具有降低热串扰的热管理部件的封装件及其形成方法转让专利

申请号 : CN201410062774.7

文献号 : CN104716109B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈锦棠洪文兴黄思博郑心圃

申请人 : 台湾积体电路制造股份有限公司

摘要 :

本发明提供了具有降低热串扰的热管理部件的封装件及其形成方法。示例性封装件包括:位于封装部件的表面上的第一管芯堆叠件、位于封装部件的表面上的第二管芯堆叠件、以及位于第一管芯堆叠件和第二管芯堆叠件上方的轮廓盖。轮廓盖包括位于第一管芯堆叠件上方的第一导热部分、位于第二管芯堆叠件上方的第二导热部分、以及位于第一导热部分和第二导热部分之间的热阻挡部分。热阻挡部分包括低热导率材料。

权利要求 :

1.一种封装件,包括:

第一管芯堆叠件,位于封装部件的表面上;

第二管芯堆叠件,位于所述封装部件的表面上;以及散热轮廓盖,覆盖所述第一管芯堆叠件,其中,所述散热轮廓盖包括位于所述第二管芯堆叠件上方的开口;

复合散热器,位于所述散热轮廓盖的上方,其中,所述复合散热器包括:第一导热部分,位于所述第一管芯堆叠件上方;以及第二导热部分、位于所述第二管芯堆叠件上方并且延伸到所述开口内。

2.根据权利要求1所述的封装件,还包括:设置在所述第一管芯堆叠件的顶面上的第一热界面材料(TIM),其中,所述散热轮廓盖与所述第一热界面材料物理接触。

3.根据权利要求1所述的封装件,还包括:设置在所述第二管芯堆叠件的顶面上的第二热界面材料;以及其中,所述第二导热部分接触所述第二热界面材料、以及所述复合散热器进一步包括设置在所述第一导热部分和所述第二导热部分之间的热阻挡部分。

4.根据权利要求3所述的封装件,还包括设置在所述散热轮廓盖的顶面上的第三热界面材料,其中,所述第一导热部分与所述第三热界面材料物理接触。

5.根据权利要求3所述的封装件,其中,所述热阻挡部分包括热导率小于0.05瓦/米·开尔文的低热导率材料、一个或多个气隙、或它们的组合。

6.根据权利要求3所述的封装件,其中,所述复合散热器还包括冷却元件。

7.根据权利要求1所述的封装件,还包括:环绕所述第一管芯堆叠件和所述第二管芯堆叠件的散热轮廓环,其中,所述散热轮廓盖位于所述散热轮廓环的上方并附接至所述散热轮廓环。

8.根据权利要求1所述的封装件,其中,所述散热轮廓盖包括铝、铜、镍、钴或它们的组合。

9.根据权利要求1所述的封装件,其中,所述第一管芯堆叠件具有第一高度,并且所述第二管芯堆叠件具有与所述第一高度不同的第二高度。

10.一种封装件,包括:

第一管芯堆叠件,位于封装部件的表面上;

第二管芯堆叠件,位于所述封装部件的表面上;以及轮廓盖,位于所述第一管芯堆叠件和所述第二管芯堆叠件上方,其中,所述轮廓盖包括:第一导热部分,位于所述第一管芯堆叠件上方;

第二导热部分,位于所述第二管芯堆叠件上方;和第一热阻挡部分,位于所述第一导热部分和所述第二导热部分之间,其中,所述第一热阻挡部分包括低热导率材料,所述低热导率材料接触所述第一导热部分的侧壁和所述第二导热部分的侧壁。

11.根据权利要求10所述的封装件,还包括:位于所述第一管芯堆叠件的顶面上的第一热界面材料(TIM)和位于所述第二管芯堆叠件的顶面上的第二热界面材料,其中,所述第一导热部分与所述第一热界面材料物理接触,并且所述第二导热部分与所述第二热界面材料物理接触。

12.根据权利要求11所述的封装件,其中,所述第一热界面材料与所述第二热界面材料物理断开。

13.根据权利要求10所述的封装件,其中,所述第一热阻挡部分包括:环氧树脂、不饱和聚酯、酚醛树脂或它们的组合。

14.根据权利要求10所述的封装件,其中,所述第一热阻挡部分包括:粘合剂。

15.根据权利要求10所述的封装件,其中,所述第一热阻挡部分包括一个或多个通孔。

16.根据权利要求10所述的封装件,其中,所述第一热阻挡部分包括沟槽。

17.根据权利要求10所述的封装件,还包括位于所述轮廓盖上方的复合散热器,其中,所述复合散热器包括:位于所述第一导热部分上方的第三导热部分;

