一种铸造用超声电源系统及谐振工作点自动跟踪方法转让专利

申请号 : CN201510019923.6

文献号 : CN104772450B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 廖力清彭浩李晓谦凌玉华尹游

申请人 : 中南大学

摘要 :

本发明公开了铝合金铸造过程中的超声电源系统及谐振工作点自动跟踪方法,包括电压变换与调节单元、单相全桥逆变单元、高频变压器、调谐匹配单元、超声换能器、驱动电路,电压检测单元、电流检测单元、触摸屏控制面板、通信接口以及控制单元和辅助电源;电压变换与调节单元用于逆变电压的调节,从而实现超声换能器输出功率的调节;调谐匹配单元用于对超声换能器进行实时调谐作用;控制单元接收电压、电流信号,根据内置的谐振工作点自动跟踪算法控制电压变换与调节单元、调谐匹配单元以及逆变单元的驱动频率,保证超声换能器始终工作在谐振点。本发明的超声电源系统在铝合金铸造过程中跟踪谐振频率速度快、跟踪范围宽,稳定性高。

权利要求 :

1.一种铸造用超声电源控制系统的谐振工作点自动跟踪方法,其特征在于,所述超声电源控制系统包括电压变换与调节单元、单相全桥逆变单元、高频变压器、调谐匹配单元、超声换能器、驱动电路,电压检测单元、电流检测单元、触摸屏控制面板以及控制单元;其中,电压变换与调节单元输出端连接到单相全桥逆变单元,接收来自控制单元的PWM给定信号,实现电压的调节;

单相全桥逆变单元,用于接收高频PWM驱动信号,实现功率放大,其输出端连接至高频变压器;

高频变压器,用于将超声功率信号传递到超声换能器侧,连接单相全桥逆变单元与调谐匹配单元;

调谐匹配单元,接收来自控制单元的给定信号,输出端与超声换能器连接,实现对超声换能器的实时调谐匹配;

驱动电路,用于将控制模块发送的PWM信号转换为单相全桥逆变单元功率管的驱动信号;

电压检测单元、电流检测单元,用于采集超声换能器两端的电压和流经超声换能器的工作电流,并传送至控制单元;

触摸屏控制面板,与控制器相连,用于实时显示检测到的数据以及超声换能器的工作频率、输出功率、电压与电流相位差大小,并用于输入、输出参数的设定和调整;

控制单元,用于接收超声换能器的实时工作电压、电流信号,经过内嵌的算法计算,得到超声换能器工作电压、电流的幅值、频率和相位差大小,并通过输出PWM3信号调整电压变换与调节单元的电压大小、修改PWM驱动信号的频率以及调谐匹配单元的电感值大小;

所述自动跟踪方法包括如下步骤:

a)将电压变换与调节单元的输出电压调节到最低工作电压门槛值V1,并将4个动态匹配电感全部投入;

b)控制单元输出频率为f0的PWM驱动信号至单相全桥逆变单元,使高频信号通过高频变压器和调谐匹配单元加载到超声换能器两端;

c)控制单元以T为周期对超声换能器两端的电压、电流及其相位差信号进行采集,并且以动态匹配电感的最小分辨率值进行减小,直到所有的动态匹配电感全部切除,在电感逐步减小的每个周期内,控制单元在记录各个动态电感值匹配的情况下超声换能器两端电压、电流及其相位差数据集Array0;

d)在数据集Array0中,找出电流值大于某个门槛值I1的数据集Array1,若Array1为空,则将f0减小fs,并跳至步骤b);若Array1不为空,则跳至步骤e);

e)在数据集Array1中,搜寻相位差在[-5+5]范围内的数据集Array2,若Array2为空,则将f0减小fs,并跳至步骤b);若Array1不为空,则跳至步骤f);

f)在数据集Array2中,搜寻电流值最大的点,并将其对应的动态电感值Lp为匹配电感;

g)确定动态匹配电感Lp后,以相位差为0作为目标调整PWM的频率;当相位差大于0时,则以Δf为步长减小f0;当相位差小于0时,则以Δf为步长增加f0;使超声换能器两端的电压电流相位差为0;

h)在步骤g)的周期控制过程中,若频率偏移大于门槛值fmax,则以动态匹配电感的最小分辨率值进行减小电感,使f0减小fd,并跳转到步骤c);若频率偏移小于门槛值fmin,则以动态匹配电感的最小分辨率值进行增加电感,使f0增加fd,并跳转到步骤c)。

说明书 :

