一种双向半桥单边三电平DC-DC变换器电流有效值最小的优化控制方法转让专利

申请号 : CN201510136476.2

文献号 : CN104779802B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 舒泽亮况祖杭郭潇潇何晓琼

申请人 : 西南交通大学

摘要 :

本发明公开了一种双向半桥单边三电平DC-DC变换器及电流有效值最小的优化控制方法,通过控制高压侧桥臂中点电压占空比D1和一、二次侧桥臂中点电压之间的移相比 实现功率在一、二次侧双向传输同时实现电流有效值最小的优化。本发明给出了求解使电流有效值最小的D1、 的步骤,实现了全功率范围内电流有效值最小的控制,并且也实现了全负载范围内所有开关管的零电压导通,从而有效降低了变换器的通态损耗和开关损耗。

权利要求 :

1.一种双向半桥单边三电平DC-DC变换器电流有效值最小的优化控制方法,对于高压侧为二极管箝位半桥三电平结构,低压侧为半桥两电平结构的双向半桥单边三电平DC-DC变换器,通过控制高压侧桥臂中点电压占空比D1和一、二次侧桥臂中点电压之间的移相比实现功率在一、二次侧双向传输同时实现电流有效值最小的优化,控制器实现优化控制的步骤如下:a)、控制器的电压控制模块通过对负载侧电压V2和参考电压V2ref的误差进行反馈控制,得到移相比b)、读入a)结果,查找表模块根据如下规则得到一次侧桥臂电压的占空比D1:当 的范围在 时,

当 的范围在 时,

当 的范围在 时,

当 的范围在 和 时,D1=1;

其中, n为变压器变比,V1为输入侧电压;

c)、将步骤a)、b)得到的 和D1输入开关信号产生模块,产生相应的开关信号,控制主电路中开关器件的通断。

说明书 :

一种双向半桥单边三电平DC-DC变换器电流有效值最小的优

化控制方法

技术领域

[0001] 本发明涉及隔离型双向DC-DC变换器的结构和控制,尤其涉及一种双向半桥单边三电平DC-DC变换器及电流有效值最小的优化控制。

背景技术

[0002] 隔离型双向DC-DC变换器是一种可以二象限运行且能够实现输入、输出侧电气隔离的DC-DC变换器,它在电动汽车、新能源发电及智能电网等领域被广泛使用。
[0003] 隔离型双向DC-DC变换器较常用的是双向全桥两电平电路结构,其拓扑如图1所示,它由两个对称的H桥、中频变压器和两个直流稳压电容构成。这种变换器结构简单,功率密度大,电压变比大,能实现电气隔离且能量可双向流动。但是在这种变换器拓扑中的每个开关管承受的电压是输入电压或者输出电压,因而这种结构不适用于像储能系统这种一侧电压很高,而另一侧电压较低的场合。
[0004] 双向半桥单边三电平DC-DC变换器应用传统移相控制的工作波形如图3所示,其控制原理为:对于一次侧,电路中每个桥臂内部上桥臂的两只开关管(S11,S12)同时导通,下桥臂的两只开关管(S13,S14)与上桥臂的两只开关管(S11,S12)互补导通;对于二次侧,上下桥臂的开关管S21、S22是互补导通的。S11、S12的导通信号与S21的导通信号之间存在移相比,移相比对应的时间与半个周期的比值为 的正负决定传输功率的方向,其大小决定传输功率的大小。移相控制简单易实现,但是它没有利用半桥单边三电平DC-DC变换器一次侧占空比可控的特点。同时,由于移相控制时电感电流滞后于电压,这导致一个开关周期内的输入与输出方向出现功率环流(如图3中的阴影部分)。当输入输出电压幅值不匹配时,环流功率和电流应力会大大增加,进而增大开关器件和磁性元件的损耗,降低变换器的效率。