位于所述第二导热部分上方的第四导热部分;以及位于所述第三导热部分和所述第四导热部分之间的第二热阻挡部分,其中,所述第二热阻挡部分包括低热导率材料。

18.一种用于形成封装件的方法,包括:

将第一管芯堆叠件电连接至衬底;

将第二管芯堆叠件电连接至所述衬底;

将第一热界面材料(TIM)分配到所述第一管芯堆叠件的顶面上;

在所述第一管芯堆叠件的上方形成轮廓盖,其中,所述轮廓盖包括:物理接触所述第一热界面材料的第一导热部分;和邻近所述第一导热部分的开口;

所述方法还包括:在所述轮廓盖上方形成复合散热器,其中,所述复合散热器包括:位于所述第一管芯堆叠件上方的第二导热部分;

位于所述第二管芯堆叠件上方的第三导热部分,其中,所述第三导热部分在所述复合散热器的顶面下方延伸到所述开口中;以及位于所述第二导热部分和所述第三导热部分之间的热阻挡件。

19.根据权利要求18所述的用于形成封装件的方法,其中,所述轮廓盖还包括:物理接触第三管芯堆叠件的顶面上的第二热界面材料的第四导热部分,其中,所述开口设置在所述第一导热部分和所述第四导热部分之间。

说明书 :

具有降低热串扰的热管理部件的封装件及其形成方法

技术领域

[0001] 本发明一般地涉及半导体技术领域,更具体地,涉及封装件及其形成方法。

背景技术

[0002] 在集成电路的封装过程中,半导体管芯可以通过接合进行堆叠,并且接合至诸如中介层或封装衬底的其他封装部件。形成的封装件被称为三维集成电路(3DIC)。在3DIC中,散热是一种挑战。
[0003] 在有效消散3DIC的内部管芯所产生的热量方面可能存在瓶颈。在典型的3DIC中,在热量能够传导至散热器之前,可以将内部管芯中所产生的热量消散至外部部件。然而,在堆叠式管芯和外部部件之间存在诸如底部填充物、模塑料等的其他材料,这些材料不能有效地传导热量。结果,热量可能聚集在底部堆叠式管芯的内部区域中,并且引起明显的局部温度峰值(有时称为热点)。此外,由于高功耗管芯所产生的热量而引起的热点可能会对周围的管芯产生热串扰问题,从而对周围管芯的性能和整个3DIC封装件的可靠性产生不利影响。

