具有模型预测控制的估计系统和方法转让专利

申请号 : CN201510136715.4

文献号 : CN104948328B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J.R.贝尔德霍A.本波拉D.伯纳迪尼R.龙J-S.陈

申请人 : 通用汽车环球科技运作有限责任公司

摘要 :

公开了具有模型预测控制的估计系统和方法。预测模块基于指示发动机状态的多个值和基于发动机特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数。参数估计模块基于指示发动机状态的多个值和第二组预定值确定车辆的一个或多个估计的操作参数。成本模块基于预测发动机操作参数确定用于可能目标值组的成本。选择模块基于成本从包括可能目标值组和N个其他可能目标值组的群组中选择可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值。

权利要求 :

1.一种用于车辆的发动机控制系统,包括:

预测模块,所述预测模块基于指示所述发动机的状态的多个值和基于所述发动机的特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数;

参数估计模块,所述参数估计模块基于所述预测模块所用的指示所述发动机的状态的多个值和第二组预定值确定所述车辆的一个或多个估计的操作参数;

成本模块,所述成本模块基于所述预测发动机操作参数确定用于所述可能目标值组的成本;

选择模块,所述选择模块基于所述成本从包括所述可能目标值组和N个其他可能目标值组的群组中选择可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值;以及致动器模块,所述致动器模块基于所述目标值中的一个值来控制发动机致动器。

2.如权利要求1所述的发动机控制系统,其进一步包括:升压致动器模块,所述升压致动器模块基于所述目标值中的第二值控制涡轮增压器的废气门的开度;

排气再循环致动器模块,所述排气再循环致动器模块基于所述目标值中的第三值控制排气再循环阀的开度;以及相位器致动器模块,所述相位器致动器模块分别基于所述目标值中的第四值和第五值控制进气门和排气门定相,其中所述致动器模块基于所述目标值中的所述一个值来控制节气门阀的开度。

3.如权利要求1所述的发动机控制系统,其中:

所述预测模块基于以下关系来产生用于所述可能目标值组的所述预测发动机操作参数:,

其中y(k)是包括用于时间k的所述预测发动机操作参数的向量,C是包括基于所述发动机的特征设置的所述第一组预定值的矩阵,并且x(k)是包括指示用于所述时间k的所述发动机的状态的所述多个值的向量;以及所述参数估计模块基于以下关系来确定所述一个或多个估计的操作参数:,

其中E(k)是包括用于所述时间k的所述一个或多个估计的操作参数的向量并且C2是包括所述第二组预定值的矩阵。

4.如权利要求3所述的发动机控制系统,其中所述预测模块基于根据所述发动机的特征设置的第三组预定值、指示所述发动机的状态的第二组多个值、基于所述发动机的特征设置的第四组预定值以及所述可能目标值组来产生指示用于所述时间k的所述发动机的状态的多个值。

5.如权利要求4所述的发动机控制系统,其中所述预测模块基于以下关系来产生指示用于所述时间k的所述发动机的状态的多个值:,

其中是x(k)是包括指示用于所述时间k的所述发动机的状态的多个值的向量,A是包括基于所述发动机的特征设置的第三组预定值的矩阵,x(k-1)是包括指示在所述时间k之前的先前时间k-1确定的所述发动机的状态的第二组多个值的向量,B是包括基于所述发动机的特征设置的第四组预定值的矩阵,并且u(k-1)是包括用于所述先前时间k-1的可能目标值的向量。

6.如权利要求1所述的发动机控制系统,其中所述一个或多个估计的操作参数包括排气压力和排气温度中的至少一个。

7.如权利要求1所述的发动机控制系统,其中所述一个或多个估计的操作参数包括涡轮增压器速度。

8.如权利要求1所述的发动机控制系统,其中所述一个或多个估计的操作参数包括排气再循环流速。

9.如权利要求1所述的发动机控制系统,其进一步包括:序列确定模块,所述序列确定模块基于发动机扭矩请求确定所述可能目标值组和所述N个其他可能目标值组。

10.如权利要求1所述的发动机控制系统,其中:

所述预测模块基于指示所述发动机的状态的所述多个值和基于所述发动机的特征设置的所述第一组预定值产生分别用于所述N个其他可能目标值组的N个其他预测发动机操作参数组;

所述成本模块分别基于所述N个其他预测发动机操作参数组确定用于所述N个其他可能目标值组的N个其他成本;以及当用于所述可能目标值组的所述成本小于所述N个其他成本时所述选择模块从群组选择所述可能目标值组。

11.一种用于车辆的发动机控制方法,包括:

基于指示所述发动机的状态的多个值和基于所述发动机的特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数;

基于所述指示所述发动机的状态的多个值和第二组预定值确定所述车辆的一个或多个估计的操作参数;

基于所述预测发动机操作参数确定用于所述可能目标值组的成本;

基于所述成本从包括可能目标值组和N个其他可能目标值组的群组中选择所述可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值;以及基于所述目标值中的一个值来控制发动机致动器。