一种铸造用超声电源系统及谐振工作点自动跟踪方法

技术领域

[0001] 本发明涉及铝合金铸造工艺的控制技术领域,尤其是涉及一种在铸造过程中用于施加超声振动的超声电源系统。

背景技术

[0002] 目前,在铝合金铸造工艺中,有一种通过在金属凝固前或凝固过程中施加外加物理场的方法来改善金属的凝固组织的方法,从而获得高性能的铸造产品。研究表明,超声波振动施加到金属熔体中时,会产生空化、声流等一系列的非线性效应,会增加金属的形核率,能使合金整体的温度和化学成分均匀化,更重要的会产生明显的晶粒细化效果,从而可以提高铝合金的力学性能。
[0003] 传统的超声波发生器采用自激振荡的模拟方式产生超声波,其依靠线路的自激来产生的超声波,频带比较窄,且由于发热、老化、负载变化等因素的影响,换能器的谐振频率会发生偏移,尤其应用在铝合金铸造工艺过程中,由于工具头浸入到高温熔融的浸入熔体中,变幅杆的工作温度高,工作环境恶劣,其固有频率的偏差更大,使超声电源输出的功率不能全部送到换能器上,工具头的振幅减小。目前国内常规模拟自激式超声电源用于铝合金铸造工艺中,经常自激不可靠,需要反复开关机,开机自激工作一段后,也经常发生失谐,甚至无法工作,导致超声加工不能有效的进行。
[0004] 铝合金超声铸造过程中,根据铸锭规格、温度等铸造工艺的不同,工具头插入到铝液中的深度会有不同,这就导致不同工艺条件下换能器的负载和谐振频率会发生偏移,如超声系统不能快速跟踪在最佳谐振频率点,则会导致超声振动不能很好的施加到金属的凝固过程中去,从而影响铸件的质量。
[0005] 现有的超声电源系统不能满足超声铸造过程中,谐振频率偏移范围大、负载变化大等要求。
[0006] 专利CN201310524468.6公开了一种根据电流有效值大小来进行扫频搜索的方法,但经实践发现,这种方法准确性与可靠性有待提高。

发明内容

[0007] 本发明所要解决的技术问题是针对铝合金超声铸造工艺过程中,工具头工作环境温度高,谐振频率漂移大、负载变化大等特点,提供一种安全可靠、能够实时跟踪谐振频率的超声电源系统及其自动跟踪方法。
[0008] 为了解决上述技术问题,本发明提供的铸造用超声电源系统包括电压变换与调节单元、单相全桥逆变单元、高频变压器、调谐匹配单元、超声换能器、驱动电路,电压检测单元、电流检测单元、触摸屏控制面板以及控制单元。
[0009] 电压变换与调节单元将市电220VAC电源通过二极管整流电路转换成直流电源,再由SG3525集成开关电源控制芯片,通过半桥逆变电路和高频整流变压器变换得到合适的电压,该输出的电压由控制模块的PWM3信号占空比大小决定。
[0010] 单相全桥逆变单元,用于接收高频驱动PWM信号,实现功率放大,由4个N沟道型MOSFET功率管组成,其输出端连接至高频变压器。
[0011] 高频变压器,用于将超声功率信号传递到超声换能器侧,连接单相全桥逆变单元与调谐匹配单元。
[0012] 调谐匹配单元,由1个静态匹配电感和4个动态匹配电感组成,接收来自控制单元的给定信号,根据给定信号对动态匹配电感进行投入和切断控制,其输出端与超声换能器连接,实现对超声换能器的实时调谐匹配。