发明内容

[0004] 为了解决现有技术中所存在的缺陷,根据本发明的一方面,提供了一种封装件,包括:第一管芯堆叠件,位于封装部件的表面上;第二管芯堆叠件,位于所述封装部件的表面上;以及散热轮廓盖,覆盖所述第一管芯堆叠件,其中,所述散热轮廓盖包括位于所述第二管芯堆叠件上方的开口。
[0005] 该封装件还包括:设置在所述第一管芯堆叠件的顶面上的第一热界面材料(TIM),其中,所述散热轮廓盖与所述第一TIM物理接触。
[0006] 该封装件还包括:设置在所述第二管芯堆叠件的顶面上的第二热界面材料(TIM);以及复合散热器,位于所述散热轮廓盖的上方,其中,所述复合散热器包括所述第一管芯上方的第一导热部分、延伸到所述开口内并接触所述第二TIM的第二导热部分、以及设置在所述第一导热部分和所述第二导热部分之间的热阻挡部分。
[0007] 该封装件还包括设置在所述散热轮廓盖的顶面上的第三TIM,其中,所述第一导热部分与所述第三TIM物理接触。
[0008] 在该封装件中,所述热阻挡部分包括热导率小于约0.05瓦/米·开尔文的低热导率材料、一个或多个气隙、或它们的组合。
[0009] 在该封装件中,所述复合散热器还包括冷却元件。
[0010] 该封装件还包括:环绕所述第一管芯堆叠件和所述第二管芯堆叠件的散热轮廓环,其中,所述散热轮廓盖位于所述散热轮廓环的上方并附接至所述散热轮廓环。
[0011] 在该封装件中,所述散热轮廓盖包括铝、铜、镍、钴或它们的组合。
[0012] 在该封装件中,所述第一管芯堆叠件具有第一高度,并且所述第二管芯堆叠件具有与所述第一高度不同的第二高度。
[0013] 根据本发明的一种封装件,包括:第一管芯堆叠件,位于封装部件的表面上;第二管芯堆叠件,位于所述封装部件的表面上;以及轮廓盖,位于所述第一管芯堆叠件和所述第二管芯堆叠件上方,其中,所述轮廓盖包括:第一导热部分,位于所述第一管芯堆叠件上方;第二导热部分,位于所述第二管芯堆叠件上方;和第一热阻挡部分,位于所述第一导热部分和所述第二导热部分之间,其中,所述第一热阻挡部分包括低热导率材料。
[0014] 该封装件还包括:位于所述第一管芯堆叠件的顶面上的第一热界面材料(TIM)和位于所述第二管芯堆叠件的顶面上的第二TIM,其中,所述第一导热部分与所述第一TIM物理接触,并且所述第二导热部分与所述第二TIM物理接触。
[0015] 在该封装件中,所述第一TIM与所述第二TIM物理断开。
[0016] 在该封装件中,所述第一热阻挡部分包括:环氧树脂、不饱和聚酯、酚醛树脂、粘合剂或它们的组合。
[0017] 在该封装件中,所述第一热阻挡部分包括一个或多个通孔。
[0018] 在该封装件中,所述第一热阻挡部分包括沟槽。
[0019] 在该封装件中,所述第一热阻挡部分包括气隙和低热导率材料的组合。
[0020] 该封装件还包括位于所述轮廓盖上方的复合散热器,其中,所述复合散热器包括:位于所述第一导热部分上方的第三导热部分;位于所述第二导热部分上方的第四导热部分;以及位于所述第三导热部分和所述第四导热部分之间的第二热阻挡部分,其中,所述第二热阻挡部分包括低热导率材料。
[0021] 根据本发明的又一方面,提供了一种方法,包括:将第一管芯堆叠件电连接至衬底;将第二管芯堆叠件电连接至所述衬底;将第一热界面材料(TIM)分配到所述第一管芯堆叠件的顶面上;在所述第一管芯堆叠件的上方形成轮廓盖,其中,所述轮廓盖包括:物理接触所述第一TIM的第一导热部分;和邻近所述第一导热部分的第一热阻挡件。
[0022] 在该方法中,所述第一热阻挡件是位于所述第二管芯堆叠件上方的所述轮廓盖中的开口,所述方法还包括:在所述轮廓盖上方形成复合散热器,其中,所述复合散热器包括位于所述第一管芯堆叠件上方的第二导热部分、延伸到所述开口中的第三导热部分、以及位于所述第二导热部分和所述第三导热部分之间的第二热阻挡件。
[0023] 在该方法中,所述轮廓盖还包括:物理接触所述第二管芯堆叠件的顶面上的第二TIM的第四导热部分,其中,所述第一热阻挡件设置在所述第一导热部分和所述第四导热部分之间。

附图说明

[0024] 为了更好地理解本发明及其优势,现在将结合附图所进行的以下描述作为参考,其中:
[0025] 图1A至图1J示出了根据各个实施例在制造3DIC封装件的中间阶段的截面图;
[0026] 图2示出了根据可选实施例的3DIC封装件的截面图;
[0027] 图3示出了根据可选实施例的3DIC封装件的截面图;
[0028] 图4A至图4G示出了根据可选实施例的3DIC封装件的截面图和俯视图;
[0029] 图5A和图5B示出了根据可选实施例的3DIC封装件的截面图和俯视图;
[0030] 图6A至6C示出了根据各个实施例的3DIC封装件的截面图、模拟轮廓图、以及3DIC封装件和3DIC封装件的工作温度的模拟温度图。