12.如权利要求11所述的发动机控制方法,其进一步包括:基于所述目标值中的第二值控制涡轮增压器的废气门的开度;

基于所述目标值中的第三值控制排气再循环阀的开度;以及分别基于所述目标值中的第四值和第五值控制进气门和排气门定相,其中所述发动机致动器是节气门阀。

13.如权利要求11所述的发动机控制方法,其进一步包括:基于以下关系来产生用于所述可能目标值组的所述预测发动机操作参数:,

其中y(k)是包括用于时间k的所述预测发动机操作参数的向量,C是包括基于所述发动机的特征设置的所述第一组预定值的矩阵,并且x(k)是包括指示用于所述时间k的所述发动机的状态的所述多个值的向量;以及基于以下关系来确定所述一个或多个估计的操作参数:

其中E(k)是包括用于所述时间k的所述一个或多个估计的操作参数的向量并且C2是包括所述第二组预定值的矩阵。

14.如权利要求13所述的发动机控制方法,其进一步包括基于根据所述发动机的特征设置的第三组预定值、指示所述发动机的状态的第二组多个值、基于所述发动机的特征设置的第四组预定值以及所述可能目标值组来产生指示用于所述时间k的所述发动机的状态的所述多个值。

15.如权利要求14所述的发动机控制方法,其进一步包括基于以下关系来产生指示用于所述时间k的所述发动机的状态的所述多个值:,

其中是x(k)是包括指示用于所述时间k的所述发动机的状态的所述多个值的向量,A是包括基于所述发动机的特征设置的所述第三组预定值的矩阵,x(k-1)是包括指示在所述时间k之前的先前时间k-1确定的所述发动机的状态的所述第二组多个值的向量,B是包括基于所述发动机的特征设置的所述第四组预定值的矩阵,并且u(k-1)是包括用于所述先前时间k-1的可能目标值的向量。

16.如权利要求11所述的发动机控制方法,其中所述一个或多个估计的操作参数包括排气压力和排气温度中的至少一个。

17.如权利要求11所述的发动机控制方法,其中所述一个或多个估计的操作参数包括涡轮增压器速度。

18.如权利要求11所述的发动机控制方法,其中所述一个或多个估计的操作参数包括排气再循环流速。

19.如权利要求11所述的发动机控制方法,其进一步包括基于发动机扭矩请求确定所述可能目标值组和所述N个其他可能目标值组。

20.如权利要求11所述的发动机控制方法,其进一步包括:基于指示所述发动机的状态的多个值和基于所述发动机的特征设置的所述第一组预定值产生分别用于所述N个其他可能目标值组的N个其他预测发动机操作参数组;

分别基于所述N个其他所述预测发动机操作参数组确定用于所述N个其他可能目标值组的N个其他成本;以及当用于所述可能目标值组的成本小于所述N个其他成本时从群组选择所述可能目标值组。

说明书 :

具有模型预测控制的估计系统和方法

[0001] 相关申请的交叉引用
[0002] 此申请涉及2014年3月26日提交的美国专利申请号14/225,502、2014年3月26日提交的美国专利申请号14/225,516、2014年3月26日提交的美国专利申请号14/225,569、2014年3月26日提交的美国专利申请号14/225,817、2014年3月26日提交的美国专利申请号14/225,896、2014年3月26日提交的美国专利申请号14/225,531、2014年3月26日提交的美国专利申请号14/225,507、2014年3月26日提交的美国专利申请号14/225,808、2014年3月26日提交的美国专利申请号14/225,587、2014年3月26日提交的美国专利申请号14/225,492、
2014年3月26日提交的美国专利申请号14/226,006、2014年3月26日提交的美国专利申请号
14/226,121、2014年3月26日提交的美国专利申请号14/225,496以及2014年3月26日提交的美国专利申请号14/225,891。以上申请的全部披露内容以引用的方式并入本文。

技术领域

[0003] 本公开涉及内燃发动机,并且更具体来说,涉及用于车辆的发动机控制系统和方法。

背景技术

[0004] 本文所提供的背景技术描述的目的在于从总体上介绍本公开的背景。当前提及的发明人的工作——以在此背景技术部分中所描述的为限——以及在提交时否则可能不构成现有技术的该描述的各方面,既不明示地也不默示地被承认为是针对本公开的现有技术。
[0005] 内燃发动机在汽缸内燃烧空气与燃料混合物以驱动活塞,这产生驱动扭矩。进入发动机的空气流量通过节气门来调节。更具体来说,节气门调整节气门面积,这增加或减少进入发动机的空气流量。当节气门面积增加时,进入发动机的空气流量增加。燃料控制系统调整燃料被喷射的速率从而将所需的空气/燃料混合物提供到汽缸和/或实现所需的扭矩输出。增加提供到汽缸的空气与燃料的量增加发动机的扭矩输出。
[0006] 在火花点火发动机中,火花开始提供到汽缸的空气/燃料混合物的燃烧。在压缩点火发动机中,汽缸中的压缩燃烧提供到汽缸的空气/燃料混合物。火花正时和空气流量可以是用于调整火花点火发动机的扭矩输出的主要机构,而燃料流可以是用于调整压缩点火发动机的扭矩输出的主要机构。
[0007] 已经开发出发动机控制系统来控制发动机输出扭矩以实现所需扭矩。然而,传统的发动机控制系统并不如需要一样精确地控制发动机输出扭矩。另外,传统的发动机控制系统并不对控制信号提供快速响应或者在影响发动机输出扭矩的各种设备之间协调发动机扭矩控制。