发明内容

[0005] 鉴于现有技术的以上缺点,本发明的目的是提供一种双向半桥单边三电平DC-DC变换器电流有效值最小为目标的优化控制方法。
[0006] 一种双向半桥单边三电平DC-DC变换器电流有效值最小的优化控制方法,对于高压侧(一次侧)为二极管箝位半桥三电平结构,低压侧(二次侧)为半桥两电平结构的双向半桥单边三电平DC-DC变换器,通过控制高压侧桥臂中点电压占空比D1和一、二次侧桥臂中点电压之间的移相比 实现功率在一、二次侧双向传输同时实现电流有效值最小的优化,优化控制方法的主要步骤如下:
[0007] a)、控制器的电压控制模块通过对负载侧电压V2和参考电压V2ref的误差进行反馈控制,得到移相比
[0008] b)、读入a)结果,查找表模块根据如下规则得到一次侧桥臂电压的占空比D1:
[0009] 当 的范围在 时,
[0010] 当 的范围在 时,
[0011]
[0012] 当 的范围在 时,
[0013]
[0014] 当 的范围在 和 时,D1=1;
[0015] 其中, n为变压器变比,V1为输入侧电压;
[0016] c)、将步骤a)、b)得到的 和D1输入开关信号产生模块,产生相应的开关信号,控制主电路中开关器件的通断。
[0017] 双向半桥单边三电平DC-DC变换器的结构如图2所示,它由两个半桥电路、中频变压器和四个直流稳压电容组成。其中,高压侧(一次侧)半桥为三电平结构,每只开关管的电压应力只有高压侧直流电压的一半;低压侧(二次侧)半桥为两电平结构,相比全桥结构可减少开关管数量,降低成本。这种变换器尤其适合用于两侧电压幅值差较大的场合。
[0018] 双向半桥单边三电平DC-DC变换器一次侧的中点电压VAB可以输出正、负、零三个电平,二次侧的中点电压VCD可以输出正、负两个电平。当S11和S12导通,VAB为正电平;当S12和D1或S13和D2导通,VAB为零电平;当S13和S14导通,VAB为负电平。当S21导通,VCD为正电平,当S22导通,VCD为负电平。VAB的正、负电平在一个开关周期内的作用时间相同,作用时间与半个开关周期的比为D1。VCD的正、负电平在一个开关周期内的作用时间相同,作用时间与开关周期的比为50%。
[0019] 双向半桥单边三电平DC-DC变换器传输功率的大小和方向受D1和 影响,其中为VAB与VCD之间的移相比对应的时间与半个开关周期的比值。正向传输功率时(V1侧传向V2侧),随着传输功率的变化,电路出现两种工作情况,两种情况的工作波形如图4(a)和图4(b)所示。反向传输功率时(V2侧传向V1侧),随着传输功率的变化,电路也分为两种工作情况,两种情况的工作波形如图4(c)和图4(d)所示。
[0020] 在分析如何协调控制D1和 实现电流有效值最小优化控制之前,先分析电路正常工作的条件和所有开关管实现零电压导通(ZVS)的条件。要能够通过控制D1改变VAB正、负电平的作用时间,以及VCD能正常输出正负占空比各为50%的方波;要求在VAB和VCD的正、负电平结束时刻(开关管关断时刻),电流是流经开关管而不是开关管反并联的二极管,例如,图4(a)中,要求:iL(t3)≥0,iL(t4)≤0。开关管导通时,ZVS的条件为:开关管导通前,工作电流流经其反并联的二极管,例如,图4(a)中:iL(t0)≥0,iL(t1)≤0。图4(a)~(d)四种工况均可通过控制D1、 来满足上述开关管关断与导通的要求。
[0021] 四种工况下实现电流有效值最小控制时D1和 的关系分析如下:
[0022] 根据图4中四种工况的工作波形,计算每种工况下传输功率的表达式为:
[0023] 正向传输功率的两种工况的工作波形如图4(a)、(b)所示,两种工况传输功率的表达式分别为:
[0024]
[0025]
[0026] 反向传输功率的两种工况的工作波形如图4(c)、(d),两种工况传输功率的表达式分别为:
[0027]
[0028]
[0029] 式中k=nV2/V1,n为变压器变比,V1为输入侧电压,L为电路中的电感,fS为开关频率。
[0030] 由式(1)、(2)、(3)、(4)可知,传输功率是D1和 的函数,为了表述简单,用抽象函数表示传输功率关于D1、 的函数。
[0031]
[0032] 根据图4中四种工况的工作波形,计算每种工况下电感电流有效值:电感电流有效值也是关于D1、 的函数,为了表述简单,用抽象函数表
示电感电流有效值关于D1、 的函数。
[0033]
[0034] 由式(1)、(2)、(3)、(4)可知,传输相同的功率会有多种不同的D1、 组合来实现,在所有的组合中总有一种组合使电感电流有效值最小,计算使电感电流有效值最小的D1、组合的步骤如下:
[0035] 由式(5)得到 关于D1、P的关系式:
[0036]
[0037] 将式(7)代入式(6)得到电感电流有效值关于D1和P的关系式:
[0038] IL=g1(D1,P)  (8)
[0039] 由式(8)可得,在传输功率一定的情况下,电感电流有效值与D1的关系。对式(8)中的D1求导数,并求解使导数为零的D1关于P的关系式,得到:
[0040] D1=h(P)  (9)
[0041] 将式(9)中的P用式(1)代替,并求解D1关于 的表达式:
[0042]
[0043] 根据式(10)得到的D1关于 的关系式是传输一定功率下所有D1、 组合中使电感电流有效值最小的组合。
[0044] 根据上述分析步骤,得到在电路所能传输的反向最大功率到正向最大功率范围内,使电感电流有效值最小的D1、 组合(D1是关于 的函数),如表1所示。在不同的功率范围内,D1关于 的关系式是分段函数,当传输功率大于 或小于时,D1=1,即变换器一次侧桥臂中点电压也为两电平。正向传输功率
使得电流有效值最小的D1和反向传输功率使得电流有效值最小的D1是关于 对称的。
[0045] 表1 D1关于 的关系式
[0046]
[0047]
[0048] 与现有技术相比,本发明的优势在于:高压侧(一次侧)桥臂为半桥三电平结构,桥臂中每只开关管的电压应力只有高压侧直流电压的一半,对于同样的场合,采用本新型结构可以选用耐压等级更低的开关管,从而降低成本;低压侧(二次侧)桥臂为半桥结构,与常用的全桥结构相比,开关管数量少一倍,因此可节约成本。
[0049] 同时本发明控制方法的优势还在于:当传输功率一定时,通过协调控制D1、 实现电感电流有效值最小的控制,从而减少电路中磁性元件的铜耗和开关管的通态损耗。同时,由于在整个传输功率范围内,电路中的所有开关管都能够实现软开关,所以也可以有效地减少功率器件的开关损耗。