具体实施方式

[0031] 在下面详细论述了本发明的实施例的制造和使用。然而,应该理解,实施例提供了许多可以在各种具体环境中实现的可应用的构思。所论述的具体实施例用于说明的目的,而不用于限制本发明的范围。
[0032] 根据各个示例性实施例提供了具有降低热串扰的热管理部件的封装件及其形成方法。示出了形成封装件的中间阶段。论述了实施例的变型例。在各个视图和所有的示例性实施例中,相似的参考标号用于代表相似的元件。
[0033] 将参照具体环境来描述实施例,即,衬底上晶圆上芯片(CoWoS)封装件。然而,其他实施例也适用于其他封装件,包括其他三维集成电路(3DIC)封装件。
[0034] 图1A至图1H示出了根据各个实施例制造诸如衬底上晶圆上芯片(CoWoS)封装件100的3DIC封装件的中间阶段的截面图。图1A示出了晶圆上芯片(CoW)封装件50的截面图。
CoW封装件50包括设置在两个低功耗管芯12之间的高功耗管芯或管芯堆叠件10(有时称为芯片10和12)。与低功耗管芯堆叠件12相比,管芯堆叠件10为高功耗管芯并且可以消耗相对较高数量的功率,因此产生相对大量的热量。例如,高功耗管芯堆叠件10可以消耗的功率介于约50W和约100W之间,而低功耗管芯堆叠件12可以消耗的功率介于约5W和约10W之间。
[0035] 在一些实施例中,管芯堆叠件10可以是单个片上系统(SoC)管芯、多个SoC堆叠式管芯等。例如,图1I示出了根据各个实施例的CoWoS封装件100的截面图,其中,管芯堆叠件10包括多个堆叠式管芯(例如,SoC管芯)。在一些实施例中,管芯堆叠件12可以是HBM(高带宽存储器)和/或HMC(高内存立方体)模块,其可以包括接合至逻辑管芯12a的存储器管芯
12b。在可选实施例中,管芯堆叠件10和12可以是具有其他功能的其他芯片。如图1A所示,管芯堆叠件10和12可以封入模塑料16中。虽然图1A示出了具有一个高功率管芯堆叠件10和二个低功率管芯堆叠件12的CoW封装件50,但是其他实施例可以包括任何数量的高功率管芯堆叠件10和/或低功率管芯堆叠件12。
[0036] 管芯堆叠件10和12通过多个连接件14接合至封装部件(例如,中介层18)的顶面,该连接件14可以是微凸块。在可选实施例中,管芯堆叠件10和12可以接合至不同的封装部件,诸如衬底、印刷电路板(PCB)等。中介层18可以是具有互连结构的晶圆,该互连结构用于电连接管芯堆叠件10和12中的有源器件(未示出)以形成功能电路。图1B示出了根据各个实施例的中介层18的详细截面图。管芯堆叠件10/12的连接件14与位于中介层18的顶面上的接触焊盘22电连接。钝化层24可以在中介层18的顶面上方延伸并且覆盖接触焊盘22的边缘部分。接触焊盘22可以与金属化层26电连接。金属化层26可以包括在介电材料(例如,K值低于约4.0或者甚至低于约2.8的低k介电材料)中所形成的金属线28a和通孔28b。衬底通孔(TSV)30可以使金属化层与中介层18的背面上的连接件20电连接。
[0037] 在一个实施例中,连接件20可以是包括焊料的可控塌陷芯片连接(C4)凸块。与连接件14相比,连接件20可以具有更大的临界尺寸(例如,间距)。例如,连接件20的间距可以为约100μm,而连接件14的间距可以为约40μm。中介层18还可以具有与连接件20连接的凸块下金属化层(UBM)32和位于中介层18的背面上的钝化层34。也可以使用中介层18的其他配置。
[0038] 接下来,利用连接件20将CoW封装件50接合至衬底52。图1C示出了由此而生成的衬底上晶圆上芯片(CoWoS)封装件100。衬底52可以是任何合适的封装衬底,诸如印刷电路板(PCB)、有机衬底、陶瓷衬底、主板等。衬底52可以用于使CoW封装件50与其他封装件/器件(例如,参见图1J中的封装件/器件11)互连以形成功能性电路。如图1J所示,这些其他封装件和器件11也可以设置在衬底52的表面上。衬底52还可以包括设置在与CoW封装件50相对的表面上的接触件54(例如,球栅阵列(BGA)球)。接触件54可以用于使CoWoS封装件100与主板(未示出)或电系统的其他器件部件电连接。
