sn:0.01~1.0质量%、Mo:0.01~1.0质量%以及Bi:

0.001~0.5质量%中选择的1种或2种以上。

4.根据权利要求2所述的晶粒取向电磁钢板的制造方法,其特征在于,除所述组成成分之外,还含有从Cu:0.01~0.5质量%、Ni:0.01~1.0质量%、Cr:0.01~1.0质量%、Sb:0.01~0.3质量%、Sn:0.01~1.0质量%、Mo:0.01~1.0质量%以及Bi:

0.001~0.5质量%中选择的1种或2种以上。

5.根据权利要求1~4中任一项所述的晶粒取向电磁钢板的制造方法,其特征在于,除所述组成成分之外,还含有从B:0.001~0.01质量%、Ge:0.001~0.1质量%、As:

0.005~0.1质量%、P:0.005~0.1质量%、Te:0.005~0.1质量%、Nb:0.005~0.1质量%、Ti:0.005~0.1质量%以及V:0.005~0.1质量%中选择的1种或2种以上。

说明书 :

晶粒取向电磁钢板的制造方法

技术领域

[0001] 本发明涉及晶粒取向电磁钢板的制造方法,具体而言,涉及铁损特性在制品卷材的全长范围优良的晶粒取向电磁钢板的制造方法。

背景技术

[0002] 电磁钢板大致具有晶粒取向电磁钢板和无方向性电磁钢板,作为变压器、发电机等的铁心材料而被广泛使用。尤其是前者即晶粒取向电磁钢板由于高度集积在结晶取向称为高斯取向的{110}<001>取向,因此具有对减少变压器、发电机的能量损失有效的磁特性。另外,作为进一步减少晶粒取向电磁钢板的铁损的技术,一直以来公知有板厚的减少、Si含量的增加、结晶取向的取向性提高、对钢板的张力施加、钢板表面的平滑化、二次再结晶晶粒的细粒化等方法。
[0003] 在上述铁损减少技术中,作为使二次再结晶晶粒细粒化的技术,公知有通过在脱炭退火时迅速加热、或在脱炭退火不久之前迅速加热处理来改善一次再结晶织构的方法。例如,专利文献1公开了如下技术,即在对轧制至最终板厚的带钢进行脱炭退火之前,在气氛氧浓度为500ppm以下、加热速度100℃/s以上的条件下,迅速加热处理至800℃~950℃,并在使脱炭退火工序的前部区域的温度为比通过迅速加热所达到的温度低的775~840℃、使随后的后部区域的温度为比前部区域高的815~875℃的条件下,实施脱炭退火,由此获得低铁损的晶粒取向电磁钢板,专利文献2公开了如下技术,即在对轧制至最终板厚的带钢进行脱炭退火不久之前,在PH2O/PH2为0.2以下的非氧化性气氛下按照100℃/s以上的加热速度加热处理至700℃以上的温度,由此获得低铁损的晶粒取向电磁钢板。
[0004] 另外,专利文献3公开了如下技术,即使脱炭退火工序的升温阶段的至少600℃以上的温度区域按照95℃/s以上的升温速度加热至800℃以上,并且该温度区域的气氛气体由含有体积分数为10-6~10-1的氧气的惰性气体构成,脱炭退火的均热时的气氛气体的构成成分为H2与H2O、或H2、H2O以及惰性气体,并且H2O分压相对于H2分压的比PH2O/PH2为0.05~0.75,另外,每单位面积的气氛气体流量为0.01Nm3/min.m2~1Nm3/min.m2的范围,由此获得皮膜特性与磁特性优良的电磁钢板,另外,专利文献4公开了如下技术,即使脱炭退火工序的升温阶段的至少650℃以上的温度区域按照100℃/s以上的升温速度加热至800℃以上,并且该温度区域的气氛由含有体积分数为10-6~10-2的氧气的惰性气体构成,另一方面,脱炭退火的均热时的气氛气体的构成成分为H2与H2O、或H2、H2O以及惰性气体,并且H2O分压相对于H2分压的比PH2O/PH2为0.15~0.65,由此获得皮膜特性与磁特性优良的晶粒取向电磁钢板。
[0005] 专利文献1:日本特开平10-298653号公报
[0006] 专利文献2:日本特开平07-062436号公报
[0007] 专利文献3:日本特开2003-027194号公报
[0008] 专利文献4:日本特开2000-204450号公报
[0009] 通过应用上述专利文献1~4所记载的技术,而能够使二次再结晶晶粒细粒化,由此能够实现铁损的减少。然而,在上述现有技术中,受到材料成分的变动、一次再结晶退火以前的工序的制造条件的变动等的影响,而在制品卷材内的细粒化效果存在偏差,由此存在难以在制品卷材的全长范围稳定地获得铁损减少效果的问题。

