压力传感器装置及压力传感器装置的制造方法转让专利

申请号 : CN201380054665.4

文献号 : CN104736984B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 植松克之

申请人 : 富士电机株式会社

摘要 :

在形成于树脂壳体(1)的凹状的传感器安装部(2)内收纳传感器单元(10)。传感器单元(10)是将半导体压力传感器芯片(11)与玻璃底座(12)的一侧接合而成,通过粘接剂(13)将玻璃底座(12)的另一侧贴片到传感器安装部(2)的底部。半导体压力传感器芯片(11)上的电极焊盘经由键合线(4)与贯通树脂壳体(1)而一体地嵌件成型的外部导出用的引线端子(3)电连接。利用由含氟的聚对二甲苯系聚合物构成的保护膜(5)覆盖传感器单元(10)、引线端子(3)的露出于树脂壳体(1)内部的部分、键合线(4)、树脂壳体(1)的内壁(1a)的露出部分(也包括传感器安装部(2)的内壁)的整个表面。由此,能够提高压力传感器装置的可靠性。

权利要求 :

1.一种压力传感器装置,其特征在于,具备:

传感器芯片,将压力变换为电信号;

树脂壳体,收纳所述传感器芯片;

信号端子,一端露出于所述树脂壳体的内部,经由导线与所述传感器芯片连接,将由所述传感器芯片输出的所述电信号导出到外部;

保护膜,由含氟的聚对二甲苯系聚合物构成,覆盖所述传感器芯片的电极焊盘、所述信号端子的露出于所述树脂壳体的内部的部分、所述导线以及所述树脂壳体的内壁,所述保护膜被由氟系胶构成的保护部件覆盖。

2.根据权利要求1所述的压力传感器装置,其特征在于,所述保护膜覆盖所述传感器芯片、所述信号端子的露出于所述树脂壳体的内部的部分、所述导线、以及所述树脂壳体的内壁的露出部分的整个表面。

3.根据权利要求1所述的压力传感器装置,其特征在于,所述保护部件被填充到所述树脂壳体的内部,所述传感器芯片、所述信号端子的露出于所述树脂壳体的内部的部分以及所述导线被埋设于所述保护部件。

4.根据权利要求1~3中任一项所述的压力传感器装置,其特征在于,所述传感器芯片是半导体传感器芯片。

5.一种压力传感器装置的制造方法,其特征在于,所述压力传感器具备:传感器芯片,将压力变换为电信号;树脂壳体,收纳所述传感器芯片;信号端子,一端露出于所述树脂壳体的内部,经由导线与所述传感器芯片连接,将由所述传感器芯片输出的所述电信号导出到外部,所述制造方法包括:

收纳工序,将所述传感器芯片收纳于所述树脂壳体;

连接工序,用导线连接所述传感器芯片与所述信号端子;

被覆工序,利用由含氟的聚对二甲苯系聚合物构成的保护膜覆盖所述传感器芯片的电极焊盘、所述信号端子的露出于所述树脂壳体的内部的部分、所述导线以及所述树脂壳体的内壁,在所述被覆工序后,将由氟系胶构成的保护部件填充到所述树脂壳体的内部,将所述传感器芯片、所述信号端子的露出于所述树脂壳体的内部的部分以及所述导线埋设于所述保护部件。

6.根据权利要求5所述的压力传感器装置的制造方法,其特征在于,在所述被覆工序中,使单体分子在减压气氛中,在常温下进行蒸镀而形成所述保护膜,所述单体分子是使含氟的聚对二甲苯系聚合物气化而得的气体中所含的聚合物分子。

7.根据权利要求5所述的压力传感器装置的制造方法,其特征在于,在所述被覆工序中,用所述保护膜覆盖所述传感器芯片、所述信号端子的露出于所述树脂壳体的内部的部分、所述导线、以及所述树脂壳体的内壁的露出部分的整个表面。

8.根据权利要求5所述的压力传感器装置的制造方法,其特征在于,在所述被覆工序后、填充所述保护部件前,对所述保护膜进行使所述保护膜表面的相对于所述保护部件的润湿性提高的改性处理。

9.根据权利要求5~8中任一项所述的压力传感器装置的制造方法,其特征在于,所述传感器芯片是半导体传感器芯片。

说明书 :