[0039] 在图1D中,实施回流工艺以使连接件20回流并将连接件20接合至衬底52。随后,将底部填充物56分配在CoW封装件50和衬底52之间。
[0040] 接下来,参照图1E,将热界面材料(TIM)58分配在CoW封装件50上。TIM58可以是具有良好的热导率(Tk)的聚合物,热导率可以介于约3瓦/米·开尔文(W/m·K)至约5W/m·K之间。在一些实施例中,TIM58可包括具有导热填料的聚合物。导热填料可以将TIM58的有效Tk提高至介于约10W/m·K至约50W/m·K之间或更高。可应用的导热填充材料可以包括氧化铝、氮化硼、氮化铝、铝、铜、银、铟、它们的组合等。在其他实施例中,TIM58可以包括其他的材料,诸如基于金属的或基于焊料的材料(包括银、铟焊膏等)。虽然TIM58示出为在管芯堆叠件10和管芯堆叠件12的上方延伸的连续的TIM,但是在其他实施例中,TIM58可以是物理断开的。例如,可以在相邻管芯(例如,管芯堆叠件10和/或管芯堆叠件12)之间的TIM58中设置气隙以进一步降低管芯堆叠件之间的横向热相互作用(例如,如图3所示)。
[0041] 粘合剂60(例如,环氧树脂、硅树脂等)分配在衬底52的其他未被占用的部分的上方。与TIM58相比,粘合剂60可以具有更好的粘合能力和更低的热导率。例如,粘合剂60的热导率可以小于约0.5W/m·K。可以将粘合剂60设置为允许散热部件(例如,轮廓环(contour ring)62,参见图1F)附接至CoW封装件50的周围。因此,在一些实施例中,粘合剂60可以设置为围绕或者环绕CoW封装件50的外缘。
[0042] 图1F示出了在将散热轮廓环62附接至衬底52之后的CoWoS封装件100的截面图。在CoWoS封装件100(未示出)的俯视图中,轮廓环62可以环绕CoW封装件50。利用粘合剂60可以将轮廓环62的底面粘合至衬底52。轮廓环62可以具有高热导率,例如,介于约200W/m·K和约400W/m·K之间或更高,并且可以使用金属、金属合金等来形成该轮廓环。例如,轮廓环62可以包括金属和/或金属合金,诸如Al、Cu、Ni、Co、它们的组合等。轮廓环62也可以由复合材料(例如,碳化硅、氮化铝、石墨等)形成。粘合剂64(其基本类似于粘合剂60)可以分配在轮廓环62的顶面上方。
[0043] 接下来,参照图1G,在CoW封装件50和轮廓环62的上方安装散热轮廓盖(contour lid)66。轮廓盖66可以通过粘合剂64粘合至轮廓环62。轮廓盖66可以由与轮廓环62基本相似的材料形成,该轮廓盖66具有高热导率,例如,介于约200W/m·K和约400W/m·K之间或更高。
[0044] 轮廓盖66的底面可以与TIM58物理接触。这些与TIM58接触的底面可以与低功耗管芯堆叠件12对准,并且热量可以通过TIM58和轮廓盖66从低功耗管芯堆叠件12传导出去。轮廓盖66还可以包括开口70,开口70可以与高功耗管芯堆叠件10对准。在图1G所示的实施例中,由于盖66的材料被排除在开口70之外,因此,高功率管芯堆叠件10所产生的热量不能通过盖66大幅地进行消散和传播。因此,可以降低管芯堆叠件10和12之间的热串扰。在管芯堆叠件10中所产生的高热量可以通过散热器72传导出去(参见图1H),在下文中将对散热器进行解释。
[0045] 可以将TIM68(其可以基本类似于TIM58)分配在轮廓盖66的顶面上方。通常,轮廓环62和轮廓盖66的组合可以被称为散热部件62/66。虽然图1G将轮廓环62和轮廓盖66示出为分离的部分,但是在可选实施例中,轮廓环62和轮廓盖66可以是单个散热部件62/66(例如,参见图5)。
[0046] 图1H示出了,将复合散热器72附接在CoWoS封装件100中的轮廓盖66和TIM68上方。可以利用与系统的主板(未示出)连接的机械紧固件将散热器72附接在CoWoS封装件100上。