发明内容

[0010] 本发明是鉴于现有技术所存在的上述问题点而完成的,其目的在于提出一种在制品卷材的全长范围稳定地使二次再结晶晶粒细粒化从而能够在卷材全长范围实现低铁损化的晶粒取向电磁钢板的有利的制造方法。
[0011] 发明人们为了解决上述课题,着眼于一次再结晶退火的升温过程,寻求在制品卷材全长范围稳定地使二次再结晶晶粒细化的技术。其结果发现:将一次再结晶退火的升温过程分为低温区域与高温区域,在低温区域迅速加热且在高温区域反而减缓升温速度是有效的。即,一直以来就知晓通过提高一次再结晶的升温速度能够使二次再结晶晶粒细粒化,但发明人们进一步进行研究的结果发现:在一次再结晶退火的升温过程中,使发生恢复的低温区域的升温速度比通常的脱炭退火的升温速度高,并使发生一次再结晶的高温区域的升温速度为上述低温区域的升温速度的50%以下,从而即便材料成分、前工序的制造条件发生变动,也能够在制品卷材全长范围稳定地使二次再结晶晶粒细粒化,由此导致完成本发明。
[0012] 即,本发明涉及一种晶粒取向电磁钢板的制造方法,对含有C:0.001~0.20质量%、Si:1.0~5.0质量%、Mn:0.03~1.0质量%、从S以及Se中选择的1种或2种的合计:0.005~0.040质量%、sol.Al:0.003~0.050质量%、N:0.0010~0.020质量%且剩余部分由Fe以及不可避免的杂质构成的组成成分的钢坯进行热轧,并实施1次或夹着中间退火的2次以上的冷轧而形成最终板厚,进行一次再结晶退火,然后,涂覆以MgO为主要成分的退火分离剂,实施最终退火,上述晶粒取向电磁钢板的制造方法的特征在于,上述一次再结晶退火的升温过程的500℃~600℃区间的升温速度S1为100℃/s以上,600℃~700℃区间的升温速度S2为30℃/s~(0.5×S1)℃/s的范围。
[0013] 本发明的晶粒取向电磁钢板的制造方法的特征在于,上述一次再结晶退火的升温过程的500℃~700℃区间的气氛的氧势PH2O/PH2为0.05以下。
[0014] 另外,本发明的晶粒取向电磁钢板的制造方法的特征在于,除上述组成成分之外,还含有从Cu:0.01~0.5质量%、Ni:0.01~1.0质量%、Cr:0.01~1.0质量%、Sb:0.01~0.3质量%、Sn:0.01~1.0质量%、Mo:0.01~1.0质量%以及Bi:0.001~0.5质量%中选择的1种或2种以上。
[0015] 另外,本发明的晶粒取向电磁钢板的制造方法的特征在于,除上述组成成分之外,还含有从B:0.001~0.01质量%、Ge:0.001~0.1质量%、As:0.005~0.1质量%、P:0.005~0.1质量%、Te:0.005~0.1质量%、Nb:0.005~0.1质量%、Ti:0.005~0.1质量%以及V:
0.005~0.1质量%中选择的1种或2种以上。
[0016] 根据本发明,能够在晶粒取向电磁钢板的制品卷材全长范围使二次再结晶晶粒细粒化,而低铁损化,因此能够大幅度提高制品合格率,并非常有助于变压器等的铁损特性的提高。