压力传感器装置及压力传感器装置的制造方法

技术领域

[0001] 本发明涉及一种压力传感器装置及压力传感器装置的制造方法。

背景技术

[0002] 通常,在用于汽车的压力传感器装置中,可以使用利用压阻效应的半导体压力传感器芯片作为传感器元件。该半导体压力传感器芯片具有在单晶硅等膜片上将由具有压阻效应的材料制成的多个半导体应变片桥接的构成。半导体应变片的电阻随着因压力变化而变形的膜片的变形量而变化,其变化量以电压信号的形式由桥电路提取。
[0003] 图5是表示现有的压力传感器装置的构成的截面图。如图5所示,现有的压力传感器装置具有在形成于树脂壳体101的凹状的传感器安装部102内收纳了传感器单元110的构成。传感器单元110是将半导体压力传感器芯片111与玻璃底座112的一侧接合而成,通过粘接剂113将玻璃底座112的另一侧贴片到传感器安装部102的底部。
[0004] 半导体压力传感器芯片111经由键合线104与贯通树脂壳体101而一体地嵌件成型的外部导出用的引线端子(引线框架)103电连接。在树脂壳体101的内部填充有胶状保护部件105。胶状保护部件105可以使用柔软到可向半导体压力传感器芯片111传递压力的程度且耐化学药品性优异的氟胶和/或氯硅胶、硅胶等。
[0005] 将半导体压力传感器芯片111、引线端子103的露出于树脂壳体101内部的部分和键合线104埋设于胶状保护部件105,利用胶状保护部件105保护它们避免粘上被测定压力介质所含的污染物质等。树脂壳体101的胶状保护部件105侧的空间部分是压力检测部,被测定压力介质接触于胶状保护部件105的表面,由此压力被施加到半导体压力传感器芯片111。
[0006] 近年来,为了净化汽车尾气,不仅在发动机的进气系统中,在使尾气的一部分向进气系统再循环而提高燃烧效率的尾气再循环(EGR:Exhaust Gas Recirculation)系统等排气系统中,也可以使用如上所述的压力传感器装置。因此,压力传感器装置要求具备耐燃料性、耐化学药品性、对尾气中所含的腐蚀性物质的耐腐蚀性。
[0007] 作为改善耐化学药品性和耐腐蚀性的压力传感器装置,提出了用耐腐蚀性优异的硅胶和/或氟系胶、聚对二甲苯树脂保护半导体压力传感器芯片、引线端子的露出于树脂壳体内部的部分以及键合线的装置(例如,参照下述专利文献1~4)。在下述专利文献4中,提出了能够覆盖狭窄的空隙部的方法,还通过压力锅试验进行了耐湿性的确认。
[0008] 另外,作为改善响应性的压力传感器装置,提出了如下装置,即,通过利用由电绝缘且具有柔软性的氟胶(fluoro-gel)构成的保护部件来覆盖保护芯片、引脚以及键合线,并使由该氟胶构成的保护部件的汽油饱和溶胀率为7重量%以下,从而防止因溶解在保护部件中的化学药品等气化而产生气泡(例如,参照下述专利文献5)。
[0009] 现有技术文献
[0010] 专利文献
[0011] 专利文献1:日本特开平5-223670号公报
[0012] 专利文献2:日本特开平6-213742号公报
[0013] 专利文献3:日本特开2004-251741号公报
[0014] 专利文献4:日本特开平8-073569号公报
[0015] 专利文献5:日本特开2001-153746号公报