也可以使用附接散热器72的其他机械装置。在各个实施例中,复合散热器72可以是散热器或散热器的一部分,其可以包括冷却元件76(例如,风扇)。复合散热器72可以横向延伸超过轮廓环62/轮廓盖66的外侧壁,以允许增加更宽的表面区域上方的散热能力。
[0047] 复合散热器72可以包括由高Tk材料所形成的导热部分72a和72b,其可以基本类似于散热部件62/66的材料。导热部分72a和72b可以分别在高功率管芯堆叠件10和低功率管芯堆叠件12上方对准。此外,位于管芯堆叠件10上方的导热部分72a可以延伸到轮廓盖66的开口70内。导热部分72a的底面可以与TIM58物理接触,并且如箭头74所示,可以将热量从管芯堆叠件10传导出去。导热部分72b可以与设置在管芯堆叠件12上方的TIM68物理接触。因此,还如箭头74所示,复合散热器72有助于通过导热部分72b、TIM68、轮廓盖66、和TIM58将热量从低功耗芯片堆叠件12中传导出去。
[0048] 复合散热器72还包括设置在导热部分72a和72b之间的热阻挡部分72c。热阻挡部分72c可以包括低Tk材料,例如,具有小于约0.5W/m·K的热导率。在一些实施例中,热阻挡部分72c包括环氧树脂、不饱和聚酯、酚醛树脂、粘合剂、气隙(例如,在下文中会详细论述的沟槽或通孔)或它们的组合等。热阻挡部分72c可以具有水平尺寸W1,根据布局设计,其可以大于约0.5mm、1mm或甚至5mm。热阻挡部分72c降低从管芯堆叠件10和12所传导的热量通过轮廓盖66、TIM58和68、以及复合散热器72进行横向传播。热阻挡部分72c提供了用于每个管芯堆叠件10和12的热管理的分隔区域,从而降低了热串扰。因此,由于包括CoWoS封装件100的各个热管理部件(例如,复合散热器72和轮廓盖66),如箭头74所示,热量通常可以以垂直(与横向相反)方向上从管芯堆叠件10和12进行消散。可以降低热串扰并且改进器件性能。
[0049] 图2示出了根据可选实施例的CoWoS封装件200的截面图。CoWoS封装件200可以基本类似于CoWoS封装件100,其中相似的参考标号与相似的元件相对应。然而,在CoWoS封装件200中,轮廓盖66、散热器72的配置可以不同。在CoWoS封装件200中,轮廓盖66可以包括设置在低功率管芯堆叠件12上方的两个开口70。可以将TIM58分配在高功率管芯堆叠件10的顶面上方,并且轮廓盖66的底面可以与高功率管芯堆叠件10上方的部分TIM58物理接触。
[0050] 此外,散热器72可以包括位于管芯堆叠件12上方的导热部分72b,其延伸到开口70内。导热部分72b的底面可以与低功耗管芯堆叠件12上方的部分TIM58物理接触,因此导热部分72b可以将热量从管芯堆叠件12传导出去。导热部分72a可以与设置在高功率管芯堆叠件10上方的TIM68物理接触。因此,复合散热器72有助于通过导热部分72a、TIM68、轮廓盖66、和TIM58将热量从管芯堆叠件10传导出去。散热器72还包括设置在导热部分72a和72b之间的热阻挡部72c(例如,包括低Tk材料)。因此,散热器72降低了CoWoS封装件200中热量的横向消散和热串扰。
[0051] 图3示出了根据各个可选实施例的CoWoS封装件300的截面图。封装件300基本类似于封装件100,其中,相似的参考标号对应于类似的元件。然而,可以改变散热器72和轮廓盖66的配置。值得注意的是,封装件300包括复合轮廓盖66,复合轮廓盖可以不包括与管芯堆叠件10或管芯堆叠件12对准的开口(例如,位于CoWoS封装件100中的开口70)。相反,轮廓盖
66可以包括设置在每个管芯堆叠件10和12上方的导热部分66a。可以在导热部分66a之间设置热阻挡部分66b。导热部分66a和热阻挡部分66b可以分别由与导热部分72a/72b基本类似的材料和与热阻挡部分72c基本类似的材料形成。导热部分66a的底面可以与TIM58物理接触。在一些实施例(诸如图3中所示的实施例)中,TIM58可以被分隔成物理断开的TIM部分
