移动通信方法和装置转让专利

申请号 : CN201510152915.9

文献号 : CN104703120B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 周明宇白炜

申请人 : 南京佰联信息技术有限公司

摘要 :

本发明公开了一种移动通信方法和装置。其中,移动通信方法包括:可移动的接入点与终端建立连接;可移动的接入点向终端提供通信服务;可移动的接入点检测终端是否移动;以及如果可移动的接入点检测出终端移动,则控制可移动的接入点自身随着终端的移动而自动移动。本发明解决了用户难以在任何区域都能够享受到无线通信服务的技术问题。

权利要求 :

1.一种移动通信方法,其特征在于,包括:

可移动的接入点与终端建立连接,其中,所述可移动的接入点部署在可移动的设备上;

所述可移动的接入点向所述终端提供通信服务;

所述可移动的接入点检测所述终端是否移动;以及

如果所述可移动的接入点检测出所述终端移动,则控制所述可移动的接入点自身随着所述终端的移动而自动移动;

其中,按照预先设置的第一粒度将所述可移动的接入点的移动方向划分为多个第1级区域,按照预先设置的第i粒度将多个第i-1级区域中每一个区域划分成多个第i级区域,i=2,…,n,其中n大于等于2,控制所述可移动的接入点自身移动随着所述终端的移动而自动移动包括:在所述可移动的接入点检测到所述终端发生移动的情况下,所述可移动的接入点从所述多个第1级区域中选择最佳的第1级区域,其中,所述最佳的第1级区域为在所述多个第1级区域中所述可移动的接入点移动相同距离时所述可移动的接入点与所述终端的距离减少最多的方向的角度区间;

所述可移动的接入点从最佳的第i-1级区域中选择最佳的第i级区域,其中,所述i遍历

2,…,n,所述最佳的第i级区域为在所述多个第i级区域中所述可移动的接入点移动相同距离时所述可移动的接入点与所述终端的距离减少最多的方向的角度区间;

当i=n时,所述可移动的接入点根据最佳的第n级区域确定自身的移动方向。

2.根据权利要求1所述的方法,其特征在于,所述可移动的接入点检测所述终端是否移动包括:所述可移动的接入点接收来自所述终端的无线通信信号;

所述可移动的接入点利用接收到的无线通信信号确定所述终端是否移动,并根据所述接收到的无线通信信号确定所述可移动的接入点自身的移动参数,其中,所述可移动的接入点按照所述移动参数移动。

3.根据权利要求1或2所述的方法,其特征在于,所述可移动的接入点向所述终端提供以下至少一类服务:本地无线通信服务、本地IP接入服务和接入无线网络服务。

4.根据权利要求3所述的方法,其特征在于,所述可移动的接入点通过无线连接方式连接到网络设备,所述可移动的接入点通过利用所述网络设备向所述终端提供所述接入无线网络服务。

5.根据权利要求1或2所述的方法,其特征在于,所述可移动的接入点部署在可移动的设备上,其中,所述可移动的接入点或所述可移动的设备包括光伏电池和/或可充电电池。

6.根据权利要求1或2所述的方法,其特征在于,所述可移动的接入点检测所述终端是否移动包括:所述可移动的接入点接收来自所述终端发送的地理位置信息或者移动状态信息,其中,所述地理位置信息为表示所述终端所处的地理位置的信息,所述移动状态信息为表示所述终端的移动状态的信息;

所述可移动的接入点基于所述地理位置信息或者所述移动状态信息确定所述可移动的接入点自身的移动参数,其中,所述可移动的接入点按照所述移动参数进行移动并向所述终端提供通信服务。

7.根据权利要求2所述的方法,其特征在于,根据所述接收到的无线通信信号确定所述可移动的接入点自身的移动参数包括:所述可移动的接入点确定所述无线通信信号的到达时间和/或到达角度和/或信号强度;

所述可移动的接入点根据所述到达时间和/或所述到达角度和/或所述信号强度确定所述可移动的接入点自身的所述移动参数。

8.根据权利要求2所述的方法,其特征在于,所述无线通信信号承载有所述终端上报的功率信息和/或所述终端接收到所述可移动的接入点的信号的到达角度信息和/或所述终端接收到所述可移动的接入点的信号的功率信息和/或所述终端接收到所述可移动的接入点的信号的时间信息,根据所述接收到的无线通信信号确定所述可移动的接入点自身的移动参数包括:所述可移动的接入点根据所述终端上报的功率信息和/或所述终端接收到所述可移动的接入点的信号的到达角度信息和/或所述终端接收到所述可移动的接入点的信号的功率信息和/或所述终端接收到所述可移动的接入点的信号的时间信息确定所述可移动的接入点自身的所述移动参数。

9.根据权利要求1或2所述的方法,其特征在于,所述终端包括一个或者多个,在所述可移动的接入点与多个所述终端建立连接的情况下,所述方法还包括:所述可移动的接入点计算出与多个所述终端中每一个所述终端的相对位置;

所述可移动的接入点按照预设规则根据所述可移动的接入点与多个所述终端中每一个所述终端的相对位置确定出所述可移动的接入点的最佳位置;以及所述可移动的接入点从当前位置移动到所述最佳位置。

10.根据权利要求1所述的方法,其特征在于,在可移动的接入点与终端建立连接之前,所述方法还包括:所述可移动的接入点与网络建立连接,并且与管理终端建立通信关系,所述管理终端用于对所述可移动的接入点的移动进行控制;

当所述可移动的接入点检测到与所述网络的连接中断后,向所述管理终端发送网络中断提示信息,所述网络中断提示信息用于提示所述可移动的接入点与所述网络的连接中断。

11.根据权利要求1或2所述的方法,其特征在于,控制所述可移动的接入点自身移动随着所述终端的移动而自动移动包括:在所述可移动的接入点检测到所述终端发生移动的情况下,控制所述可移动的接入点朝第一方向移动;

所述可移动的接入点接收来自所述终端的无线通信信号;以及

所述可移动的接入点根据所述无线通信信号确定继续朝所述第一方向移动或者改变移动方向。

12.根据权利要求1所述的方法,其特征在于,所述终端包括多个,在所述可移动的接入点与多个所述终端建立连接的情况下,控制所述可移动的接入点自身移动随着所述终端的移动而自动移动包括:所述可移动的接入点接收来自多个所述终端的无线通信信号;

所述可移动的接入点根据所述来自多个所述终端的无线通信信号确定出所述可移动的接入点自身的最佳的移动方向和/或移动速度。

13.根据权利要求12所述的方法,其特征在于,采用以下方式来确定所述可移动的接入点自身的最佳的移动方向和/或移动速度:选择在所述可移动的接入点的覆盖范围内所述终端数量最多的移动方向和/或移动速度;和/或选择在所述可移动的接入点的覆盖范围内的多个所述终端平均信号强度最大的移动方向和/或移动速度;和/或选择在所述可移动的接入点的覆盖范围内吞吐量最高的移动方向和/或移动速度。

14.根据权利要求1所述的方法,其特征在于,所述终端包括多个,在所述可移动的接入点与多个所述终端建立连接的情况下,控制所述可移动的接入点自身移动随着所述终端的移动而自动移动包括:所述可移动的接入点根据多个所述终端预先设置的优先级确定出所述可移动的接入点自身的最佳的移动方向和/或移动速度。

15.根据权利要求1所述的方法,其特征在于,所述终端包括多个,其中,多个所述终端中的一个终端为管理终端,在所述可移动的接入点与多个所述终端建立连接的情况下,所述方法还包括:当所述可移动的接入点检测到与多个所述终端中的任一个或多个终端连接中断后,向所述管理终端发送终端失连提示信息,所述终端失连提示信息用于提示所述可移动的接入点与多个所述终端中的任一个或多个终端连接中断。

16.根据权利要求1所述的方法,其特征在于,所述可移动的接入点为嵌入到飞行设备的接入点,其中,所述飞行设备根据所述终端的移动调整自身的飞行高度来改变所述可移动的接入点的覆盖范围。

17.一种移动通信装置,其特征在于,包括:

第一建立单元,用于使得可移动的接入点与终端建立连接,其中,所述可移动的接入点部署在可移动的设备上;

通信单元,用于使得所述可移动的接入点向所述终端提供通信服务;

检测单元,用于使得所述可移动的接入点检测所述终端是否移动;以及

控制单元,用于如果所述可移动的接入点检测出所述终端移动,则控制所述可移动的接入点自身随着所述终端的移动而自动移动;

其中,按照预先设置的第一粒度将所述可移动的接入点的移动方向划分为多个第1级区域,按照预先设置的第i粒度将多个第i-1级区域中每一个区域划分成多个第i级区域,i=2,…,n,其中n大于等于2,所述控制单元包括:第一选择模块,用于在所述可移动的接入点检测到所述终端发生移动的情况下,使得所述可移动的接入点从所述多个第1级区域中选择最佳的第1级区域,其中,所述最佳的第1级区域为在所述多个第1级区域中所述可移动的接入点移动相同距离时所述可移动的接入点与所述终端的距离减少最多的方向的角度区间;

第二选择模块,用于使得所述可移动的接入点从最佳的第i-1级区域中选择最佳的第i级区域,其中,所述i遍历2,…,n,所述最佳的第i级区域为在所述多个第i级区域中所述可移动的接入点移动相同距离时所述可移动的接入点与所述终端的距离减少最多的方向的角度区间;

第四确定模块,用于当i=n时,使得所述可移动的接入点根据最佳的第n级区域确定自身的移动方向。

18.根据权利要求17所述的装置,其特征在于,所述检测单元包括:

第一接收模块,用于使得所述可移动的接入点接收来自所述终端的无线通信信号;

第一确定模块,用于使得所述可移动的接入点利用接收到的无线通信信号确定所述终端是否移动,并根据所述接收到的无线通信信号确定所述可移动的接入点自身的移动参数,其中,所述可移动的接入点按照所述移动参数移动。

19.根据权利要求17或18所述的装置,其特征在于,所述可移动的接入点向所述终端提供以下至少一类服务:本地无线通信服务、本地IP接入服务和接入无线网络服务。

20.根据权利要求19所述的装置,其特征在于,所述可移动的接入点通过无线连接方式连接到网络设备,所述可移动的接入点通过利用所述网络设备向所述终端提供所述接入无线网络服务。

21.根据权利要求17或18所述的装置,其特征在于,所述可移动的接入点部署在可移动的设备上,其中,所述可移动的接入点或所述可移动的设备包括光伏电池和/或可充电电池。

22.根据权利要求17或18所述的装置,其特征在于,所述检测单元包括:第二接收模块,用于使得所述可移动的接入点接收来自所述终端发送的地理位置信息或者移动状态信息,其中,所述地理位置信息为表示所述终端所处的地理位置的信息,所述移动状态信息为表示所述终端的移动状态的信息;

第二确定模块,用于使得所述可移动的接入点基于所述地理位置信息或者所述移动状态信息确定所述可移动的接入点自身的移动参数,其中,所述可移动的接入点按照所述移动参数进行移动并向所述终端提供通信服务。

23.根据权利要求18所述的装置,其特征在于,所述第一确定模块包括:第一确定子模块,用于使得所述可移动的接入点确定所述无线通信信号的到达时间和/或到达角度和/或信号强度;

第二确定子模块,用于使得所述可移动的接入点根据所述到达时间和/或所述到达角度和/或所述信号强度确定所述可移动的接入点自身的所述移动参数。

24.根据权利要求18所述的装置,其特征在于,所述无线通信信号承载有所述终端上报的功率信息和/或所述终端接收到所述可移动的接入点的信号的到达角度信息和/或所述终端接收到所述可移动的接入点的信号的功率信息和/或所述终端接收到所述可移动的接入点的信号的时间信息,所述第一确定模块包括:第三确定子模块,用于使得所述可移动的接入点根据所述终端上报的功率信息和/或所述终端接收到所述可移动的接入点的信号的到达角度信息和/或所述终端接收到所述可移动的接入点的信号的功率信息和/或所述终端接收到所述可移动的接入点的信号的时间信息确定所述可移动的接入点自身的所述移动参数。

25.根据权利要求17或18所述的装置,其特征在于,所述终端包括一个或者多个,所述装置还包括:计算单元,用于在所述可移动的接入点与多个所述终端建立连接的情况下,使得所述可移动的接入点计算出与多个所述终端中每一个所述终端的相对位置;

确定单元,用于使得所述可移动的接入点按照预设规则根据所述可移动的接入点与多个所述终端中每一个所述终端的相对位置确定出所述可移动的接入点的最佳位置;以及移动单元,用于使得所述可移动的接入点从当前位置移动到所述最佳位置。

26.根据权利要求17所述的装置,其特征在于,所述装置还包括:

第二建立单元,用于在可移动的接入点与终端建立连接之前,使得所述可移动的接入点与网络建立连接,并且与管理终端建立通信关系,所述管理终端用于对所述可移动的接入点的移动进行控制;

第一发送单元,用于当所述可移动的接入点检测到与所述网络的连接中断后,向所述管理终端发送网络中断提示信息,所述网络中断提示信息用于提示所述可移动的接入点与所述网络的连接中断。

27.根据权利要求17或18所述的装置,其特征在于,所述控制单元包括:第一控制模块,用于在所述可移动的接入点检测到所述终端发生移动的情况下,控制所述可移动的接入点朝第一方向移动;

第三接收模块,用于使得所述可移动的接入点接收来自所述终端的无线通信信号;以及第三确定模块,用于使得所述可移动的接入点根据所述无线通信信号确定继续朝所述第一方向移动或者改变移动方向。

28.根据权利要求17所述的装置,其特征在于,所述终端包括多个,所述控制单元包括:第四接收模块,用于在所述可移动的接入点与多个所述终端建立连接的情况下,使得所述可移动的接入点接收来自多个所述终端的无线通信信号;

第五确定模块,用于使得所述可移动的接入点根据所述来自多个所述终端的无线通信信号确定出所述可移动的接入点自身的最佳的移动方向和/或移动速度。

29.根据权利要求28所述的装置,其特征在于,所述第五确定模块包括:第一选择子模块,用于选择在所述可移动的接入点的覆盖范围内所述终端数量最多的移动方向和/或移动速度;和/或第二选择子模块,用于选择在所述可移动的接入点的覆盖范围内的多个所述终端平均信号强度最大的移动方向和/或移动速度;和/或第三选择子模块,用于选择在所述可移动的接入点的覆盖范围内吞吐量最高的移动方向和/或移动速度。

30.根据权利要求17所述的装置,其特征在于,所述终端包括多个,所述控制单元包括:第六确定模块,用于在所述可移动的接入点与多个所述终端建立连接的情况下,所述可移动的接入点根据多个所述终端预先设置的优先级确定出所述可移动的接入点自身的最佳的移动方向和/或移动速度。

31.根据权利要求17所述的装置,其特征在于,所述终端包括多个,其中,多个所述终端中的一个终端为管理终端,所述装置还包括:第二发送单元,用于在所述可移动的接入点与多个所述终端建立连接的情况下,当所述可移动的接入点检测到与多个所述终端中的任一个或多个终端连接中断后,向所述管理终端发送终端失连提示信息,所述终端失连提示信息用于提示所述可移动的接入点与多个所述终端中的任一个或多个终端连接中断。

32.根据权利要求17所述的装置,其特征在于,所述可移动的接入点为嵌入到飞行设备的接入点,其中,所述飞行设备根据所述终端的移动调整自身的飞行高度来改变所述可移动的接入点的覆盖范围。

说明书 :

移动通信方法和装置

技术领域

[0001] 本发明涉及通信领域,具体而言,涉及一种移动通信方法和装置。

背景技术

[0002] 目前,在移动通信领域中,通常是终端连接到无线设备,无线设备与网络相连接,从而终端就可以获得网络中的内容。无线设备通常是由运营商部署的,由于无线设备的覆盖范围有限,运营商通常在多个位置部署无线设备,并架设通信铁塔、服务器、机房、电源等设备,以支持无线设备的运转。
[0003] 然而,现有的无线设备的部署虽然能够带来较高的稳定性,但在某些场景中仍不够灵活。一方面,由于无线设备部署的成本较高,在人迹罕至的地区可能就没有无线通信覆盖,这些地区的用户就难以享受无线通信的便利,例如探险者或科考人员移动到南极、丛林等情况;另一方面,由于现有的无线设备都是部署在固定地点,在距离终端较远的区域、由于无线信号强度较弱会导致无线通信受限,例如在基站所覆盖的小区中心的无线传输速率较高,而在小区边缘的无线传输速率较低。也即是,用户无法在任何区域都能够享受到高质量的无线通信服务。
[0004] 针对现有技术中用户难以在任何区域都能够享受到无线通信服务的问题,目前尚未提出有效的解决方案。

发明内容

[0005] 本发明实施例提供了一种移动通信方法和装置,以至少解决用户难以在任何区域都能够享受到无线通信服务的技术问题。
[0006] 根据本发明实施例的一个方面,提供了一种移动通信方法,包括:可移动的接入点与终端建立连接;所述可移动的接入点向所述终端提供通信服务;所述可移动的接入点检测所述终端是否移动;以及如果所述可移动的接入点检测出所述终端移动,则控制所述可移动的接入点自身随着所述终端的移动而自动移动。
[0007] 根据本发明实施例的另一方面,还提供了一种移动通信装置,包括:第一建立单元,用于使得可移动的接入点与终端建立连接;通信单元,用于使得所述可移动的接入点向所述终端提供通信服务;检测单元,用于使得所述可移动的接入点检测所述终端是否移动;以及控制单元,用于如果所述可移动的接入点检测出所述终端移动,则控制所述可移动的接入点自身随着所述终端的移动而自动移动。
[0008] 在本发明实施例中,通过可移动的接入点检测终端是否移动,并在终端移动的情况下随着终端的移动而自动移动,从而使得即使终端在移动中或者移动到偏僻的地方也能够享受到通信服务,解决了现有技术中用户难以在任何区域都能够享受到无线通信服务的问题,达到了保证用户在任何区域都能够享受到无线通信服务的效果。

附图说明

[0009] 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
[0010] 图1是根据本发明实施例的移动通信方法的流程示意图;
[0011] 图2是根据本发明实施例的一种可移动的接入点应用场景的示意图;
[0012] 图3是根据本发明实施例的可移动的接入点接收终端的无线通信信号的示意图;
[0013] 图4是根据本发明实施例的另一种可移动的接入点应用场景的示意图;
[0014] 图5是根据本发明实施例的又一种可移动的接入点应用场景的示意图;
[0015] 图6是根据本发明实施例的一种可移动的接入点的移动方向试探的流程示意图;
[0016] 图7是根据本发明实施例的可移动的接入点的树形结构的移动方向试探的示意图;
[0017] 图8a和图8b是根据本发明实施例的一种可选的可移动的接入点应用场景的示意图;
[0018] 图9a和图9b是根据本发明实施例的另一种可选的可移动的接入点应用场景的示意图;以及
[0019] 图10是根据本发明实施例的移动通信装置的示意图。