[0013] 驱动电路,由2块集成驱动芯片IR2110组成,用于将控制模块发送的PWM信号转换为单相全桥逆变单元功率管的驱动信号。
[0014] 电压检测单元、电流检测单元,采用霍尔传感器隔离采集超声换能器两端的电压和流经超声换能器的工作电流,并传送至控制单元。
[0015] 触摸屏控制面板,与控制器相连,用于实时显示检测到的数据以及超声换能器的工作频率、输出功率、电压与电流相位差大小,并用于输入、输出参数的设定和调整。
[0016] 控制单元,用于接收超声换能器的实时工作电压、电流信号,经过内嵌的算法,得到超声换能器工作电压、电流的幅值、频率和相位差大小,并调整电压变换与调节单元的电压大小、PWM驱动信号的频率以及调谐匹配单元的电感值大小。
[0017] 辅助电源用于给控制模块、驱动电路、传感器等电子电路提供工作电源。
[0018] 本发明还提供了一种超声电源系统的谐振工作点搜索与自动跟踪方法,该方法的步骤如下:
[0019] a)将电压变换与调节单元的输出电压调节到最低工作电压门槛值V1,并将4个动态匹配电感全部投入;
[0020] b)控制单元输出频率为f0的PWM驱动信号至单相全桥逆变单元,使高频信号通过高频变压器和调谐匹配单元加载到超声换能器两端;
[0021] c)控制单元以T为周期对超声换能器两端的电压、电流及其相位差信号进行采集,并且以动态匹配电感的最小分辨率值进行减小,直到所有的动态匹配电感全部切除,在电感逐步减小的每个周期内,控制单元在记录各个动态电感值匹配的情况下超声换能器两端电压、电流及其相位差数据集Array0;
[0022] d)在数据集Array0中,找出电流值大于某个门槛值I1的数据集Array1,若Array1为空,则将f0减小fs,并跳至步骤b);若Array1不为空,则跳至步骤e);
[0023] e)在数据集Array1中,搜寻相位差在[-5+5]范围内的数据集Array2,若Array2为空,则将f0减小fs,并跳至步骤b);若Array1不为空,则跳至步骤f);
[0024] f)在数据集Array2中,搜寻电流值最大的点,并将其对应的动态电感值Lp为匹配电感;
[0025] g)确定动态匹配电感Lp后,以相位差为0作为目标调整PWM的频率;当相位差大于0时,则以Δf为步长减小f0;当相位差小于0时,则以Δf为步长增加f0;使超声换能器两端的电压电流相位差为0;
[0026] h)在步骤g)的周期控制过程中,若频率偏移大于门槛值fmax,则以动态匹配电感的最小分辨率值进行减小电感,使f0减小fd,并跳转到步骤c);若频率偏移小于门槛值fmin,则以动态匹配电感的最小分辨率值进行增加电感,使f0增加fd,并跳转到步骤c)。
[0027] 采用上述技术方案后,本发明采用以电流值最大为依据确定初始匹配电感值,然后以相位差为0作为跟踪目标的方式进行控制,以实现超声换能器的最大功率输出,保证超声换能器始终工作在谐振点。
[0028] 本发明技术方案所设计的超声波电源具有频率跟踪范围大、负载适应能力强、工作可靠稳定等特点,比原有自激式超声波电源有了明显的改进。