具体实施方式

[0017] 对本发明的晶粒取向电磁钢板的组成成分进行说明。
[0018] C:0.001~0.10质量%
[0019] C是对高斯取向晶粒的产生有用的成分,为了有效地体现上述作用,需要含有0.001质量%以上。然而,若添加C超过0.10质量%,则即便进行脱炭退火也会引起脱炭不足。因此,C为0.001~0.10质量%的范围。优选为0.01~0.08质量%的范围。
[0020] Si:1.0~5.0质量%
[0021] Si是提高钢的电阻减少铁损并且使铁的BCC组织(铁素体组织)稳定化能够实现高温热处理所需要的成分,至少需要添加1.0质量%以上。然而,若添加超过5.0质量%,则钢硬质化,难以进行冷轧。因此,Si为1.0~5.0质量%的范围。优选为2.5~4.0质量%的范围。
[0022] Mn:0.01~1.0质量%
[0023] Mn是对改善钢的热加工性有效的成分,并是与S、Se结合形成MnS、MnSe等析出物而作为抑制剂(inhibitor)起作用的有用成分。然而,若Mn的含量少于0.01质量%,则无法获得上述效果,另一方面,若添加超过1.0质量%,则MnSe等析出物粗大化,失去作为抑制剂的功能。因此,Mn为0.01~1.0质量%的范围。优选为0.04~0.20质量%的范围。
[0024] sol.Al:0.003~0.050质量%
[0025] Al在钢中形成AlN,是作为分散第二相而发挥抑制剂的作用的有用成分。然而,若作为sol.Al的添加量不足0.003质量%,则无法充分确保AlN析出量,因此无法得到上述效果,另一方面,若添加超过0.050质量%,则AlN粗大化,失去作为抑制剂的作用。因此,Al作为sol.Al,为0.003~0.050质量%的范围。优选为0.005~0.040质量%的范围。
[0026] N:0.0010~0.020质量%
[0027] N与Al相同,是为了形成AlN所需要的成分。然而,若N添加量少于0.0010质量%,则无法形成足够的AlN,因此无法获得上述效果,另一方面,若添加超过0.020质量%,则在钢坯加热时,会产生膨胀等而引起表面缺陷。因此,N为0.001~0.020质量%的范围。优选为0.0030~0.015质量%的范围。
[0028] S以及Se中的1种或者2种的合计:0.005~0.040质量%
[0029] S以及Se是与Mn、Cu结合而形成MnSe、MnS、Cu2-xSe、Cu2-xS,并在钢中作为分散第二相析出而发挥抑制剂作用的有用成分。然而,若S以及Se的总含量不足0.005质量%,则添加效果不足,另一方面,若添加超过0.040质量%,则钢坯加热时的固溶不完全,此外,还成为引起表面缺陷的原因。因此,在单独添加、复合添加的任一种情况下,总添加量为0.005~0.040质量%的范围。优选为0.012~0.030质量%的范围。
[0030] 对本发明的晶粒取向电磁钢板而言,除上述必需成分之外,还能够添加从Cu:0.01~0.5质量%、Ni:0.01~1.0质量%、Cr:0.01~1.0质量%、Sb:0.01~0.3质量%、Sn:0.01~1.0质量%、Mo:0.01~1.0质量%以及Bi:0.001~0.5质量%中选择的1种或2种以上。
[0031] 上述元素均是容易在晶粒边界、表面发生偏析的元素,是作为辅助抑制剂发挥作用、对实现磁特性的进一步提高有效的成分。在上述元素的添加量不足上述下限值时,抑制一次粒子在二次再结晶过程的在高温区域的粗大化的效果不足,因此无法获得足够的添加效果,另一方面,超过上述上限值的添加容易产生覆膜外观的不良、二次再结晶不良。因此,在添加上述成分的情况下,优选为上述范围。
[0032] 另外,对本发明的晶粒取向电磁钢板而言,除上述成分之外,还能够添加从B:0.001~0.01质量%、Ge:0.001~0.1质量%、As:0.005~0.1质量%、P:0.005~0.1质量%、Te:0.005~0.1质量%、Nb:0.005~0.1质量%、Ti:0.005~0.1质量%以及V:0.005~0.1质量%中选择的1种或2种以上。按照上述范围添加上述元素,由此能够进一步强化抑制剂效果(抑制力),因此向高斯取向的集积度进一步提高,而能够稳定地获得高的磁通密度。
[0033] 接下来,对本发明所涉及的晶粒取向电磁钢板的制造方法进行说明。