具体实施方式

[0020] 为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
[0021] 在介绍本发明实施例之间,先介绍本发明中涉及到的术语的缩写的英文全称和中文全称,如表1所示。
[0022] 表1
[0023]
[0024]
[0025] 需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
[0026] 根据本发明实施例,提供了一种移动通信的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
[0027] 图1是根据本发明实施例的移动通信方法的流程示意图,如图1所示,该方法包括如下步骤:
[0028] 步骤S102,可移动的接入点与终端建立连接。
[0029] 步骤S104,可移动的接入点向终端提供通信服务。
[0030] 步骤S106,可移动的接入点检测终端是否移动。
[0031] 步骤S108,如果可移动的接入点检测出终端移动,则控制可移动的接入点自身随着终端的移动而自动移动。
[0032] 可移动的接入点为连接到该接入点的终端提供通信服务,其中,终端可以是无线终端,可移动的接入点可同时向一个或者多个终端提供通信服务,终端可以通过可移动的接入点连接到网络,从而与网络中的其它实体或其它终端实现无线通信。接入点可以是例如移动通信系统(包括3G、4G系统等等)中的基站,或者是Wifi系统中的无线AP,或者是将一种无线通信信号(例如3G、4G信号)转变为另一种无线通信信号(例如Wifi信号)的设备,等等。本发明实施例中的可移动的接入点则是能够根据终端的移动而移动的接入点,在向终端提供通信服务的过程中,通过检测终端是否移动,并在终端发生移动的时候,控制接入点自身随着终端的移动而移动,以保证终端始终处于可移动的接入点的覆盖范围内,在该覆盖范围内,终端可以通过接入点实现无线通信。
[0033] 由于现有技术中的接入点都被部署在固定的地点,然而在很多场景中,该部署方式都非常受限。本发明实施例中,通过可移动的接入点检测终端是否移动,并在终端移动的情况下随着终端的移动而自动移动,从而使得即使终端在移动中或者移动到偏僻的地方也能够享受到通信服务,解决了现有技术中用户难以在任何区域都能够享受到无线通信服务的问题,达到了保证用户在任何区域都能够享受到无线通信服务的效果。
[0034] 本发明实施例中所述的终端,可以是移动电话机(或手机),或者其它能够发送或接收无线信号的设备,包括用户设备(终端)、个人数字助理(PDA)、无线调制调解器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、智能家电、或其它不通过人的操作就能自发与移动通信网络通信的设备等,还可以是能够将移动信号转换为wifi信号的CPE或Mifi(此时接入点通常是蜂窝通信系统设备)。
[0035] 可移动的接入点的形式不限,可以是宏接入点(Macro Base Station)、微接入点(Pico Base Station)、Node B、增强型接入点(ENB)、家庭增强型接入点(Femto eNB或Home eNode B或Home eNB或HENB)、中继站、接入点、RRU、RRH等,还可以是将移动信号转换为wifi信号的CPE或Mifi(此时终端通常是支持Wifi传输的设备)。
[0036] 作为上述实施例的一种优选实施方式,可移动的接入点检测终端是否移动包括:可移动的接入点接收来自终端的无线通信信号;可移动的接入点利用接收到的无线通信信号确定终端是否移动,并根据接收到的无线通信信号确定可移动的接入点自身的移动参数,其中,可移动的接入点按照移动参数移动。
[0037] 该实施例中,可移动的接入点可以根据接收到终端发送的无线通信信号确定终端的移动情况,并进一步确定可移动的接入点自身的移动参数,该移动参数为与终端移动情况相适应的移动参数,当可移动的接入点按照该移动参数移动时,能够使得终端始终处于可移动的接入点的覆盖范围。具体地,移动参数可以包括移动方向和/或移动速度,和/或,移动的位置。
[0038] 本发明实施例中,通过利用终端发送的无线通信信号来确定可移动接入点的移动参数,能够保证可移动的接入点随着终端的移动而移动,避免终端移动到可移动的接入点的覆盖范围之外。
[0039] 例如,当终端与可移动的接入点建立连接之后,可移动的接入点接收到终端连续发送的多次无线通信信号,可移动的接入点根据该多次无线通信信号检测到终端以速度a向正东方向移动,则可以确定出可移动的接入点自身的移动参数为:方向,正东;速度a,然后可移动接入点按照该移动参数移动。需要说明的是,该示例仅仅是对本发明实施例的一个示例性说明,并不对本发明有不当限定。
[0040] 本发明实施例的移动通信方法能够使无线通信的覆盖范围随着终端的移动而移动,因此,在很多场景能带来好处。例如,南极科学考察队的工作地点在南极,难以部署移动通信基站;当需要在户外工作时,为了实现队员之间的无线通信,则可以使用本发明的移动通信方法,这样,队员从一个地点移动到另一个地点,无需做任何操作就能保持不间断的无线通信。还例如,军队的一个侦查部队在侦查过程中也可以采用本发明实施例的移动通信方法保证侦查部队的无线通信服务。
[0041] 作为上述实施例的一种优选实施方式,可移动的接入点向终端提供以下至少一类服务:本地无线通信服务、本地IP接入服务和接入无线网络服务。
[0042] 本地无线通信服务是指连接到可移动的接入点的终端与其他连接到该可移动的接入点的终端之间的通信服务,本地IP接入服务例如是指使用LTE系统中的LIPA技术,通信过程中的业务信息直接在接入点和终端之间进行传输,而无需与其它网络设备(例如LTE系统中的核心网设备)连接;接入无线网络服务则是通过无线方式再连接到其它网络设备,例如连接到其它接入点,或者连接到基站,或者连接到卫星等等,从而实现与其它设备或与网络中的其它终端实现通信。本发明实施例的可移动接入点可以提供上述服务中的一种或多种服务。
[0043] 作为上述实施例的一种优选实施方式,可移动的接入点通过无线连接方式连接到网络设备,可移动的接入点通过利用网络设备向终端提供接入无线网络服务。
[0044] 具体地,网络设备可以是基站或者卫星等等,如图2所示。
[0045] 本发明实施例中,无线连接的方式不限,优选地,接入点与终端的无线连接采用LTE协议或WiFi相关协议(802.11系列,包括802.11a/b/g/n/ac/ad等),此外还可以采用其它通信协议例如WCDMA、CDMA2000、WiMAX、蓝牙、ZigBee等;接入点与其它设备的连接方式同样也不限,该连接被称为backhaul连接,除了上述方式之外,还可以是微波连接方式等等。
[0046] 作为上述实施例的一种优选实施方式,可移动的接入点部署在可移动的设备上,其中,可移动的接入点或可移动的设备包括光伏电池和/或可充电电池。
[0047] 本发明实施例的可移动的接入点可以嵌入到可移动的设备中,例如可移动的机器人、可移动的机器动物(包括机器狗)、无人机或其它飞行设备例如热气球或飞艇等,接入点可以嵌入到这些设备中,等价于接入点再拓展更多的功能(机器人、机器动物、或无人机等的功能),从而具有更好的实用性和智能性,例如结合现在机器动物避让障碍物的技术,避免本发明实施例的接入点碰到障碍物;再例如,结合现在无人机技术,为本发明的接入点提供更大的自由移动性,等等。
[0048] 进一步地,可移动的接入点或者部署有接入点的可移动的设备包括光伏电池和/或可充电电池。通过光伏电池和/或可充电电池向可移动的接入点或者可移动的设备提供能量。例如,可以是太阳能电池或锂电池,或者包括这二者,光伏电设备能够为可充电电池进行充电,从而能够具有较高的续航能力。电池的能量供应能够确保可移动的接入点随着终端移动而移动。
[0049] 作为上述实施例的一种优选实施方式,可移动的接入点检测终端是否移动包括:可移动的接入点接收来自终端发送的地理位置信息或者移动状态信息,其中,地理位置信息为表示终端所处的地理位置的信息,移动状态信息为表示终端的移动状态的信息;可移动的接入点基于地理位置信息或者移动状态信息确定可移动的接入点自身的移动参数,其中,可移动的接入点按照移动参数进行移动并向终端提供通信服务。
[0050] 在该实施例中,终端向可移动的接入点发送其地理位置信息和移动状态信息,可移动的接入点通过接收终端发送的上述信息来计算或者确定出自身的移动参数,从而保证可移动的接入点随着终端的移动而移动。
[0051] 具体地,终端可以通过内置在终端的定位装置获取自身的地理位置信息,例如通过内置在手机里的GPS模块来获取实时的地理位置坐标,并通过终端与可移动的接入点之间的无线接口发送至可移动的接入点,可移动的接入点根据该信息来判断终端的移动方向和/或移动速度,从而进一步确定可移动的接入点自身的移动参数,例如移动方向和/或移动速度,例如,可移动的接入点也包括GPS模块,并从该模块获取可移动的接入点的地理位置坐标,根据这可移动的接入点和终端的地理位置坐标就可以判断终端相对于接入点的移动方向和/或移动速度,再确定接入点的移动方向匹配终端的移动方向和/或移动速度。
[0052] 移动状态信息同理,包括移动方向、移动速度、移动加速度等与移动相关的信息,例如终端内置了陀螺仪或加速度传感器等装置,从而能获取终端的移动状态信息并发送给接入点,后者根据该信息确定自身的移动方向和/或移动速度。等等。