发明内容

[0016] 技术问题
[0017] 然而,发明人确认了在上述的现有技术中,尾气中以气体状态存在的水、腐蚀性物质和腐蚀性物质的前驱体会渗透至胶状保护部件,到达半导体压力传感器芯片和/或引线端子、键合线而引起腐蚀所导致的故障。另外,发动机的进气系统的吸气压力为10kPa~300kPa,而排气系统的排气压力为300kPa~600kPa,通过压力传感器装置测定的压力比进气系统高。因此,在排气系统中,容易向压力传感器装置的胶状保护部件的内部压入被测定压力介质中所含的水和/或氮氧化物、硫氧化物等腐蚀性物质。
[0018] 因渗透到胶状保护部件中的氮氧化物而生成硝酸,因硫氧化物而生成硫酸。这样,由于在胶状保护部件的内部生成的硝酸和/或硫酸而导致半导体压力传感器芯片和/或引线端子、键合线腐蚀从而引起故障。另外,由于排气温度为高温,所以处于腐蚀反应容易加速的环境中,有可能促进压力传感器装置的短寿命化。另外,确认了作为树脂壳体的构成材料的聚苯硫醚(PPS)对在胶状保护部件的内部生成并被浓缩的浓硫酸不具有耐性。树脂壳体发生腐蚀并溶解的情况下,存在压力传感器装置的气密性降低的顾虑。这样,与进气系统相比,排气系统的搭载环境更严酷,在仅利用胶状保护部件作为全部的防腐蚀措施的现有的进气系统压力传感器装置的结构中,由于暴露于燃料和/或化学药品、腐蚀性物质的环境中,所以存在因半导体压力传感器芯片和/或引线端子、键合线、树脂壳体被腐蚀而可靠性变差的问题。
[0019] 为了消除上述现有技术带来的问题点,本发明的目的在于提供一种可靠性高的压力传感器装置及压力传感器装置的制造方法。
[0020] 技术方案
[0021] 为了解决上述课题,实现本发明的目的,本发明的压力传感器装置具有如下特征。在树脂壳体中收纳有将压力变换为电信号的传感器芯片。设有信号端子,其一端露出于上述树脂壳体的内部,经由导线与上述传感器芯片连接,将由上述传感器芯片输出的上述电信号导出到外部。利用由含氟的聚对二甲苯系聚合物构成的保护膜覆盖上述传感器芯片的电极焊盘、上述信号端子的露出于上述树脂壳体的内部的部分、上述导线以及上述树脂壳体的内壁。
[0022] 另外,本发明的压力传感器装置的特征在于,在上述的发明中,上述保护膜覆盖上述传感器芯片、上述信号端子的露出于上述树脂壳体的内部的部分、上述导线以及上述树脂壳体的内壁的露出部分的整个表面。
[0023] 另外,本发明的压力传感器装置的特征在于,在上述的发明中,上述保护膜被由氟系胶构成的保护部件覆盖。
[0024] 另外,本发明的压力传感器装置的特征在于,在上述的发明中,上述保护部件被填充于上述树脂壳体的内部。并且,将上述传感器芯片、上述信号端子的露出于上述树脂壳体的内部的部分以及上述导线埋设于上述保护部件。
[0025] 另外,本发明的压力传感器装置的特征在于,在上述的发明中,上述传感器芯片是半导体传感器芯片。