58a至58c。TIM58a至TIM58c中的每一个都可以设置在分离的管芯堆叠件10或12的上方。复合轮廓盖66的热阻挡部分66b散热期间降低了横向热扩散。
[0052] 此外,CoWoS封装件300可以包括设置在轮廓盖66上方的TIM68和位于TIM68上方且与TIM68接触的复合散热器72。散热器72包括位于每个管芯堆叠件10/12上方的导热部分72a/72b和位于导热部分72a/72b之间的热阻挡部分72c。散热器72工作期间进一步降低横向热扩散,以降低热串扰并且提高器件性能。
[0053] 图4A示出了根据各个可选实施例的CoWoS封装件400的截面图。封装件400基本类似于封装件300,其中,相似的参考标号对应于相似的元件。复合轮廓盖66可以包括设置在管芯堆叠件10和12上方的导热部分66a。复合轮廓盖66还可以包括设置在导热部分66a之间的热阻挡部分66c。在CoWoS封装件400中,热阻挡部分66c可以是气隙,并且可以不包括设置在其中的任何材料。因为空气的热导率小于约0.02W/m·K,所以包括作为热阻挡部分66c的这种气隙可以降低CoWoS封装件400中的横向热扩散和热串扰。封装件400还可以包括设置在轮廓盖66上方的TIM68(未示出)和复合散热器72(未示出)。
[0054] 图4B至图4D示出了具有气隙作为热阻挡部分66c的复合轮廓盖66的可选配置的俯视图。复合轮廓盖66可以设置在高功率管芯堆叠件10和/或低功率管芯堆叠件12(在图4B至图4D中以虚线示出)的上方。导热部分66a可以设置在这种管芯堆叠件10/12上方以将热量从管芯堆叠件10/12传导出去。热阻挡部分66c可以设置在管芯堆叠件10/12之间的区域中(称为热串扰区域)以降低横向热扩散和热串扰。热阻挡部分66c可以包括气隙,该气隙被配置成沟槽(例如,如图4B所示)、一个或多个通孔(例如,如图4C所示)或它们的组合(例如,如图4D所示)。
[0055] 在各个可选实施例中,复合轮廓盖66可以包括热阻挡部分66b(例如,包括低Tk材料)和热阻挡部分66c(例如,气隙)。图4E至图4G示出了具有热阻挡部分66b和热阻挡部分66c的复合轮廓盖66的可选配置的俯视图。热阻挡部分66b可以包括低Tk材料,并且可以与沟槽(例如,图4E所示)、通孔(例如,图4F所示)、或沟槽或通孔的组合(例如,图4G所示)结合进行配置。热阻挡部分66b和66c可以设置在管芯堆叠件10/12之间以降低横向热扩散和热串扰。尽管图4B至图4G示出了复合轮廓盖66,但是类似的配置也可以应用于具有热阻挡部分72c的复合散热器72。也就是,复合散热器72的热阻挡部分72c也可以包括低Tk材料、气隙沟槽、气隙通孔或它们的组合。
[0056] 图5A示出了根据各个可选实施例的具有不同高度的多个高功率管芯堆叠件10和/或低功率管芯堆叠件12的封装件500的截面图。封装件500基本类似于封装件100,其中相似的参考标号对应于相似的元件。然而,封装件500可以包括高度为H2的高功率管芯堆叠件10和高度为H1的低功率管芯堆叠件12。管芯堆叠件12可以封入模塑料16中,模塑料16可以封装或可以不封装管芯堆叠件10。高度H1可以与高度H2不同。尽管图5A示出了高度H1大于高度H2,但是在可选实施例中,高度H1可以小于高度H2。此外,封装件500中的管芯堆叠件可以是高功率管芯堆叠件10、低功率管芯堆叠件12、或它们的组合。
[0057] 管芯堆叠件10和12可以电连接至中介层18。无源器件78(例如,电容器、电阻器、电感器、电容器等)也可以电连接至中介层18。可选地,管芯堆叠件10和12和无源器件78可以附接至有机或陶瓷衬底。TIM58a和58b可以分别设置在管芯堆叠件10和12的顶面上方并与管芯堆叠件10和12的顶面接触。导热部件62/66(例如,单片轮廓环和盖)可以通过粘合剂60粘合至衬底。导热部件62/66可以覆盖管芯堆叠件12。导热部件62/66的底面可以与TIM58b物理接触。此外,导热部件62/66可以具有与管芯堆叠件10对准的开口70。TIM68可以设置在与TIM58b接触的导热部件62/66的一部分的上方并且与导热部件62/66的一部分物理接触。粘合剂60’(其可以基本类似于粘合剂60)可以设置在导热部件62/66的其他部分的上方,例如,下方基本不具有热接触件的部分。图5B示出了具有开口70的导热部件62/66的俯视图。