[0053] 需要说明的是,本发明实施例所述的移动方向不限于水平移动方向,可以是垂直的移动方向或三维的移动方向。
[0054] 作为上述实施例的一种优选实施方式,根据接收到的无线通信信号确定可移动的接入点自身的移动参数包括:可移动的接入点确定无线通信信号的到达时间和/或到达角度和/或信号强度;可移动的接入点根据到达时间和/或到达角度和/或信号强度确定可移动的接入点自身的移动参数。
[0055] 具体地,终端与可移动的接入点建立无线连接之后,会向可移动的接入点发送无线通信信号,在实施例中,可移动的接入点可以根据接收到终端发送的无线通信信号的强度来判断接入点与终端的相对移动方向,例如在LTE系统中,接入点(即基站)会配置终端发送SRS,便于基站探测终端与基站之间的无线信道的状态,便于基站为终端确定合适的上行调度策略,例如确定终端的发送功率、MCS方案、所使用的频率资源等;在该实施例中,可移动的接入点可以通过检测SRS,获取该信号的到达时间或信号强度的变化来判断这两者的相对移动方向,从而确定接入点的移动方向。
[0056] 对于信号的到达时间来说,具体地,例如终端以P为周期发送某一类型的信号,也即是终端在t0,t0+P,t0+2×P,t0+3×P……发送该类信号;
[0057] 无线通信信号在终端与可移动的接入点之间传输通路为无线信道,例如无线信道的距离为d(t),其中t为时间,由于终端和接入点都是可移动的,因此该距离是随着时间变化的,因此无线通信信号从终端发出到可移动的接入点收到的时延为d(t)/c,其中c是电磁波在空气中传播的速度,一般为3×108m/s;因此,对于上述信号而言,其在空气中传播的时延约为d(t0)/c,d(t0+P)/c,d(t0+2×P)/c,d(t0+3×P)/c……;因此接入点收到该信号的时间为t0+d(t0)/c,t0+P+d(t0+P)/c,t0+2×P+d(t0+2×P)/c,t0+3×P+d(t0+3×P)/c……,如图3所示。这样,可移动的接入点就可以获知周期性的信号的接收时间的差异,从而判断终端与可移动的接入点之间的距离变化,例如第二次和第一次该信号传输过程中,该信号在无线信道上传输的延时变化为d(t0+P)/c-d(t0)/c,因此若该值为正数,则表示终端与接入点之间的距离变大,为负数则表示距离变小。此外,还可以根据某一时间内距离变化的大小判断终端与可移动的接入点之间的相对移动速度,例如根据上述信息判断相对移动速度为[d(t0+P)-d(t0)]/P。通常,由于无线信号在空气中传播会经历多个路径,因此可移动的接入点收到的信号实际上是多个路径到达信号的叠加,优选地,可移动的接入点可以根据最早到达的信号或最强的信号进行判断。
[0058] 进一步,可移动的接入点根据确定出的终端的移动情况相应确定自身的移动参数,例如移动方向和/或移动速度。
[0059] 对于到达角度来,可移动的接入点可以根据接收到信号的特征确定接收信号的方向,例如可移动的接入点可以包括多根天线,可移动的接入点可以根据接收到终端发送的信号的相位差来确定接收信号的方向与可移动的接入点的天线平面的夹角,从而判断终端与接入点之间的相对方向,进而根据该信息确定可移动的接入点的移动方向和/或移动速度。
[0060] 对于信号强度,终端周期性地发送某一类型的信号,可移动的接入点检测该信号的强度,若发现该信号强度变大,则表明终端与可移动的接入点之间的距离变小,反之则变大,信号强度变化越快表明相对移动速度越大,从而可移动的接入点据此判断自身的移动方向和/或移动速度。具体确定到达角度(AOA)的算法为现有技术,本发明不赘述。
[0061] 对于信号的参数,例如终端发送的信号的MCS,MCS越高表示无线信道的质量越好,通常终端与可移动的接入点之间的距离较小,因此也可以根据信号的参数来判断移动方向和/或移动速度。
[0062] 该实施例相对于上述根据地理位置的实施例而言,不要求终端和接入点内置地理位置获取装置例如GPS,从而降低设备的成本和复杂度。
[0063] 作为上述实施例的一种优选实施方式,无线通信信号承载有终端上报的功率信息和/或终端接收到可移动的接入点的信号的到达角度信息和/或终端接收到可移动的接入点的信号的功率信息和/或终端接收到可移动的接入点的信号的时间信息,根据接收到的无线通信信号确定可移动的接入点自身的移动参数包括:可移动的接入点根据终端上报的功率信息和/或终端接收到可移动的接入点的信号的到达角度信息和/或终端接收到可移动的接入点的信号的功率信息和/或终端接收到可移动的接入点的信号的时间信息确定可移动的接入点自身的移动参数。
[0064] 无线通信信号是承载终端上报的功率信息和/或到达角度信息和/或终端测量到的接收到接入点信号功率和/或终端测量到的接收到接入点信号的时间信息,接入点根据上述信息确定自身的移动参数,例如移动方向和/或移动速度。
[0065] 不同于前述实施例中终端向可移动的接入点发送的信号可以不承载信息(例如SRS本身不承载信息)而是依靠接入点的检测来确定的方式,在该实施例中,终端发送的信号承载了上述信息,可移动的接入点再根据所承载的信息再确定自身的移动方向和/或移动速度。其中一种可选方式是,所述无线通信信号承载了终端上报的功率信息,例如LTE系统中的功率净值空间(Power Headrooom),该参数定义为“终端的最大发送功率”与“当前终端发送信号的功率”的差值,也即表征当前终端发送信号的功率还能够提升的程度;例如终端的最大发送功率为23dBm,而当前终端发送PUSCH或SRS的功率为17dBm,则Power Headroom即是6dB。终端多次将该信息报告可移动的接入点,可移动的接入点就可以判断终端发送功率的变化,由于终端的发送功率与终端和可移动的接入点之间的路径损耗相关,而通常终端与可移动的接入点之间的距离越远、路径损耗越大,因此Power Headroom该信息就体现了终端与可移动的接入点之间的距离变化,可移动的接入点就可以根据该信息来确定自身的移动方向和/或移动速度。同样,其它功率信息也能达到同样的效果,例如当前终端发送信号的功率、多次发送信号的功率变化等等。
[0066] 此外,功率信息还可以是终端检测到可移动的接入点发送的信号的功率相关的信息,例如在LTE系统中终端会检测接入点发送的CRS并计算RSRP上报给接入点,由于接入点发送的CRS的信号功率保持不变,因此该参数也能体现终端与接入点之间的距离变化。
[0067] 或者,也可以与前述实施例相同,终端也能测量其收到可移动的接入点发送的信号的到达角度,并报告给可移动的接入点,后者再根据该信息确定接入点的移动方向和/或移动速度。该到达角方向与上文中的到达角方向的区别在于方向不同。
[0068] 或者,也可以与前述实施例相同,终端也能测量其收到可移动的接入点发送的信号的时间,例如最近2次检测到终端发送的信号的时间的变化值,并报告给可移动的接入点,后者再根据该信息确定可移动的接入点的移动方向和/或移动速度。
[0069] 本发明实施例中,可移动的接入点发送的信号不限,例如LTE系统中的CRS、PRS、DM RS、PSS、SSS等等。
[0070] 作为上述实施例的一种优选实施方式,终端包括一个或者多个,在可移动的接入点与多个终端建立连接的情况下,方法还包括:可移动的接入点计算出与多个终端中每一个终端的相对位置;可移动的接入点按照预设规则根据可移动的接入点与多个终端中每一个终端的相对位置确定出可移动的接入点的最佳位置;以及可移动的接入点从当前位置移动到最佳位置。
[0071] 可移动的接入点可以根据这些信息确定自身的移动位置,例如移动到多个终端的中心,以提供最佳的无线通信服务和最好的覆盖。
[0072] 例如,如图4所示,5个终端都连接到同一个接入点;接入点根据上述方法能够获取终端发送的信号到达接入点的强度(体现相对距离)、角度和/或到达时间(体现相对快慢),从而就能计算出这5个终端与接入点的相对位置,这样接入点就能够确定自身应该移动到的最佳位置(例如能够包括5个终端的一个圆的圆心位置,图4的三角形的位置),从而决定自身的移动方向/移动速度(如图4中的箭头方向)。
[0073] 进一步地,当多个终端发生移动时,本发明实施例的可移动的接入点还可以根据多个终端的移动情况确定自身移动的最佳位置,如图5所示,以基站为例进行说明,总共5个终端与接入点建立无线连接,随着这5个终端移动到新的位置之后,接入点也相应移动到合适的位置,继续保持这5个终端在该接入点的覆盖区域内;并且接入点可以移动以保证其始终处于这些终端的中心,从而保证了无线通信质量(高吞吐量、低阻塞率等)。
[0074] 作为上述实施例的一种优选实施方式,在可移动的接入点与终端建立连接之前,方法还包括:可移动的接入点与网络建立连接,并且与管理终端(Managing Terminal)建立通信关系,管理终端用于对可移动的接入点的移动进行控制;当可移动的接入点检测到与网络连接中断后,向管理终端发送网络中断提示信息,网络中断提示信息用于提示可移动的接入点与网络连接中断。
[0075] 管理终端与可移动的接入点建立通信联系,可移动的接入点与其它接入点或卫星通过无线回程连接,当可移动的接入点检测到无线回程连接中断后,向管理终端发送提示信息。