附图说明

[0029] 图1是超声波电源系统总体结构图;
[0030] 图2是谐振频率搜索与自动跟踪流程图;
[0031] 图3是可调开关电源原理图;
[0032] 图4是具有互锁逻辑的驱动电路图。

具体实施方式

[0033] 下面将结合说明书的附图,对本发明作进一步的说明。
[0034] 如图1所示,本发明的铸造用超声电源系统包括电压变换与调节单元、单相全桥逆变单元、驱动电路、高频变压器、调谐匹配单元、超声换能器、电压检测单元、电流检测单元、触摸屏控制面板、以及控制单元和辅助电源。
[0035] 如图3所示,电压变换与调节单元为以SG3525集成PWM控制芯片为核心的大功率半桥可调开关电源。由二极管和滤波电容将市电220VAC转换成311VDC直流电源,再送入到以SG3525为核心的变换电路。SG3525集成PWM控制芯片由基准稳压源、振荡器、误差放大器、PWM比较器、锁存器、分相器和推挽式输出电路等几部分组成,通过调整误差放大器输入点采样电压的大小可以调节输出电压。本发明中,在误差放大器的输入端叠加一个外部给定的PWM信号,从而改变误差放大器的采样输入电压,实现电压变换与调节单元的电压调节功能。
[0036] 单相全桥逆变单元,使用4只N沟道型MOSFET功率管组成前桥逆变电路,以STY30NK90Z为核心功率管,配合若干电阻电容组成的RC吸收电路,实现功率放大,其输出端连接值高频变压器。
[0037] 如图4所示,驱动电路用于单相全桥逆变单元的功率管驱动,由逻辑互锁电路和IR2110驱动芯片组成。逻辑互锁电路由2个PNP三极管组成,实现上下桥臂驱动电平的互锁功能,保证上下桥臂的驱动信号不会同时有效,防止功率管由于上下桥臂直通出现过流烧毁现象。IR2110为双通道高压、高速电压型功率开关器件,高压侧采取自举悬浮驱动技术,只需要一路电源即可同时驱动上、下桥臂。本发明中通过增加稳压二极管与电压偏置电路实现高、低压侧的负压关断。
[0038] 高频变压器,用于将超声功率信号传递到超声换能器侧,采用EE65型磁芯骨架,按1:1变比使用高频纱包线绕制。
[0039] 调谐匹配单元,由1个静态匹配电感和4个动态匹配电感组成,接收来自控制单元的给定信号,根据给定信号对动态匹配电感进行投入和切断控制,其输出端与超声换能器连接,实现对超声换能器的实时调谐匹配。
[0040] 电压检测单元、电流检测单元,采用霍尔传感器隔离采集超声换能器两端的电压和流经超声换能器的工作电流,并传送至控制单元。
[0041] 触摸屏控制面板,与控制器相连,用于实时显示检测到的数据以及超声换能器的工作频率、输出功率、电压与电流相位差大小;触摸屏控制面板与控制器相连,并用于输入、输出参数的设定和调整,与控制单元通过RS-485结构相连接。
[0042] 控制单元,包括微处理器、电压、电流及其相位整形处理模块、PWM信号发生模块、通信模块,用于接收超声换能器的实时工作电压、电流信号,经过内嵌的算法,得到超声换能器工作电压、电流的幅值、频率和相位差大小,并调整电压变换与调节单元的电压大小、驱动PWM的频率以及调谐匹配单元的电感值大小。
[0043] 控制单元设计有RS-485和CAN通信接口。
[0044] 辅助电源用于给控制模块、驱动电路、传感器等电子电路提供工作电源。
[0045] 如图2所示,基于上述的铸造用超声电源系统的谐振工作点自动跟踪方法,具体步骤如下:
[0046] a)将电压变换与调节单元的输出电压调节到最低工作电压门槛值V1,并将4个动态匹配电感全部投入;
[0047] b)控制单元输出频率为f0的PWM驱动信号至单相全桥逆变单元,使高频信号通过高频变压器和调谐匹配单元加载到超声换能器两端;
[0048] c)控制单元以T为周期对超声换能器两端的电压、电流及其相位差信号进行采集,并且以动态匹配电感的最小分辨率值进行减小,直到所有的动态匹配电感全部切除,在电感逐步减小的每个周期内,控制单元在记录各个动态电感值匹配的情况下超声换能器两端电压、电流及其相位差数据集Array0;
[0049] d)在数据集Array0中,找出电流值大于某个门槛值I1的数据集Array1,若Array1为空,则将f0减小fs,并跳至步骤b);若Array1不为空,则跳至步骤e);
[0050] e)在数据集Array1中,搜寻相位差在[-5+5]范围内的数据集Array2,若Array2为空,则将f0减小fs,并跳至步骤b);若Array1不为空,则跳至步骤f);
[0051] f)在数据集Array2中,搜寻电流值最大的点,并将其对应的动态电感值Lp为匹配电感;
[0052] g)确定动态匹配电感Lp后,以相位差为0作为目标调整PWM的频率。当相位差大于0时,则以Δf为步长减小f0;当相位差小于0时,则以Δf为步长增加f0;使超声换能器两端的电压电流相位差为0;
[0053] h)在步骤g)的周期控制过程中,若频率偏移大于门槛值fmax,则以动态匹配电感的最小分辨率值进行减小电感,使f0减小fd,并跳转到步骤c);若频率偏移小于门槛值fmin,则以动态匹配电感的最小分辨率值进行增加电感,使f0增加fd,并跳转到步骤c)。
[0054] 本发明的铸造用超声电源系统及谐振工作点自动跟踪方法的特点有:
[0055] 针对铝合金超声铸造工艺过程的特点,利用动态电感调节匹配、采取以电流值最大为依据确定初始匹配电感值,然后以相位差为0作为跟踪目标的方式进行控制,能够快速准确的跟踪谐振工作点,且跟踪范围宽,稳定性高,实现超声铸造过程中稳定可靠地施振;
[0056] 在将输入交流转换成直流电压部分,使用了电压变换与调节单元,由可调开关电源实现,且输出电压由控制器进行控制,优点是输出电压可以由控制单元进行控制,从而能够通过调节电压实现功率的调节;
[0057] 在驱动部分,本方案使用了由IR2110驱动芯片构成的,带负压关断,具有高低侧互锁的驱动电路,更加可靠的防止逆变桥功率管的直通短路;
[0058] 在调谐匹配部分,采用静态调谐与动态调谐的组合方式,具有更好的对不同负载的适应性,克服超声电源的“专机”性,即同一类超声换能器,必须与指定的超声电源匹配使用;
[0059] 在频率跟踪方面,本方案综合有效值、电压与电流的相位,再来进行频率的搜索与调节的,并给出了具体的频率跟踪方法与控制流程,这种搜索方法更加合理可靠。