如图5B所示,TIM68和粘合剂60a可以设置在导热部件62/66的不同部分的上方。
[0058] 再次参见图5A,复合散热器72方设置在导热部件62/66上的TIM68和粘合剂60’上方。复合散热器72包括导热部分72a和72b。导热部分72b可以设置在管芯堆叠件12上方并且可以与TIM68物理接触。导热部分72a可以延伸至开口70内,并且与管芯堆叠件10上方的TIM58物理接触。可以在导热部分72a和72b之间设置热阻挡部分72c(例如,包括低Tk材料)。因此,具有不同高度的管芯堆叠件的封装件可以包括热管理部件,热管理部件可以通过导热部件62/66和复合散热器72降低横向散热。
[0059] 通过使用热管理部件(例如,轮廓盖和复合散热器的组合),可以降低横向散热和热串扰。例如,图6A示出了具有包括这种热管理部件(例如,轮廓盖66和复合散热器72)的高功率管芯堆叠件10和低功率芯片堆叠件12的封装件600。封装件600可以基本类似于封装件100,其中,相似的参考标号代表相似的元件。图6B中示出了在管芯堆叠件10和12工作期间对封装件600中的温度分布进行模拟的模拟轮廓图602。如图6B所示,通过降低的横向散热,来自高功率管芯堆叠件10的热流通常限于基本垂直的方向。此外,封装件600的工作温度比传统封装件的工作温度降低。例如,在模拟中,封装件600的工作温度介于约50.9℃至约
75.5℃的范围内,而传统封装件的工作温度介于约90.1℃至约51.9℃的范围内。
[0060] 图6C示出了横穿传统封装件(例如,由线606所代表的)和封装件600(例如,由线608所代表的)的工作温度的模拟温度图604。区域610对应于封装件中的管芯堆叠件10和12之间的热串扰区域。如图604所示,通过采用图6A所示的热管理部件,降低了封装件在热串扰区域610中的温度。因此,通过采用本发明的实施例的热管理部件,不仅降低了封装件的工作温度,还降低了管芯堆叠件之间的区域的温度。结果,降低了热串扰和横向散热。
[0061] 根据一个实施例,封装件包括位于封装部件的表面上的第一管芯堆叠件、位于封装部件的表面上的第二管芯堆叠件、以及覆盖第一管芯堆叠件的散热轮廓盖。散热轮廓盖包括位于第二管芯堆叠件上方的开口。
[0062] 根据另一个实施例,封装件包括封装部件的表面上的第一管芯堆叠件,位于封装部件的表面上的第二管芯堆叠件,以及位于第一管芯堆叠件和第二管芯堆叠件上方的轮廓盖。轮廓盖包括位于第一管芯堆叠件上方的第一导热部分,位于第二管芯堆叠件上方的第二导热部分,以及位于第一导热部分和第二导热部分之间的热阻挡部分。热阻挡部分包括低热导率材料。
[0063] 根据又一个实施例,一种方法,包括:将第一管芯堆叠件和第二管芯堆叠件电连接至衬底和将热界面材料(TIM)分配到第一管芯堆叠件的顶面上。该方法还包括在第一管芯堆叠件上方形成轮廓盖。轮廓盖包括物理接触TIM的导热部分和邻近导热部分的热阻挡件。
[0064] 尽管已经详细地描述了本发明的实施例及其优势,但应该理解,在不背离所附权利要求所限定的本发明的精神和范围的情况下,可对本发明做出各种改变、替代和变化。而且,本申请的范围不旨在限于本说明书中所述的工艺、机器装置、制造、物质组成、工具、方法和步骤的具体实施例。本领域的技术人员通过本发明容易理解,根据本发明,可以利用现有的或今后将开发的、与本发明所述相应实施例执行基本相同的功能或者实现基本相同的结果的工艺、机器装置、制造、物质组成、工具、方法或步骤。因此,所附权利要求旨在将这些工艺、机器装置、制造、物质组成、工具、方法或步骤包括在它们的保护范围内。另外,每个权利要求组成单独的实施例,并且各个权利要求和实施例的组合都在本发明的范围内。