[0034] 本发明的晶粒取向电磁钢板可以通过由如下一系列的工序构成的制造方法来制造,即通过以往公知的精炼工序熔炼具有上述说明的组成成分的钢,使用连续铸造法或铸锭-开坯轧制法等形成钢原料(钢坯),然后,热轧上述钢坯而形成热轧板,在根据需要实施热轧板退火之后,实施1次或夹着中间退火的2次以上的冷轧而形成最终板厚的冷轧板,进行一次再结晶退火,然后,在涂覆以MgO为主要成分的退火分离剂并实施最终退火之后,根据需要,经过结合了绝缘覆膜的涂覆/烧结的平坦化退火,但除上述一次再结晶退火工序以外的制造条件,均可以采用以往公知的条件,不特别限制。
[0035] 以下,对最终冷轧后的一次再结晶退火的条件进行说明。
[0036] 如上所述,一次再结晶退火的条件、尤其是升温过程的升温速度会对二次再结晶组织造成较大的影响,因此需要精确的控制。因此,在本发明中,为了使二次再结晶晶粒在制品卷材全长范围稳定地细粒化来提高制品卷材内的铁损特性优良的区域的比率,而需要将上述升温过程分为进行恢复的低温区域与发生一次再结晶的高温区域,并适当地控制各个区域的升温速度。具体而言,需要使一次再结晶的前驱过程即发生恢复的低温区域(500~600℃)的升温速度S1为比通常的退火高的100℃/s以上,并且使发生一次再结晶的高温区域(600~700℃)的升温速度S2为30℃/s以上且为低温区域的50%以下。由此,即便在钢成分、一次再结晶退火以前的制造条件发生了变动的情况下,也能够稳定地获得铁损减少效果。
[0037] 以下对将升温速度限制在上述范围的理由进行说明。
[0038] 公知高斯取向{110}<001>的二次再结晶核存在于轧制组织中容易蓄积应变能的{111}纤维组织中所产生的变形带之中。此外,上述变形带是指在{111}纤维组织之中尤其是蓄积应变能的区域。
[0039] 这里,在一次再结晶退火的低温区域(500℃~600℃)中的升温速度S1不足100℃/s的情况下,在应变能极高的变形带中,优先发生恢复(应变能的衰减),因此无法促进高斯取向{110}<001>的再结晶。与此相对地,在S1为100℃/s以上的情况下,能够在应变能较高的状态下将变形组织保持至高温区域,因此能够在较低温度(600℃附近)下促进高斯取向{110}<001>的再结晶。因此,在低温区域(500℃~600℃)的升温速度S1为100℃/s以上。优选为150℃/s以上。
[0040] 另外,为了将二次再结晶后的高斯取向{110}<001>的粒径控制为目标大小,重要的是将被高斯取向{110}<001>蚕食的{111}组织的量控制在适当范围。这是因为,若{111}取向过多,则二次再结晶晶粒的生长容易进行,从而即便高斯取向{110}<001>较多,也存在各自生长之前一个组织巨大化而成为粗晶粒的担忧,相反,若过少,则二次再结晶晶粒的生长难以进行,存在二次再结晶不良的担忧。
[0041] 另外,{111}取向是由虽然不像变形带那样但应变能比周围高的{111}纤维组织再结晶而产生,因此在使直到600℃为止的升温速度S1为100℃/s以上来进行加热的本发明的加热周期中,是接着高斯取向{110}<001>容易发生再结晶的结晶取向。
[0042] 因此,若以超过升温速度S1的50%那样的高的升温速度,加热到发生一次再结晶的高温(700℃以上),则会抑制高斯取向{110}<001>、随后容易进行再结晶的{111}取向的再结晶,而使一次再结晶后的织构随机化。其结果是,与在600℃~700℃以比升温速度S1的50%低的速度进行加热的情况相比,高斯取向{110}<001>再结晶晶粒的数量变少,二次再结晶晶粒的细粒化效果受损,或{111}取向变少,二次再结晶晶粒未充分生长。相反,在使
600℃~700℃区间的升温速度S2比30℃/s低的情况下,在上述温度范围容易再结晶的{111}取向增加,存在二次再结晶晶粒粗大化的担忧。因此,发生一次再结晶的高温区域(600℃~700℃)的升温速度S2为30℃/s以上且为低温区域的升温速度S1的50%以下。优选
35℃/s以上且S1的40%以下的范围。
[0043] 一次再结晶退火一般与脱炭退火结合进行的情况较多,但在本发明中,也能够进行结合了脱炭退火的一次再结晶退火。在该情况下,在脱炭气氛中可以迅速加热,但在该情况下,氧化性低的气氛能够稳定地获得低铁损。这是因为,若在升温过程中发生脱炭,则成为对二次再结晶晶粒的细粒化不利的一次再结晶组织。因此,在本发明中,优选升温过程的500℃~700℃区间的气氛的氧势(oxygen potential)PH2O/PH2控制为0.05以下。更优选为