[0076] 现有技术中,由于接入点是固定的,因此人们可以通过网络实现对接入点的管理,例如在移动蜂窝网络中机房中的工作人员可以同时管理位于较远地理位置的基站;然而在本发明实施例的场景中,由于接入点会移动,因此很有可能接入点与网络连接中断,例如接入点移动到隐蔽的山区或现有移动蜂窝网络的覆盖区之外,此时很可能需要本地调整。因此本发明实施例中,在可移动的接入点工作后,管理终端就与接入点建立通信联系,当发生上述情况时,可移动的接入点就通知管理终端以便调整。例如,可移动的基站被内嵌到一个无人机设备上,当该可移动的基站的管理员放飞该无人机设备后,管理员持有的管理终端就与该无人机设备建立通信联系,若发生上述情况,例如该无人机设备所覆盖的终端移动到偏远的山区、而该无人机设备相应地移动到无法连接到网络的区域,则该无人机设备就向管理终端发送消息告知,便于管理员决定是否改变自身的移动方向,也即是管理终端对该设备实现了实时的本地管理。
[0077] 作为上述实施例的一种优选实施方式,控制可移动的接入点自身移动随着终端的移动而自动移动包括:在可移动的接入点检测到终端发生移动的情况下,控制可移动的接入点朝第一方向移动;可移动的接入点接收来自终端的无线通信信号;以及可移动的接入点根据无线通信信号确定继续朝第一方向移动或者改变移动方向。
[0078] 在上面的若干实施例的描述中,可移动的接入点可以获取终端与接入点之间的距离变化,但并不知道如何移动更优,这里可以采取尝试的方法,即可移动的接入点先确定第一方向,朝第一方向移动,再接收终端发送的无线信号,并判断该第一方向是否适合,适合则继续朝该方向移动,不适合则对原先方向进行调整。第一方向可以是之前的移动方向,还可以是任意方向,本发明实施例中没有不当限定。例如,确定第一方向是正北方向,再检测终端发送的无线信号,若根据无线信号判断终端与接入点之间的距离变大,则换为北偏东15度移动,若再检测终端发送的无线信号发现距离变小,则可以继续朝该方向移动,或者再尝试微调移动方向再判断,等等。
[0079] 具体地,以图6的处理流程为例进行说明(其中,接入点均指可移动的接入点),如图6所示:
[0080] 步骤S602,可移动的接入点确定第一方向,并向第一方向移动,确定调整步长和初始调整方向。
[0081] 步骤S604,接收终端的无线通信信号。
[0082] 步骤S606,判断终端与接入点的距离是否变小。如果是,则执行步骤S608;反之,则执行步骤S610。
[0083] 步骤S608,按当前调整方向和调整步长调整移动方向,接收终端的无线通信信号。
[0084] 步骤S610,将移动方向调整为反向。
[0085] 步骤S612,判断终端与接入点的距离是否比上一次更小。如果是,则执行步骤S616;反之,则执行步骤S614。
[0086] 步骤S614,将当前移动方向改为上一次的方向,将调整方向改为反向。
[0087] 步骤S616,调整步长是否小于最小步长。如果是,则结束流程;反之,则执行步骤S618。
[0088] 步骤S618,按当前调整方向和调整步长调整移动方向,接收终端的无线通信信号。
[0089] 步骤S620,判断终端与接入点的距离是否比上一次更小。如果是,则执行步骤S622;反之,则执行步骤S624。
[0090] 步骤S622,按当前调整方向和调整步长调整移动方向,接收终端的无线通信信号。
[0091] 步骤S624,将当前移动方向改为上一次的方向,减小调整步长,将调整方向改为反向。
[0092] 以第一方向为正北方向为例,其中,初始调整步长为15度,初始调整方向为顺时针,后续每次减小调整步长为5度,最小步长为5度,若终端朝着与接入点北偏东方向40度方向移动,则可移动的接入点的移动方向的尝试顺序可以如下:
[0093] 1.正北方向;
[0094] 2.北偏东15度;
[0095] 3.北偏东30度;
[0096] 4.北偏东45度;--逆时针方向调整,减小调整步长为10度;
[0097] 5.北偏东35度;--顺时针方向调整,减小调整步长为5度;
[0098] 6.北偏东40度。
[0099] 若终端朝着与可移动的接入点南偏东方向35度方向移动,则可移动的接入点的移动方向的尝试顺序如下:
[0100] 1.正北方向;
[0101] 2.正南方向;
[0102] 3.南偏西15度;--逆时针方向调整;
[0103] 4.南偏东15度;
[0104] 5.南偏东30度;
[0105] 6.南偏东45度;--顺时针方向调整,减小调整步长为10度;
[0106] 7.南偏东20度;--逆时针方向调整,减小调整步长为5度;
[0107] 8.南偏东25度;
[0108] 9.南偏东30度;
[0109] 10.南偏东35度。
[0110] 作为另一种优选实施方式,按照预先设置的第一粒度将可移动的接入点的移动方向划分为多个第1级区域,按照预先设置的第i粒度将多个第i-1级区域中每一个区域划分成多个第i级区域,i=2,…,n,其中n大于等于2,控制可移动的接入点自身移动随着终端的移动而自动移动包括:在可移动的接入点检测到终端发生移动的情况下,可移动的接入点从多个第1级区域中选择最佳的第1级区域,其中,最佳的第1级区域例如为在多个第1级区域中可移动的接入点移动相同距离时可移动的接入点与终端的距离减少最多(或者信号强度增强幅度最大)的方向的角度区间;可移动的接入点从最佳的第i-1级区域中选择最佳的第i级区域,其中,i遍历2,…,n,最佳的第i级区域为在多个第i级区域中可移动的接入点移动相同距离时可移动的接入点与终端的距离减少最多(或者信号强度增强幅度最大)的方向的角度区间;当i=n时,可移动的接入点根据最佳的第n级区域确定自身的移动方向。
[0111] 本发明实施例中,可以采用树形结构,按照最小粒度将所有移动方向分为多个区域,并逐级调整,将可移动的接入点的移动方向按照不同的粒度进行划分,划分为多级区域,其中,每一级区域包括多个区域,每个区域表示可移动的接入点的移动方向相应的角度区间。
[0112] 以n=3为例进行说明,按照预先设置的第一粒度将可移动的接入点的移动方向划分为多个第1级区域,按照预先设置的第二粒度将多个第1级区域中每一个区域划分成多个第2级区域,按照预先设置的第三粒度将多个第2级区域中每一个区域划分成多个第3级区域。其中,控制可移动的接入点自身移动随着终端的移动而自动移动包括:在可移动的接入点检测到终端发生移动的情况下,可移动的接入点从多个第1级区域中选择最佳的第1级区域;可移动的接入点从最佳的第1级区域中选择最佳的第2级区域;可移动的接入点从最佳的第2级区域中选择最佳的第3级区域;可移动的接入点根据最佳的第3级区域确定自身的移动方向。
[0113] 例如,在第一级中,每个区域包括90度方向,接入点尝试这四个方向之后(例如按照每个区域的中心角度尝试),确定最佳的区域(对应着使终端与接入点的距离减少最多的方向),如图7所示例如最佳的区域是1-90度区域;在第二级中,每个区域包括15度方向,接入点尝试了6个方向后,确定最佳的区域为16-30度方向;在第三季中,每个区域包括扩5度方向,接入点尝试了3个方向后,确定最佳的区域为26-30度方向。最终确定28度方向为移动方向,这样就保证偏差不会超过最小的粒度5度。
[0114] 在本发明中,所述级数、每级中包括的区域数目、每个区域包括的范围大小等参数都可以设置,设置方式不限,可以固化在接入点中,也可以通过与该接入点连接的接口配置(有线或无线接口)。
[0115] 作为上述实施例的一种优选实施方式,终端包括多个,在可移动的接入点与多个终端建立连接的情况下,控制可移动的接入点自身移动随着终端的移动而自动移动包括:可移动的接入点接收来自多个终端的无线通信信号;可移动的接入点根据来自多个终端的无线通信信号确定出可移动的接入点自身的最佳的移动方向和/或移动速度。
[0116] 所述无线终端包括多个,可移动的接入点接收所述多个终端发送的无线通信信号,并确定最佳的移动方向和/或移动速度。在实际应用中,期望接入点能够覆盖多个终端并始终保证多个终端的通信,因此接入点需要对多个终端发送的无线信号进行处理,包括一个计算装置,能够计算出最佳的移动方向和/或移动速度,兼顾传输质量和覆盖的终端数。
[0117] 作为上述实施例的一种优选实施方式,采用以下方式来确定可移动的接入点自身的最佳的移动方向和/或移动速度:选择在可移动的接入点的覆盖范围内终端数量最多的移动方向和/或移动速度;和/或,选择在可移动的接入点的覆盖范围内的多个终端平均信号强度最大的移动方向和/或移动速度;和/或,选择在可移动的接入点的覆盖范围内吞吐量最高的移动方向和/或移动速度。
[0118] 可移动的接入点的移动方向/移动速度的备选确定准则包括以下至少一个:
[0119] 终端数目准则:在该方向上能够覆盖最多的终端;
[0120] 信号强度准则:保证最大的平均信号强度;
[0121] 吞吐量准则:保证最高的整体吞吐量。
[0122] 同样地可以通过有线或无线的接口配置接入点采用其中之一,优选地,管理终端可以登录管理界面,选择其中之一,从而完成对接入点的移动方向/移动速度的备选确定准则的配置,然后接入点就根据相应准则确定移动方向和/或移动速度,从而达到预期效果。
[0123] 作为上述实施例的一种优选实施方式,终端包括多个,在可移动的接入点与多个终端建立连接的情况下,控制可移动的接入点自身移动随着终端的移动而自动移动包括:可移动的接入点根据多个终端预先设置的优先级确定出可移动的接入点自身的最佳的移动方向和/或移动速度。
