一种无级变速动力轴承转让专利

申请号 : CN201510156710.8

文献号 : CN104864051B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 袁廷华

申请人 : 袁廷华

摘要 :

本发明公开了一种无级变速动力轴承,包括有轴承主动内圈,轴承从动外圈和活齿总成;轴承主动内圈的外周设置有一圈活齿槽,活齿总成一一嵌入对应的活齿槽内,且活齿槽底部与高压进油口连通;轴承从动外圈的内周面为变径面,且变径面被均分成多个等分部,每个等分部的变径大小和方向相等,活齿总成的外端部与变径面贴合。本发明能使轴承在转动过程中把轴承内圈的动力异步传递到轴承外圈,通过高压油压力的调节能实现无级变速,能实现高效率、大扭矩、无级变速传动,同时具有径向动力平衡、噪声小,结构紧凑、体积小,制造成本低的优点。

权利要求 :

1.一种无级变速动力轴承,其特征在于:包括有轴承主动内圈,轴承从动外圈和活齿总成;所述的轴承主动内圈的外周设置有一圈活齿槽,所述的活齿总成一一嵌入对应的活齿槽内,且活齿槽底部与高压进油口连通;所述的轴承从动外圈的内周面为变径面,且变径面被均分成多个等分部,每个等分部的变径大小和方向相等,所述的活齿总成的外端部与变径面贴合。

2.根据权利要求1所述的一种无级变速动力轴承,其特征在于:所述的活齿总成的每个活齿包括有活齿支撑体和连接于活齿支撑体外端的滚柱活齿,所述的活齿支撑体与活齿槽相对的侧部开有多个槽口。

3.根据权利要求1所述的一种无级变速动力轴承,其特征在于:所述的无级变速动力轴承还包括有活齿变速系统;活齿变速系统包括有速比控制单元,分别与速比控制单元连接的高压油泵、轴承从动外圈速度传感器、速比给定信号输入端、轴承主动内圈转速信号输入端;所述的高压油泵的高压出油口与高压进油口连通,所述的轴承从动外圈速度传感器设置于轴承从动外圈上,且所述的速比给定信号输入端、轴承主动内圈转速信号输入端与系统控制中心连接。

4.根据权利要求1所述的一种无级变速动力轴承,其特征在于:所述的轴承从动外圈的外周面为动力输出面,为齿牙、滚柱或圆周面形式。

5.根据权利要求1或3所述的一种无级变速动力轴承,其特征在于:所述的高压进油口设置于轴承主动内圈上,且轴承主动内圈上设置有高压油路,所述的高压进油口通过高压油路与活齿槽底部连通。

说明书 :

一种无级变速动力轴承

技术领域

[0001] 本发明涉及机械传动领域,具体是一种带有离合功能的无级变速动力轴承。

背景技术

[0002] 目前工业上用的变速器大部分是速比固定的变速器;汽车上大部分配备的有档自动变速器(AT),传动效率低、制作复杂、成本高;现有的无极变速器(CVT)的主、从动轮靠摩擦来传递动力,这种传递方式不能实现大扭矩动力传输。

发明内容

[0003] 本发明要解决的技术问题是提供一种无级变速动力轴承,能使轴承在转动过程中把轴承内圈的动力异步传递到轴承外圈,通过高压油压力的调节能实现无级变速。
[0004] 本发明的技术方案为:
[0005] 一种无级变速动力轴承,包括有轴承主动内圈,轴承从动外圈和活齿总成;所述的轴承主动内圈的外周设置有一圈活齿槽,所述的活齿总成一一嵌入对应的活齿槽内,且活齿槽底部与高压进油口连通;所述的轴承从动外圈的内周面为变径面,且变径面被均分成多个等分部,每个等分部的变径大小和方向相等,所述的活齿总成的外端部与变径面贴合。
[0006] 根据权利要求1所述的一种无级变速动力轴承,所述的活齿总成的每个活齿包括有活齿支称体和连接于活齿支称体外端的滚柱活齿,所述的活齿支称体与活齿槽相对的侧部开有多个槽口。
[0007] 所述的无级变速动力轴承还包括有活齿变速系统;活齿变速系统包括有速比控制单元,分别与速比控制单元连接的高压油泵、轴承从动外圈速度传感器、速比给定信号输入端、轴承主动内圈转速信号输入端;所述的高压油泵的高压出油口与高压进油口连通,所述的轴承从动外圈速度传感器设置于轴承从动外圈上,且所述的速比给定信号输入端、轴承主动内圈转速信号输入端与系统控制中心连接。
[0008] 所述的轴承从动外圈的外周面为动力输出面,为齿牙、滚柱或圆周面形式。
[0009] 所述的高压进油口设置于轴承主动内圈上,且轴承主动内圈上设置有高压油路,所述的高压进油口通过高压油路与活齿槽底部连通。
[0010] 本发明的优点:
[0011] 本发明中的活齿总成与变径面接触,使得本发明的无级变速动力轴承能够提供较大扭矩输出;本发明中的变径面的等分部为多个,每个等分部的变径大小和方向相等,所以传递动力相对于圆心径向平衡,没有偏心力。
[0012] 本发明能使轴承在转动过程中把轴承内圈的动力异步传递到轴承外圈,通过高压油压力的调节能实现无级变速,能实现高效率、大扭矩、无级变速传动,同时具有径向动力平衡、噪声小,结构紧凑、体积小,制造成本低的优点。