0.035以下。
[0044] 此外,关于一次再结晶退火的其他条件例如均热温度、均热时间、均热时的气氛、冷却速度等条件,根据常规方法进行即可,不特别限制。另外,在钢坯中的C含量为30质量ppm以下的情况下,不需要特意进行脱炭退火,在最终冷轧后进行通常的一次再结晶退火即可。
[0045] 实施例1
[0046] 将含有C:0.06质量%、Si:3.3质量%、Mn:0.08质量%、S:0.023质量%、sol.Al:0.03质量%、N:0.007质量%、Cu:0.2质量%以及Sb:0.02质量%的钢坯在1430℃加热30min后,进行热轧而形成板厚2.2mm的热轧板,在1000℃实施1min的热轧板退火之后,进行冷轧而形成为中间板厚1.5mm,在1100℃实施2min的中间退火之后,进行最终冷轧而形成板厚
0.23mm的冷轧板。然后,实施使升温条件(500℃~600℃区间的升温速度S1、600℃~700℃区间的升温速度S2以及500~700℃区间的气氛的氧势PH2O/PH2)如表1所示那样各种改变来进行加热并在840℃下均热保持2min的结合了脱炭退火的一次再结晶退火,之后,将以MgO为主要成分且含有10质量%的TiO2的水浆状的退火分离剂涂覆于钢板表面并进行干燥,卷绕成卷材,进行最终退火,实施结合了磷酸盐系的绝缘张力涂层的涂覆/烧结与钢带的形状矫正的平坦化退火,从而形成制品卷材。
[0047] [表1]
[0048]
[0049] *;S1:500~600℃区间的升温速度、S2:600~700℃区间的升温速度[0050] 按照一定间隔从如此获得的制品卷材的长度方向的20个位置选取爱泼斯坦试验片,测定卷材全长范围的铁损,从而求出相对于制品卷材全长的铁损W17/50为0.80W/kg以下的部分的比率(%)。
[0051] 表1中一并记录了上述测定的结果。从中可知,对实施了升温速度适于本发明的一次再结晶退火的发明例的钢板而言,W17/50≤0.80W/kg的部分的比率均为卷材全长的70%以上,并且在升温过程的500℃~700℃区间的气氛的氧势PH2O/PH2为0.05以下的情况下,能够进一步提高低铁损部分的比率。
[0052] 实施例2
[0053] 在将具有表2所示各种组成成分的钢坯在1430℃加热30min后,进行热轧而形成板厚2.2mm的热轧板,在1000℃实施1min的热轧板退火之后,进行冷轧而形成为板厚1.5mm,在1100℃实施2min的中间退火,进而进行冷轧而形成最终板厚0.23mm的冷轧板,通过电解蚀刻形成线状槽以使磁畴细化。接下来,对上述冷轧板实施结合了脱炭退火的一次再结晶退火,之后,将以MgO为主要成分且添加10质量%的TiO2的水浆状的退火分离剂涂覆于钢板表面并进行干燥,在卷绕成卷材之后,实施最终退火,实施结合了磷酸盐系的绝缘张力涂层的涂覆/烧结与钢带的形状矫正的平坦化退火,从而形成制品卷材,其中,在上述一次再结晶退火中,在升温过程的500℃~700℃区间的气氛的氧势PH2O/PH2为0.03,500℃~600℃区间的升温速度S1为200℃/s,600℃~700℃区间的升温速度S2为50℃/s的条件下,升温至700℃,之后,在700℃~840℃区间以10℃/s的平均升温速度升温,在PH2O/PH2为0.4的气氛下以
840℃保持2min。
[0054] [表2-1]
[0055]
[0056] *:合格品率=制品卷材内的W17/50≤0.80W/kg的比率(%)
[0057] [表2-2]
[0058]
[0059] *:合格品率=制品卷材内的W17/50≤0.80W/kg的比率(%)
[0060] 按照一定间隔从如此获得的制品卷材的长度方向的20个位置选取爱泼斯坦试验片之后,在氮气气氛中以800℃实施3hr的去应力退火,然后,通过爱泼斯坦试验法测定铁损W17/50,从而求出相对于制品卷材全长的铁损W17/50为0.80W/kg以下的部分的比率(%),该结果一并记录在表2中。从上述结果可知,通过按照适于本发明的条件对适于本发明的组成成分的冷轧板进行一次再结晶退火,能够制造出在制品卷材全长范围低铁损的晶粒取向电磁钢板。尤其是在追加添加从具有抑制剂效果的Cu、Ni、Cr、Sb、Sn、Mo以及Bi中选择的1种或2种以上、或还从B、Ge、As、P、Te、Nb、Ti以及V中选择的1种或2种以上的情况下,能够稳定地制造铁损W17/50为0.80W/kg的比率较高的制品卷材。