[0124] 本发明实施例所述的终端可以包括多个,便于集体移动时接入点都能满足这些多个终端的通信需求;然而由于所有设备都是可以移动的,而接入点的覆盖范围有限,当多个终端的移动范围扩大时,难以保证覆盖到每个终端;本发明实施例提出不同终端具有不同的优先级,接入点根据该优先级确定自身的移动方向,例如在部队移动时,指挥官持有的终端可以被设置较高的优先级,则接入点优先保证该终端的通信需求,如图8a-8b所示,方框内的终端的优先级高于其它终端,则可移动的接入点优先保证该终端的通信需求,在无法覆盖所有与该接入点连接的终端时,可以放弃其它终端。
[0125] 作为上述实施例的一种优选实施方式,终端包括多个,其中,多个终端中的一个终端为管理终端,在可移动的接入点与多个终端建立连接的情况下,方法还包括:当可移动的接入点检测到与多个终端中的任一个或多个终端连接中断后,向管理终端发送终端失连提示信息,终端失连提示信息用于提示可移动的接入点与多个终端中的任一个或多个终端连接中断。
[0126] 多个终端其中之一是管理终端,当可移动的接入点与其中一个无线终端失去连接后、或快失去连接时,向管理终端发送提示信息。
[0127] 如图8a或8b所示,其中一个方框内的终端是管理终端,则当其中一个终端x由在可移动的接入点的覆盖范围内(如图8a所示),移动到可移动的接入点的覆盖范围外时(如图8b所示),即终端X与可移动的接入点失去连接,可移动的接入点向管理终端发送消息;或者可移动的接入点检测终端的移动状态,当发现其中一个终端即将移动到覆盖区域边缘时,也可以向管理终端发送消息,便于管理终端通知该终端改变移动方向。接入点检测终端即将移动到覆盖区域边缘的方法不限,例如接入点检测到接收到终端发送的信号的强度低于某一门限值,或者收到终端x报告的信号强度(如LTE标准规范中的参数RSRP)低于某一门限值,等等。
[0128] 其中,管理终端的设置方法不限,可以提前将管理终端的信息输入到接入点中,也可以通过现有的各种认证方式来确定管理终端(例如根据管理员的用户名和密码认证等等);管理终端还可以更改,例如第一管理终端可以向接入点发送第二管理终端的信息以及更换管理终端的指示,从而实现管理终端的更改,等等。
[0129] 提示信息的具体形式不限,例如可以是短消息、振动、email、声音等。
[0130] 作为上述实施例的一种优选实施方式,可移动的接入点为嵌入到飞行设备的接入点,其中,飞行设备根据终端的移动调整自身的飞行高度来改变可移动的接入点的覆盖范围。
[0131] 本发明实施例中,当可移动的接入点嵌入到飞行设备中,可以根据终端的移动范围升高或降低以改变覆盖范围的大小。
[0132] 若接入点嵌入无人机中,则该接入点不仅可以水平移动,还可以上下移动,便于改变接入点的覆盖范围,保证更多终端的通信需求。如图9a-9b所示,通常嵌入无人机的接入点会采用定向天线,天线倾角通常对准地面以保证地面覆盖,而定向天线具有一定的方向角(例如120度);若接入点的海拔较低,则覆盖范围小,仅能保证部分终端的通信需求,然而此时由于接入点与终端的距离较近,通信质量会更好;当终端移动范围变大,为了保证这些终端的基本通信需求,接入点可以提高自身的高度以达到更大覆盖范围。
[0133] 进一步地,本发明实施例中,当可移动的接入点被设置为自动巡航模式时,开启本发明上述的功能。
[0134] 现有的可移动设备通常都是遥控的,即人们可以控制可移动设备的运动方向和速度等,通常该功能被视为可移动设备的基本功能,而本发明实施例所提出的方法则是更加智能的功能,因此可以仅在将接入点设置为自动巡航模式时,才会开启本发明实施例所述的自动功能。具体地,在接入点设备上包括开关,或者遥控装置、终端(特别是管理终端)上包括开关,以控制该模式的开启/关闭(后者是一种遥控的方式)。
[0135] 本发明实施例的另一方面,还提供了一种移动通信装置,该装置可以用于执行本发明实施例的上述移动通信方法。
[0136] 图10是根据本发明实施例的移动通信装置的示意图,如图10所示,该移动通信装置包括:第一建立单元10、通信单元20、检测单元30和控制单元40。
[0137] 第一建立单元10用于使得可移动的接入点与终端建立连。
[0138] 通信单元20用于使得可移动的接入点向终端提供通信服务。
[0139] 检测单元30用于使得可移动的接入点检测终端是否移动。
[0140] 控制单元40用于如果可移动的接入点检测出终端移动,则控制可移动的接入点自身随着终端的移动而自动移动。
[0141] 可移动的接入点为连接到该接入点的终端提供通信服务,其中,终端可以是无线终端,可移动的接入点可同时向一个或者多个终端提供通信服务,终端可以通过可移动的接入点连接到网络,从而与网络中的其它实体或其它终端实现无线通信。接入点可以是例如移动通信系统(包括3G、4G系统等等)中的基站,或者是Wifi系统中的无线AP,或者是将一种无线通信信号(例如3G、4G信号)转变为另一种无线通信信号(例如Wifi信号)的设备,等等。本发明实施例中的可移动的接入点则是能够根据终端的移动而移动的接入点,在向终端提供通信服务的过程中,通过检测终端是否移动,并在终端发生移动的时候,控制接入点自身随着终端的移动而移动,以保证终端始终处于可移动的接入点的覆盖范围内,在该覆盖范围内,终端可以通过接入点实现无线通信。
[0142] 由于现有技术中的接入点都被部署在固定的地点,然而在很多场景中,该部署方式都非常受限。本发明实施例中,通过可移动的接入点检测终端是否移动,并在终端移动的情况下随着终端的移动而自动移动,从而使得即使终端在移动中或者移动到偏僻的地方也能够享受到通信服务,解决了现有技术中用户难以在任何区域都能够享受到无线通信服务的问题,达到了保证用户在任何区域都能够享受到无线通信服务的效果。
[0143] 作为上述实施例的一种优选实施方式,检测单元包括:第一接收模块,用于使得可移动的接入点接收来自终端的无线通信信号;第一确定模块,用于使得可移动的接入点利用接收到的无线通信信号确定终端是否移动,并根据接收到的无线通信信号确定可移动的接入点自身的移动参数,其中,可移动的接入点按照移动参数移动。
[0144] 该实施例中,可移动的接入点可以根据接收到终端发送的无线通信信号确定终端的移动情况,并进一步确定可移动的接入点自身的移动参数,该移动参数为与终端移动情况相适应的移动参数,当可移动的接入点按照该移动参数移动时,能够使得终端始终处于可移动的接入点的覆盖范围。具体地,移动参数可以包括移动方向和/或移动速度,和/或,移动的位置。
[0145] 本发明实施例中,通过利用终端发送的无线通信信号来确定可移动接入点的移动参数,能够保证可移动的接入点随着终端的移动而移动,避免终端移动到可移动的接入点的覆盖范围之外。
[0146] 作为上述实施例的一种优选实施方式,可移动的接入点向终端提供以下至少一类服务:本地无线通信服务、本地IP接入服务和接入无线网络服务。
[0147] 本地无线通信服务是指连接到可移动的接入点的终端与其他连接到该可移动的接入点的终端之间的通信服务,本地IP接入服务例如是指使用LTE系统中的LIPA技术,通信过程中的业务信息直接在接入点和终端之间进行传输,而无需与其它网络设备(例如LTE系统中的核心网设备)连接;接入无线网络服务则是通过无线方式再连接到其它网络设备,例如连接到其它接入点,或者连接到基站,或者连接到卫星等等,从而实现与其它设备或与网络中的其它终端实现通信。本发明实施例的可移动接入点可以提供上述服务中的一种或多种服务。
[0148] 作为上述实施例的一种优选实施方式,可移动的接入点通过无线连接方式连接到网络设备,可移动的接入点通过利用网络设备向终端提供接入无线网络服务。
[0149] 具体地,网络设备可以是基站或者卫星等等,如图2所示。
[0150] 本发明实施例中,无线连接的方式不限,优选地,接入点与终端的无线连接采用LTE协议或WiFI相关协议(802.11系列,包括802.11 a/b/g/n/ac/ad等),此外还可以采用其它通信协议例如WCDMA、CDMA2000、WiMAX、蓝牙、ZigBee等;接入点与其它设备的连接方式同样也不限,该连接被称为backhaul连接,除了上述方式之外,还可以是微波连接方式等等。
[0151] 作为上述实施例的一种优选实施方式,可移动的接入点部署在可移动的设备上,其中,可移动的接入点或可移动的设备包括光伏电池和/或可充电电池。
[0152] 本发明实施例的可移动的接入点可以嵌入到可移动的设备中,例如可移动的机器人、可移动的机器动物(包括机器狗)、无人机或其它飞行设备例如热气球或飞艇等,接入点可以嵌入到这些设备中,等价于接入点再拓展更多的功能(机器人、机器动物、或无人机等的功能),从而具有更好的实用性和智能性,例如结合现在机器动物避让障碍物的技术,避免本发明实施例的接入点碰到障碍物;再例如,结合现在无人机技术,为本发明的接入点提供更大的自由移动性,等等。
[0153] 进一步地,可移动的接入点或者部署有接入点的可移动的设备包括光伏电池和/或可充电电池。通过光伏电池和/或可充电电池向可移动的接入点或者可移动的设备提供能量。例如,可以是太阳能电池或锂电池,或者包括这二者,光伏电设备能够为可充电电池进行充电,从而能够具有较高的续航能力。电池的能量供应能够确保可移动的接入点随着终端移动而移动。
[0154] 作为上述实施例的一种优选实施方式,检测单元包括:第二接收模块,用于使得可移动的接入点接收来自终端发送的地理位置信息或者移动状态信息,其中,地理位置信息为表示终端所处的地理位置的信息,移动状态信息为表示终端的移动状态的信息;第二确定模块,用于使得可移动的接入点基于地理位置信息或者移动状态信息确定可移动的接入点自身的移动参数,其中,可移动的接入点按照移动参数进行移动并向终端提供通信服务。