附图说明

[0013] 图1是本发明的结构示意图。
[0014] 图2是本发明活齿总成的结构示意图。
[0015] 图3是本发明活齿变速系统的结构示意图。
[0016] 图4本发明旋转做功的受力分析图。
[0017] 图5本发明活齿总成与变径面部分受力分析图,其中,21表示活齿在A弧段与变径面接触点的弧面切线21,22 表示弧面切线21的垂直线,23 表示活齿在A弧段与变径面接触点到轴承主动内圈1圆心的连线。
[0018] 图6是本发明变速控制运算流程框图。

具体实施方式

[0019] 见图1,一种无级变速动力轴承,包括有轴承主动内圈1,轴承从动外圈2、活齿总成3和活齿变速系统;轴承主动内圈1的外周设置有一圈活齿槽4,活齿总成3一一嵌入对应的活齿槽4内,且活齿槽4底部与轴承主动内圈上的高压进油口5通过高压油路6连通;轴承从动外圈2的内周面为变径面7,外周面为动力输出面8,为齿牙、滚柱或圆周面形式,且变径面被均分成三个等分部,每个等分部的变径大小和方向相等,活齿总成3的外端部与变径面贴合。
[0020] 见图2,活齿总成3的每个活齿包括有活齿支称体31和连接于活齿支称体31外端的滚柱活齿32,活齿支称体31与活齿槽4相对的侧部均开有一列圆形槽口33。
[0021] 见图3,活齿变速系统包括有速比控制单元61,分别与速比控制单元61连接的高压油泵62、轴承从动外圈速度传感器63、速比给定信号输入端64、轴承主动内圈转速信号输入端65;高压油泵的高压出油口66与高压进油口5连通,速比控制单元61采集高压油泵62的油压信号,同时通过控制输出端子向高压油泵63输出控制信号,控制高压油的输出压力;轴承从动外圈速度传感器63设置于轴承从动外圈2上,用于采集轴承从动外圈2的转速信号;且速比给定信号输入端64、轴承主动内圈转速信号输入端65与系统控制中心67连接,用于获取轴承主动内圈1的转速信号和轴承主动内圈1与轴承从动外圈2的速比给定信号。
[0022] 见图4,A1、A2和A3弧段为变径面离圆心的距离由大到小的弧段,所以是三个轴承主动内圈1对轴承从动外圈2产生切向力的弧段;B1、B2和B3弧段为变径离圆心的距离由小到大的弧段,是活齿长度的恢复弧度段,是轴承主动内圈1对轴承从动外圈2不产生切向力的弧段。
[0023] 见图2和图5,当无级变速动力轴承工作时,轴承主动内圈1带动活齿总成3逆时针旋转,活齿总成3在活齿槽4底部高压油的压力作用下,压紧变径面。当活齿经过的变径面离圆心的距离由大到小变化时,活齿对变径面产生垂直于切面的作用力FB,即活齿底部的高压油压力FB,FB的大小为FB对轴承主动内圈1径向方向上的分解力FC和轴承主动内圈1的转矩力产生的切向力FA的合力;变径面同时对活齿总成产生的反作用力为FB″,反作用力FB″与FB大小相等、方向相反;当变径面离圆心的距离由小到大时,活齿在离心力和液压油的作用下向外伸展、恢复在变径面内的最大长度,由于弧道面背向旋转方向,活齿对变径面不产生旋转切向力;当变径面离圆心的距离不变时,活齿在变径面内自由转动;活齿在A弧段与变径面接触点的弧面切线21与接触点到轴承主动内圈1圆心的连线23有一夹角90°+α,调整活齿槽偏移角α,使活齿通过A段区只承受弧面垂直作用力,不承受切向力,减少活齿在活齿槽内移动时对侧壁的硬力。
[0024] 见图4和图5,主动内圈1带动活齿总成3逆时针旋转时,活齿总成3通过三个弧段A1、A2、A3对轴承从动外圈2施加旋转圆弧切向推力FA,当这个切向推力FA大于轴承从动外圈2与缠绕于轴承从动外圈2载体之间传动的静摩擦力时,轴承从动外圈2逆时针旋转;当轴承主动内圈1转动一圈对轴承从动外圈2做的功小于轴承从动外圈2转动一圈做的功时,即轴承主动内圈1的转速N大于轴承从动外圈2的转速M;加大高压油的压力,轴承主动内圈1对轴承从动外圈2产生的切向推力FA也伴随加大,使得轴承主动内圈1的转速N与轴承从动外圈2的转速M速度差变小,即传动速比提高;当轴承主动内圈1对轴承从动外圈2产生的切向推力FA小于或等于轴承从动外圈2与缠绕于轴承从动外圈2载体之间传动的静摩擦力时,轴承从动外圈2静止,轴承主动内圈1在轴承从动外圈2内空转;
[0025] 三个等分部弧面形状一致,所以切向推力FA也一致,轴承的径向力平衡。
[0026] 见图6,变速控制运算流程框图,71为变换速率计算器,计算出轴承主动内圈1与轴承从动外圈2的实际变换速率ES,72为速率误差比较器,计算出实际变换速率ES与系统给定的变换速率RP的误差值ER,再通过计算控制器73计算出需要对高压油泵63所需的控制输出信号值DO,使油泵输出压力调节到需要的传动速比所需要的压力。