[0026] 另外,为了解决上述的课题,实现本发明的目的,本发明的压力传感器装置的制造方法是如下压力传感器装置的制造方法,所述压力传感器装置具备:传感器芯片,将压力变换为电信号;树脂壳体,收纳上述传感器芯片;信号端子,一端露出于上述树脂壳体的内部,经由导线与上述传感器芯片连接,将由上述传感器芯片输出的上述电信号导出到外部,所述方法具有如下特征。首先,进行将上述传感器芯片收纳到上述树脂壳体的收纳工序。接下来,进行利用导线连接上述传感器芯片与上述信号端子的连接工序。接着,进行利用由含氟的聚对二甲苯系聚合物构成的保护膜覆盖上述传感器芯片的电极焊盘、上述信号端子的露出于上述树脂壳体的内部的部分、上述导线和上述树脂壳体的内壁的被覆工序。
[0027] 另外,本发明的压力传感器装置的制造方法的特征在于,在上述的发明中,在上述被覆工序中,使单体分子在减压气氛中,在常温下进行蒸镀而形成上述保护膜,所述单体分子是使含氟的聚对二甲苯系聚合物气化而得的气体中所含的聚合物分子。
[0028] 另外,本发明的压力传感器装置的制造方法的特征在于,在上述的发明中,在上述被覆工序中,用上述保护膜覆盖上述传感器芯片、上述信号端子的露出于上述树脂壳体的内部的部分、上述导线以及上述树脂壳体的内壁的露出部分的整个表面。
[0029] 另外,本发明的压力传感器装置的制造方法的特征在于,在上述的发明中,在上述被覆工序后,将由氟系胶构成的保护部件填充到上述树脂壳体的内部,将上述传感器芯片、上述信号端子的露出于上述树脂壳体的内部的部分以及上述导线埋设于上述保护部件。
[0030] 另外,本发明的压力传感器装置的制造方法的特征在于,在上述的发明中,在上述被覆工序后、填充上述保护部件前,对上述保护膜进行使上述保护膜表面的相对于上述保护部件的润湿性提高的改性处理。
[0031] 另外,本发明的压力传感器装置的制造方法的特征在于,在上述的发明中,上述传感器芯片是半导体传感器芯片。
[0032] 根据上述发明,通过利用由含氟的聚对二甲苯系聚合物构成的保护膜覆盖树脂壳体内部的各构成部分和/或树脂壳体的内壁的露出部分的整个表面,从而能够防止树脂壳体内部的各构成部分和/或树脂壳体的内壁与被测定压力介质接触。由此,能够保护树脂壳体内部的各构成部分和/或树脂壳体的内壁的露出部分免受被测定压力介质中所含的水蒸气和/或酸的蒸气的影响,能够防止树脂壳体内部的各构成部分和/或树脂壳体的内壁腐蚀。
[0033] 根据上述发明,通过进一步用保护部件覆盖保护膜表面,从而能够防止制造工序中的与制造装置的接触所导致的导线的断线和/或因车辆搭载后的实际使用时的异物的飞入而导致的传感器芯片的损伤等机械性和物理性损伤和破损。另外,根据上述发明,通过用保护部件进一步覆盖保护膜表面,从而能够抑制在车辆搭载后的实际使用时因尾气中的煤和水堆积凝固、固着到传感器芯片上而导致的压力传感器装置的响应性的劣化和/或灵敏度特性的变化。
[0034] 另外,根据上述发明,通过利用蒸镀法形成由含氟的聚对二甲苯系聚合物构成的保护膜,从而能够使聚合物分子渗入到树脂壳体的内壁与传感器芯片、信号端子以及导线的间隙。由此,能够无间隙地用保护膜覆盖树脂壳体内部的各构成部分和/或树脂壳体的内壁的露出部分,能够保护树脂壳体内部的各构成部分和/或树脂壳体的内壁免受被测定压力介质中所含的水蒸气和/或酸的蒸气的影响。
[0035] 有益效果
[0036] 根据本发明的压力传感器装置及压力传感器装置的制造方法,具有能够提高可靠性的效果。