[0155] 在该实施例中,终端向可移动的接入点发送其地理位置信息和移动状态信息,可移动的接入点通过接收终端发送的上述信息来计算或者确定出自身的移动参数,从而保证可移动的接入点随着终端的移动而移动。
[0156] 具体地,终端可以通过内置在终端的定位装置获取自身的地理位置信息,例如通过内置在手机里的GPS模块来获取实时的地理位置坐标,并通过终端与可移动的接入点之间的无线接口发送至可移动的接入点,可移动的接入点根据该信息来判断终端的移动方向和/或移动速度,从而进一步确定可移动的接入点自身的移动参数,例如移动方向和/或移动速度,例如,可移动的接入点也包括GPS模块,并从该模块获取可移动的接入点的地理位置坐标,根据这可移动的接入点和终端的地理位置坐标就可以判断终端相对于接入点的移动方向和/或移动速度,再确定接入点的移动方向匹配终端的移动方向和/或移动速度。
[0157] 移动状态信息同理,包括移动方向、移动速度、移动加速度等与移动相关的信息,例如终端内置了陀螺仪或加速度传感器等装置,从而能获取终端的移动状态信息并发送给接入点,后者根据该信息确定自身的移动方向和/或移动速度。等等。
[0158] 需要说明的是,本发明实施例所述的移动方向不限于水平移动方向,可以是垂直的移动方向或三维的移动方向。
[0159] 作为上述实施例的一种优选实施方式,第一确定模块包括:第一确定子模块,用于使得可移动的接入点确定无线通信信号的到达时间和/或到达角度和/或信号强度;第二确定子模块,用于使得可移动的接入点根据到达时间和/或到达角度和/或信号强度确定可移动的接入点自身的移动参数。
[0160] 具体地,终端与可移动的接入点建立无线连接之后,会向可移动的接入点发送无线通信信号,在实施例中,可移动的接入点可以根据接收到终端发送的无线通信信号的强度来判断接入点与终端的相对移动方向,例如在LTE系统中,接入点(即基站)会配置终端发送SRS,便于基站探测终端与基站之间的无线信道的状态,便于基站为终端确定合适的上行调度策略,例如确定终端的发送功率、MCS方案、所使用的频率资源等;在该实施例中,可移动的接入点可以通过检测SRS,获取该信号的到达时间或信号强度的变化来判断这两者的相对移动方向,从而确定接入点的移动方向。
[0161] 对于信号的到达时间来说,具体地,例如终端以P为周期发送某一类型的信号,也即是终端在t0,t0+P,t0+2×P,t0+3×P……发送该类信号;
[0162] 无线通信信号在终端与可移动的接入点之间传输通路为无线信道,例如无线信道的距离为d(t),其中t为时间,由于终端和接入点都是可移动的,因此该距离是随着时间变化的,因此无线通信信号从终端发出到可移动的接入点收到的时延为d(t)/c,其中c是电磁波在空气中传播的速度,一般为3×108m/s;因此,对于上述信号而言,其在空气中传播的时延约为d(t0)/c,d(t0+P)/c,d(t0+2×P)/c,d(t0+3×P)/c……;因此接入点收到该信号的时间为t0+d(t0)/c,t0+P+d(t0+P)/c,t0+2×P+d(t0+2×P)/c,t0+3×P+d(t0+3×P)/c……,如图3所示。这样,可移动的接入点就可以获知周期性的信号的接收时间的差异,从而判断终端与可移动的接入点之间的距离变化,例如第二次和第一次该信号传输过程中,该信号在无线信道上传输的延时变化为d(t0+P)/c-d(t0)/c,因此若该值为正数,则表示终端与接入点之间的距离变大,为负数则表示距离变小。此外,还可以根据某一时间内距离变化的大小判断终端与可移动的接入点之间的相对移动速度,例如根据上述信息判断相对移动速度为[d(t0+P)-d(t0)]/P。通常,由于无线信号在空气中传播会经历多个路径,因此可移动的接入点收到的信号实际上是多个路径到达信号的叠加,优选地,可移动的接入点可以根据最早到达的信号或最强的信号进行判断。
[0163] 进一步,可移动的接入点根据确定出的终端的移动情况相应确定自身的移动参数,例如移动方向和/或移动速度。
[0164] 对于到达角度来,可移动的接入点可以根据接收到信号的特征确定接收信号的方向,例如可移动的接入点可以包括多根天线,可移动的接入点可以根据接收到终端发送的信号的相位差来确定接收信号的方向与可移动的接入点的天线平面的夹角,从而判断终端与接入点之间的相对方向,进而根据该信息确定可移动的接入点的移动方向和/或移动速度。
[0165] 对于信号强度,终端周期性地发送某一类型的信号,可移动的接入点检测该信号的强度,若发现该信号强度变大,则表明终端与可移动的接入点之间的距离变小,反之则变大,信号强度变化越快表明相对移动速度越大,从而可移动的接入点据此判断自身的移动方向和/或移动速度。具体确定到达角度(AOA)的算法为现有技术,本发明不赘述。
[0166] 对于信号的参数,例如终端发送的信号的MCS,MCS越高表示无线信道的质量越好,通常终端与可移动的接入点之间的距离较小,因此也可以根据信号的参数来判断移动方向和/或移动速度。
[0167] 该实施例相对于上述根据地理位置的实施例而言,不要求终端和接入点内置地理位置获取装置例如GPS,从而降低设备的成本和复杂度。
[0168] 作为上述实施例的一种优选实施方式,无线通信信号承载有终端上报的功率信息和/或终端接收到可移动的接入点的信号的到达角度信息和/或终端接收到可移动的接入点的信号的功率信息和/或终端接收到可移动的接入点的信号的时间信息,第一确定模块包括:第三确定子模块,用于使得可移动的接入点根据终端上报的功率信息和/或终端接收到可移动的接入点的信号的到达角度信息和/或终端接收到可移动的接入点的信号的功率信息和/或终端接收到可移动的接入点的信号的时间信息确定可移动的接入点自身的移动参数。
[0169] 无线通信信号是承载终端上报的功率信息和/或到达角度信息和/或终端测量到的接收到接入点信号功率和/或终端测量到的接收到接入点信号的时间信息,接入点根据上述信息确定自身的移动参数,例如移动方向和/或移动速度。
[0170] 不同于前述实施例中终端向可移动的接入点发送的信号可以不承载信息(例如SRS本身不承载信息)而是依靠接入点的检测来确定的方式,在该实施例中,终端发送的信号承载了上述信息,可移动的接入点再根据所承载的信息再确定自身的移动方向和/或移动速度。其中一种可选方式是,所述无线通信信号承载了终端上报的功率信息,例如LTE系统中的功率净值空间(Power Headrooom),该参数定义为“终端的最大发送功率”与“当前终端发送信号的功率”的差值,也即表征当前终端发送信号的功率还能够提升的程度;例如终端的最大发送功率为23dBm,而当前终端发送PUSCH或SRS的功率为17dBm,则Power Headroom即是6dB。终端多次将该信息报告可移动的接入点,可移动的接入点就可以判断终端发送功率的变化,由于终端的发送功率与终端和可移动的接入点之间的路径损耗相关,而通常终端与可移动的接入点之间的距离越远、路径损耗越大,因此Power Headroom该信息就体现了终端与可移动的接入点之间的距离变化,可移动的接入点就可以根据该信息来确定自身的移动方向和/或移动速度。同样,其它功率信息也能达到同样的效果,例如当前终端发送信号的功率、多次发送信号的功率变化等等。
[0171] 此外,功率信息还可以是终端检测到可移动的接入点发送的信号的功率相关的信息,例如在LTE系统中终端会检测接入点发送的CRS并计算RSRP上报给接入点,由于接入点发送的CRS的信号功率保持不变,因此该参数也能体现终端与接入点之间的距离变化。
[0172] 或者,也可以与前述实施例相同,终端也能测量其收到可移动的接入点发送的信号的到达角度,并报告给可移动的接入点,后者再根据该信息确定接入点的移动方向和/或移动速度。该到达角方向与上文中的到达角方向的区别在于方向不同。
[0173] 或者,也可以与前述实施例相同,终端也能测量其收到可移动的接入点发送的信号的时间,例如最近2次检测到终端发送的信号的时间的变化值,并报告给可移动的接入点,后者再根据该信息确定可移动的接入点的移动方向和/或移动速度。
[0174] 作为上述实施例的一种优选实施方式,终端包括一个或者多个,装置还包括:计算单元,用于在可移动的接入点与多个终端建立连接的情况下,使得可移动的接入点计算出与多个终端中每一个终端的相对位置;确定单元,用于使得可移动的接入点按照预设规则根据可移动的接入点与多个终端中每一个终端的相对位置确定出可移动的接入点的最佳位置;以及移动单元,用于使得可移动的接入点从当前位置移动到最佳位置。
[0175] 可移动的接入点可以根据这些信息确定自身的移动位置,例如移动到多个终端的中心,以提供最佳的无线通信服务和最好的覆盖。
[0176] 作为上述实施例的一种优选实施方式,装置还包括:第二建立单元,用于在可移动的接入点与终端建立连接之前,使得可移动的接入点与网络建立连接,并且与管理终端(Managing Terminal)建立通信关系,管理终端用于对可移动的接入点的移动进行控制;第一发送单元,用于当可移动的接入点检测到与网络连接中断后,向管理终端发送网络中断提示信息,网络中断提示信息用于提示可移动的接入点与网络连接中断。
[0177] 管理终端与可移动的接入点建立通信联系,可移动的接入点与其它接入点或卫星通过无线回程连接,当可移动的接入点检测到无线回程连接中断后,向管理终端发送提示信息。