附图说明

[0050] 图1是隔离型双向全桥两电平DC-DC变换器的拓扑结构。
[0051] 图2是隔离型双向半桥单边三电平DC-DC变换器的拓扑结构。
[0052] 图3是传统移相控制的工作波形图。
[0053] 图4是双向半桥单边三电平DC-DC变换器正、反向传输功率图,的四种工况。(a):正向传输工况A;(b):正向传输工况B;(c):反向传输工况A;(d):反向传输工况B。
[0054] 图5是k=0.3、0.5、0.7、0.9时,满足电流有效值最小控制的D1关于 的关系曲线。
[0055] 图6是传统移相控制的实施框图。
[0056] 图7是电流有效值最小控制方法的实施框图。

具体实施方式

[0057] 根据发明内容部分提供的控制方法分析步骤以及由表1提供的满足控制目标的D1关于 的表达式,图5给出了当k=0.3、0.5、0.7、0.9时,D1关于 的控制曲线。控制器实现本专利提出的优化控制方法的具体实施方式如图7所示。
[0058] a)、控制器的电压控制模块通过对负载侧电压(V2)和参考电压(V2ref)的误差进行反馈控制,得到移相比
[0059] b)、读入a)结果,根据表1得到一次侧桥臂电压的占空比D1:
[0060] 当 的范围在 时,
[0061] 当 的范围在 时,
[0062]
[0063] 当 的范围在 时,
[0064]
[0065] 当 的范围在 和 时,D1=1;
[0066] c)、将步骤a)、b)得到的 和D1输入开关信号产生模块,产生相应的开关信号,控制主电路中开关器件的通断。
[0067] 图6为传统移相控制的实施框图,由图6、图7对比可知,本专利提供的新型控制方法在现有的电压控制模块和开关信号产生模块之间增加了一个D1计算模块。