附图说明

[0037] 图1A是表示实施方式1的压力传感器装置的构成的截面图。
[0038] 图1B是表示实施方式1的压力传感器装置的构成的截面图。
[0039] 图2是表示图1A、1B的保护膜的分子结构的重复单元的图式。
[0040] 图3是表示比较例的保护膜的分子结构的重复单元的图式。
[0041] 图4是表示实施方式2的压力传感器装置的构成的截面图。
[0042] 图5是表示现有的压力传感器装置的构成的截面图。
[0043] 符号说明
[0044] 1:树脂壳体
[0045] 1a:树脂壳体的内壁
[0046] 2:树脂壳体的传感器安装部
[0047] 3:引线端子
[0048] 4:键合线
[0049] 5:保护膜
[0050] 10:传感器单元
[0051] 11:半导体压力传感器芯片
[0052] 11a:半导体压力传感器芯片的感压部
[0053] 12:玻璃底座
[0054] 13:粘接剂
[0055] 14:电极焊盘
[0056] 15:铝电极
[0057] 16:密合性确保·扩散防止层
[0058] 17:金电极
[0059] 18:氮化硅膜
[0060] 19:母材
[0061] 20:镀镍
[0062] 21:镀金

具体实施方式

[0063] 以下,参照附图,详细说明本发明的压力传感器装置及压力传感器装置的制造方法的优选实施方式。应予说明,在以下的实施方式的说明和附图中,对相同的构成标注相同符号,省略重复的说明。
[0064] (实施方式1)
[0065] 对实施方式1的压力传感器装置的构成进行说明。图1A、图1B是表示实施方式1的压力传感器装置的构成的截面图。图1A是整体图,图1B是主要部分放大截面图。图2是表示图1A、图1B的保护膜的分子结构的重复单元的图式。图1A、图1B中记载的压力传感器装置具有在形成于树脂壳体1的凹状的传感器安装部2内收纳有传感器单元10的构成。树脂壳体1可以是例如聚苯硫醚(PPS)和/或聚亚乙烯基对苯二甲酸乙二醇酯(PBT)、聚乙酸酯(POM)等机械强度高的树脂成型部件。传感器单元10是将半导体压力传感器芯片11与玻璃底座12的一侧接合而成,通过粘接剂13使玻璃底座12的另一侧贴片到传感器安装部2的底部。
[0066] 半导体压力传感器芯片11具备:由厚度比外周部薄且根据压力而弯曲的中央部构成的感压部(膜片)11a;形成于感压部11a的电阻桥(未图示);以及放大和校正电阻桥的输出的电路部(未图示)。电阻桥是将由具有压阻效应的材料构成的多个半导体应变片桥接而成的。半导体压力传感器芯片11上的电极焊盘14具有在铝(Al)电极15上经由密合性确保·扩散防止层16而形成金(Au)电极17的构成。作为密合性确保·扩散防止层16,可以通过溅射、蒸镀、镀覆钛钨(TiW)、氮化钛(TiN)、镍(Ni)等而设置。另外,密合性确保·扩散防止层16可以是密合性确保层与扩散防止层的层叠结构。
[0067] 电极焊盘14不限于上述构成,可以仅是铝电极15。电极焊盘14以外的半导体压力传感器芯片11的表面被氮化硅膜18覆盖。电极焊盘14经由键合线4与贯通树脂壳体1而一体地嵌件成型的外部导出用的引线端子(引线框架)3电连接。玻璃底座12可以由例如Pyrex(注册商标)等耐热玻璃制成。引线端子3例如通过在由磷青铜构成的母材19上实施镀镍(Ni)20和镀金21而构成。可以仅设置镀镍20和镀金21中的任一方。键合线4由铝或金制成。
[0068] 利用保护膜5覆盖传感器单元10、引线端子3的露出于树脂壳体1内部的部分、键合线4、以及树脂壳体1的内壁1a的露出部分的整个表面,保护其避免与被测定压力介质的接触和/或粘上被测定压力介质中所含的污染物质等。树脂壳体1的内壁1a的露出部分是指不与传感器单元10和引线端子3接触的内壁,也包括传感器安装部2的内壁。即,不仅用保护膜5覆盖树脂壳体1内部的各构成部,还覆盖可能暴露于被测定压力介质的树脂部的露出部分。由此,被测定压力介质经由保护膜5而与半导体压力传感器芯片11的感压部11a接触,施加压力。
[0069] 保护膜5是由含氟的聚对二甲苯(PPX)系聚合物构成的高分子膜,例如如图2所示,具有在苯环上结合两个氟基的分子结构。具体而言,保护膜5可以是例如具有在苯环上结合了两个二氟亚甲基(CF2)等的分子结构的聚对二甲苯聚合物膜。更具体而言,保护膜5可以是由KISCO株式会社(注册商标)提供的利用化学蒸镀(CVD)法涂布了聚对二甲苯树脂(diX(注册商标:Di-Para-Xylylene)保形涂料)而得的diX-SF。