[0178] 现有技术中,由于接入点是固定的,因此人们可以通过网络实现对接入点的管理,例如在移动蜂窝网络中机房中的工作人员可以同时管理位于较远地理位置的基站;然而在本发明实施例的场景中,由于接入点会移动,因此很有可能接入点与网络连接中断,例如接入点移动到隐蔽的山区或现有移动蜂窝网络的覆盖区之外,此时很可能需要本地调整。因此本发明实施例中,在可移动的接入点工作后,管理终端就与接入点建立通信联系,当发生上述情况时,可移动的接入点就通知管理终端以便调整。例如,可移动的基站被内嵌到一个无人机设备上,当该可移动的基站的管理员放飞该无人机设备后,管理员持有的管理终端就与该无人机设备建立通信联系,若发生上述情况,例如该无人机设备所覆盖的终端移动到偏远的山区、而该无人机设备相应地移动到无法连接到网络的区域,则该无人机设备就向管理终端发送消息告知,便于管理员决定是否改变自身的移动方向,也即是管理终端对该设备实现了实时的本地管理。
[0179] 作为上述实施例的一种优选实施方式,控制单元包括:第一控制模块,用于在可移动的接入点检测到终端发生移动的情况下,控制可移动的接入点朝第一方向移动;第三接收模块,用于使得可移动的接入点接收来自终端的无线通信信号;以及第三确定模块,用于使得可移动的接入点根据无线通信信号确定继续朝第一方向移动或者改变移动方向。
[0180] 在上面的若干实施例的描述中,可移动的接入点可以获取终端与接入点之间的距离变化,但并不知道如何移动更优,这里可以采取尝试的方法,即可移动的接入点先确定第一方向,朝第一方向移动,再接收终端发送的无线信号,并判断该第一方向是否适合,适合则继续朝该方向移动,不适合则对原先方向进行调整。第一方向可以是之前的移动方向,还可以是任意方向,本发明实施例中没有不当限定。例如,确定第一方向是正北方向,再检测终端发送的无线信号,若根据无线信号判断终端与接入点之间的距离变大,则换为北偏东15度移动,若再检测终端发送的无线信号发现距离变小,则可以继续朝该方向移动,或者再尝试微调移动方向再判断,等等。
[0181] 作为另一种优选实施方式,按照预先设置的第一粒度将可移动的接入点的移动方向划分为多个第1级区域,按照预先设置的第i粒度将多个第i-1级区域中每一个区域划分成多个第i级区域,i=2,…,n,其中n大于等于2,控制单元包括:第一选择模块,用于在可移动的接入点检测到终端发生移动的情况下,使得可移动的接入点从多个第1级区域中选择最佳的第1级区域,其中,最佳的第1级区域为例如在多个第1级区域中可移动的接入点移动相同距离时可移动的接入点与终端的距离减少最多(或者信号强度增强幅度最大)的方向的角度区间;第二选择模块,用于使得可移动的接入点从最佳的第i-1级区域中选择最佳的第i级区域,其中,i遍历2,…,n,最佳的第i级区域为在多个第i级区域中可移动的接入点移动相同距离时可移动的接入点与终端的距离减少最多(或者信号强度增强幅度最大)的方向的角度区间;第四确定模块,用于当i=n时,使得可移动的接入点根据最佳的第n级区域确定自身的移动方向。
[0182] 本发明实施例中,可以采用树形结构,按照最小粒度将所有移动方向分为多个区域,并逐级调整,将可移动的接入点的移动方向按照不同的粒度进行划分,划分为多级区域,其中,每一级区域包括多个区域,每个区域表示可移动的接入点的移动方向相应的角度区间。
[0183] 以n=3为例进行说明,按照预先设置的第一粒度将可移动的接入点的移动方向划分为多个第1级区域,按照预先设置的第二粒度将多个第1级区域中每一个区域划分成多个第2级区域,按照预先设置的第三粒度将多个第2级区域中每一个区域划分成多个第3级区域。其中,控制可移动的接入点自身移动随着终端的移动而自动移动包括:在可移动的接入点检测到终端发生移动的情况下,可移动的接入点从多个第1级区域中选择最佳的第1级区域;可移动的接入点从最佳的第1级区域中选择最佳的第2级区域;可移动的接入点从最佳的第2级区域中选择最佳的第3级区域;可移动的接入点根据最佳的第3级区域确定自身的移动方向。
[0184] 例如,在第一级中,每个区域包括90度方向,接入点尝试这四个方向之后(例如按照每个区域的中心角度尝试),确定最佳的区域(对应着使终端与接入点的距离减少最多的方向),如图7所示例如最佳的区域是1-90度区域;在第二级中,每个区域包括15度方向,接入点尝试了6个方向后,确定最佳的区域为16-30度方向;在第三季中,每个区域包括扩5度方向,接入点尝试了3个方向后,确定最佳的区域为26-30度方向。最终确定28度方向为移动方向,这样就保证偏差不会超过最小的粒度5度。
[0185] 在本发明中,所述级数、每级中包括的区域数目、每个区域包括的范围大小等参数都可以设置,设置方式不限,可以固化在接入点中,也可以通过与该接入点连接的接口配置(有线或无线接口)。
[0186] 作为上述实施例的一种优选实施方式,终端包括多个,控制单元包括:第四接收模块,用于在可移动的接入点与多个终端建立连接的情况下,使得可移动的接入点接收来自多个终端的无线通信信号;第五确定模块,用于使得可移动的接入点根据来自多个终端的无线通信信号确定出可移动的接入点自身的最佳的移动方向和/或移动速度。
[0187] 所述无线终端包括多个,可移动的接入点接收所述多个终端发送的无线通信信号,并确定最佳的移动方向和/或移动速度。在实际应用中,期望接入点能够覆盖多个终端并始终保证多个终端的通信,因此接入点需要对多个终端发送的无线信号进行处理,包括一个计算装置,能够计算出最佳的移动方向和/或移动速度,兼顾传输质量和覆盖的终端数。
[0188] 作为上述实施例的一种优选实施方式,第五确定模块包括:第一选择子模块,用于选择在可移动的接入点的覆盖范围内终端数量最多的移动方向和/或移动速度;和/或,第二选择子模块,用于选择在可移动的接入点的覆盖范围内的多个终端平均信号强度最大的移动方向和/或移动速度;和/或,第三选择子模块,用于选择在可移动的接入点的覆盖范围内吞吐量最高的移动方向和/或移动速度。
[0189] 可移动的接入点的移动方向/移动速度的备选确定准则包括以下至少一个:
[0190] 终端数目准则:在该方向上能够覆盖最多的终端;
[0191] 信号强度准则:保证最大的平均信号强度;
[0192] 吞吐量准则:保证最高的整体吞吐量。
[0193] 同样地可以通过有线或无线的接口配置接入点采用其中之一,优选地,管理终端可以登录管理界面,选择其中之一,从而完成对接入点的移动方向/移动速度的备选确定准则的配置,然后接入点就根据相应准则确定移动方向和/或移动速度,从而达到预期效果。
[0194] 作为上述实施例的一种优选实施方式,终端包括多个,控制单元包括:第六确定模块,用于在可移动的接入点与多个终端建立连接的情况下,可移动的接入点根据多个终端预先设置的优先级确定出可移动的接入点自身的最佳的移动方向和/或移动速度。
[0195] 本发明实施例所述的终端可以包括多个,便于集体移动时接入点都能满足这些多个终端的通信需求;然而由于所有设备都是可以移动的,而接入点的覆盖范围有限,当多个终端的移动范围扩大时,难以保证覆盖到每个终端;本发明实施例提出不同终端具有不同的优先级,接入点根据该优先级确定自身的移动方向,例如在部队移动时,指挥官持有的终端可以被设置较高的优先级,则接入点优先保证该终端的通信需求,如图8a-8b所示,方框内的终端的优先级高于其它终端,则接入点优先保证该终端的通信需求,在无法覆盖所有与该接入点连接的终端时,可以放弃其它终端。
[0196] 作为上述实施例的一种优选实施方式,终端包括多个,其中,多个终端中的一个终端为管理终端,装置还包括:第二发送单元,用于在可移动的接入点与多个终端建立连接的情况下,当可移动的接入点检测到与多个终端中的任一个或多个终端连接中断后,向管理终端发送终端失连提示信息,终端失连提示信息用于提示可移动的接入点与多个终端中的任一个或多个终端连接中断。
[0197] 多个终端其中之一是管理终端,当可移动的接入点与其中一个无线终端失去连接后、或快失去连接时,向管理终端发送提示信息。
[0198] 作为上述实施例的一种优选实施方式,可移动的接入点为嵌入到飞行设备的接入点,其中,飞行设备根据终端的移动调整自身的飞行高度来改变可移动的接入点的覆盖范围。
[0199] 本发明实施例中,当可移动的接入点嵌入到飞行设备中,可以根据终端的移动范围升高或降低以改变覆盖范围的大小。
[0200] 上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
[0201] 在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
[0202] 在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
[0203] 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
[0204] 另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
[0205] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
[0206] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。