[0070] 接下来,对实施方式1的压力传感器装置的制造方法进行说明。首先,将在玻璃底座12上静电接合了半导体压力传感器芯片11而得的传感器单元10通过粘接剂13贴片到传感器安装部2的底部。接下来,利用键合线4将贯通树脂壳体1而一体地嵌件成型的外部导出用的引线端子3与形成在半导体压力传感器芯片11上的电极焊盘14连接。接下来,例如向具备气化炉、分解炉和蒸镀室的涂布装置(未图示)的蒸镀室插入搭载了传感器单元10的树脂壳体1。
[0071] 接着,将例如投入了作为保护膜5的构成材料的diX二聚体的气化炉在减压气氛下进行加热(例如180℃以下)而使diX二聚体气化,生成diX二聚体气体。接下来,在分解炉中,例如以600℃~700℃的温度进行热分解该diX二聚体气体而生成单体气体。然后,通过在减压气氛(例如50mTorr以下)使导入到常温(例如25℃~35℃)的蒸镀室的单体气体与树脂壳体1的内部接触(蒸镀)而使单体高分子化,从而使保护膜5成膜。
[0072] 在保护膜5成膜时,在减压气氛且常温的蒸镀室内,由于提供单体气体的聚合物分子处于热运动状态,所以能够使聚合物分子渗入到树脂壳体1以及传感器安装部2与传感器单元10、引线端子3以及键合线4的间隙。由此,传感器单元10、引线端子3的露出于树脂壳体1内部的部分、键合线4以及树脂壳体1的内壁1a的露出部分的整个表面被保护膜5覆盖,图
1A、1B所示的压力传感器装置完成。
[0073] 利用上述成膜方法形成的保护膜5的厚度偏差为保护膜5的厚度的±10%左右,与使用液态树脂的情况相比,能够确保保护膜5的厚度的均匀性,这一点已经被发明人所确认。因此,通过在半导体应变片(未图示)上形成保护膜5,从而即使压力传感器装置的灵敏度降低,压力传感器装置的失调电压的偏差也小,且能够抑制因压力测定值的随温度特性的变化。另外,与使用液态树脂的情况相比,由于能够均匀地成膜,所以能够抑制因产生成膜不均而导致的传感器装置振动时的抑制键合线4揺动,键合线4的断线。
[0074] 具体而言,在将半导体压力传感器芯片11的感压部11a的厚度设为60μm,作为保护膜5而使5μm厚度的聚对二甲苯聚合物膜成膜,使感压部11a上的保护膜5的厚度为5μm±10%时,能够确认与没有形成保护膜5的情况相比,灵敏度的降低量变化5%左右,失调电压的偏差相对于测定压力范围在0.5%F.S.以内变化,包含因温度特性而引起的偏差在内的总体精度变化1%F.S.左右。对于因保护膜5成膜而引起的这些变化来说,在保护膜5成膜后,可利用通常的方法进行压力传感器特性的微调而进行抑制。例如,在25℃~85℃的温度范围的使用环境下,可微调在±1%F.S.的精度范围内,在-30℃左右的低温和130℃左右的高温的使用环境下,可微调在±2%F.S.的精度范围内。
[0075] 另外,为了提高压力传感器的灵敏度,在使半导体压力传感器芯片11的感压部11a的厚度变薄为30μm以下的情况下,为了抑制对压力传感器特性的影响,在感压部11a上选择性地形成掩模后,作为保护膜5而形成5μm厚度的聚对二甲苯聚合物膜,而感压部11a上可以选择性地不进行成膜。这是因为半导体压力传感器芯片11的腐蚀起因于与键合线4连接的电极焊盘1的4腐蚀。通过利用保护膜5覆盖与电极焊盘14以及键合线4的连接部,能够抑制电极焊盘14的腐蚀,从而能够抑制半导体压力传感器芯片11的腐蚀。
[0076] 接下来,针对保护膜5的耐酸性,将由具有图2所示的分子结构的聚对二甲苯聚合物构成的保护膜5在80℃的温度的混酸溶液中浸渍24小时而验证有无溶解(以下,作为第一实施例)。作为与第一实施例的比较,针对如图3所示的具有在苯环上结合两亚甲基(CH2)的分子结构的通常的聚对二甲苯聚合物膜,也是浸渍在与保护膜5相同条件的混酸溶液中,验证有无溶解(以下,作为第一比较例)。图3是表示比较例的保护膜的分子结构的重复单元的图式。作为第一实施例以及第一比较例中浸渍的混酸溶液,准备成分和含量不同的四种混酸溶液(以下,作为第一混酸溶液~第四混酸溶液)。
[0077] 第一混酸溶液是用25%的水(H2O)将5%的氢氟酸(HF)以及70%的硝酸(HNO3)稀释。第二混酸溶液是用20%的水(H2O)将10%的氢氟酸(HF)、15%的硫酸(H2SO4)和55%的硝酸(HNO3)稀释。第三混酸溶液是用22%的水(H2O)将5%的氢氟酸(HF)、2%的盐酸(HCl)、1%的硫酸(H2SO4)和70%的硝酸(HNO3)稀释。第四混酸溶液是用45%的水(H2O)将45%的硫酸(H2SO4)和10%的硝酸(HNO3)稀释。在第一实施例和第一比较例中浸渍于该第一混酸溶液~第四混酸溶液,结果在第一比较例中,确认了保护膜5在第一混酸溶液~第四混酸溶液的全部混酸溶液中溶解,与此相对,在第一实施例中,保护膜5在第一混酸溶液~第四混酸溶液的任一混酸溶液中均不溶解。
[0078] 接下来,按照上述的制造方法,制作在传感器单元10、引线端子3的露出于树脂壳体1内部的部分、键合线4以及树脂壳体1的内壁1a的露出部分的整个表面形成了由聚对二甲苯聚合物构成的保护膜5的压力传感器装置(以下,作为第二实施例),在浸渍于80℃的温度的上述第一混酸溶液~第四混酸溶液的状态下放置,验证了有无溶解。保护膜5的厚度设置为5μm±10%。作为与第二实施例的比较,制作未形成保护膜5的压力传感器装置(以下,作为第二比较例),在与第二实施例相同的条件下浸渍于上述第一混酸溶液~第四混酸溶液。
[0079] 其结果,可以确认在第二比较例中,在48小时以内发生传感器单元、引线端子、键合线以及树脂壳体的内壁的露出部分的腐蚀。与此相对,在第二实施例中,即使经过280小时后,也不发生传感器单元10、引线端子3的露出于树脂壳体1内部的部分、键合线4以及树脂壳体1的内壁1a的露出部分的腐蚀。由此,能够确认与第二比较例相比,第二实施例具有5.8倍以上的耐久寿命。
[0080] 如上所述,根据实施方式1,通过利用由含氟的聚对二甲苯系聚合物构成的保护膜覆盖树脂壳体内部的各构成部分和/或树脂壳体的内壁的露出部分的整个表面,从而能够防止树脂壳体内部的各构成部分和/或树脂壳体的内壁与被测定压力介质接触。由含氟的聚对二甲苯系聚合物构成的保护膜具有防水性和耐酸性,能够保护树脂壳体内部的各构成部分和/或树脂壳体的内壁的露出部分免受在现有的由氟胶构成的胶状保护部件中无法防止的被测定压力介质中所含的水蒸气和/或酸的蒸气的影响。由此,能够防止树脂壳体内部的各构成部分和/或树脂壳体的内壁腐蚀,提供可靠性高的压力传感器装置。
[0081] 另外,根据实施方式1,通过利用蒸镀法形成由含氟的聚对二甲苯系聚合物构成的保护膜,从而能够使聚合物分子渗入到树脂壳体的内壁(也包括传感器安装部的内壁)与传感器单元、引线端子和键合线的间隙。因此,能够没有间隙地用保护膜覆盖树脂壳体内部的各构成部分和/或树脂壳体的内壁的露出部分,能够保护树脂壳体内部的各构成部分和/或树脂壳体的内壁免受被测定压力介质中所含的水蒸气和/或酸的蒸气的影响。因此,能够提供可靠性高的压力传感器装置。
[0082] (实施方式2)
[0083] 接着,对实施方式2的压力传感器装置进行说明。图4是表示实施方式2的压力传感器装置的构成的截面图。实施方式2的压力传感器装置与实施方式1的压力传感器装置不同之处在于用胶状保护部件6填充树脂壳体1的内部。即,被保护膜5覆盖的传感器单元10、引线端子3的露出于树脂壳体1内部的部分、键合线4以及树脂壳体1的内壁1a的露出部分进一步被胶状保护部件6所覆盖。
[0084] 具体而言,在树脂壳体1的内部填充有由硅胶等灌封剂构成的胶状保护部件6。由此,将被保护膜5覆盖的传感器单元10、引线端子3的露出于树脂壳体1内部的部分、键合线4以及树脂壳体1的内壁1a的露出部分埋设于胶状保护部件6中。可以利用胶状保护部件6防止制造工序中的与制造装置的接触所导致的键合线4的断线和/或在搭载于车辆后的实际使用时的异物的飞入所导致的半导体压力传感器芯片11的损伤等机械性和物理性损伤和破损。
[0085] 胶状保护部件6可以是具有防水性的氟系胶。具体而言,胶状保护部件6可以是由信越化学工业株式会社提供的液态氟弹性体(SHIN-ETSU SIFEL(注册商标))。通过采用由氟系胶构成的胶状保护部件6,从而能够抑制在车辆搭载后的实际使用时因尾气中的煤和水堆积凝固、固着在半导体压力传感器芯片11上而引起的压力传感器装置的响应性的劣化和/或灵敏度特性的变化。
[0086] 如上所述,根据实施方式2,能够得到与实施方式1同样的效果。
[0087] 另外,在实施方式2中,也可以将保护膜5成膜后,通过向其表面照射O2等离子体、N2等离子体而进行表面改质,从而使相对于胶状保护部件6的润湿性提高后,填充胶状保护部件6。由此,能够提高防水性高的由含氟的聚对二甲苯系聚合物构成的保护膜5的表面与由氟系胶构成的胶状保护部件6的密合性。
[0088] 以上,本发明能够进行各种变更,在上述的各实施方式中,例如各部分的尺寸、树脂壳体、引线端子、键合线的构成材料等可以根据所要求的规格等进行各种设定。
[0089] 产业上的可利用性
[0090] 如上,本发明的压力传感器装置及压力传感器装置的制造方法对在像汽车尾气那样的水蒸气和/或腐蚀性气体过多的环境下所使用的压力传感器装置有用。