发明内容

[0008] 在一个特征中,披露用于车辆的发动机控制系统。预测模块基于指示发动机状态的多个值和基于发动机特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数。参数估计模块基于指示发动机状态的多个值和第二组预定值确定车辆的一个或多个估计的操作参数。成本模块基于预测发动机操作参数确定用于可能目标值组的成本。选择模块基于成本从包括可能目标值组和N个其他可能目标值组的群组中选择可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值。致动器模块基于目标值中的一个值来控制发动机致动器。
[0009] 在其他特征中:基于目标值中的第二值控制涡轮增压器的废气门的开度的升压致动器模块;基于目标值中的第三值控制排气再循环(EGR)阀的开度的EGR致动器模块;以及分别基于目标值中的第四值和第五值控制进气门和排气门定相的相位器致动器模块,其中致动器模块基于目标值中的一个值来控制节气门阀的开度。
[0010] 在另外其他特征中,预测模块基于关系 来产生用于可能目标值组的预测发动机操作参数,其中y(k)是包括用于时间k的预测发动机操作参数的向量,C是包括基于发动机特征设置的第一组预定值的矩阵,并且x(k)是包括指示用于时间k的发动机状态的多个值的向量;并且参数估计模块基于关系 来确定一个或多个估计的
操作参数,其中E(k)是包括用于时间k的一个或多个估计的操作参数的向量并且C2是包括第二组预定值的矩阵。
[0011] 在另外其他特征中,预测模块基于根据发动机特征设置的第三组预定值、指示发动机状态的第二组多个值、基于发动机特征设置的第四组预定值以及可能目标值组来产生指示用于时间k的发动机状态的多个值。
[0012] 在其他特征中,预测模块基于关系 来产生指示用于时间k的发动机状态的多个值,其中是x(k)是包括指示用于时间k的发动机状态的多个值的向量,A是包括基于发动机特征设置的第三组预定值的矩阵,x(k-1)是包括指示在时间k之前的先前时间k-1确定的发动机状态的第二组多个值的向量,B是包括基于发动机特征设置的第四组预定值的矩阵,并且u(k)是包括用于先前时间k-1的可能目标值的向量。
[0013] 在另外其他特征中,一个或多个估计的操作参数包括排气压力和排气温度中的至少一个。
[0014] 在另外其他特征中,一个或多个估计的操作参数包括涡轮增压器速度。
[0015] 在其他特征中,一个或多个估计的操作参数包括排气再循环(EGR)流速。
[0016] 在另外其他特征中,序列确定模块基于发动机扭矩请求确定可能目标值组和N个其他可能目标值组。
[0017] 在其他特征中:预测模块基于指示发动机状态的多个值和基于发动机特征设置的第一组预定值产生分别用于N个其他可能目标值组的N个其他预测发动机操作参数组;成本模块分别基于N个其他预测发动机操作参数组确定用于N个其他可能目标值组的N个其他成本;并且当用于可能目标值组的成本小于N个其他成本时选择模块从群组选择可能目标值组。
[0018] 在一个特征中,用于车辆的发动机控制方法包括:基于指示发动机状态的多个值和基于发动机特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数;基于指示发动机状态的多个值和第二组预定值确定车辆的一个或多个估计的操作参数;基于预测发动机操作参数确定用于可能目标值组的成本;基于成本从包括可能目标值组和N个其他可能目标值组的群组中选择可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值;以及基于目标值中的一个值来控制发动机致动器。
[0019] 在其他特征中,发动机控制方法进一步包括:基于目标值中的第二值控制涡轮增压器的废气门的开度;基于目标值中的第三值控制排气再循环(EGR)阀的开度;以及分别基于目标值中的第四值和第五值控制进气门和排气门定相。发动机致动器是节气门阀。
[0020] 在另外其他特征中,发动机控制方法进一步包括:基于关系 来产生用于可能目标值组的预测发动机操作参数,其中y(k)是包括用于时间k的预测发动机操作参数的向量,C是包括基于发动机特征设置的第一组预定值的矩阵,并且x(k)是包括指示用于时间k的发动机状态的多个值的向量;以及基于关系 来确定一个或多个估
计的操作参数,其中E(k)是包括用于时间k的一个或多个估计的操作参数的向量并且C2是包括第二组预定值的矩阵。
[0021] 在另外其他特征中,发动机控制方法进一步包括:基于根据发动机特征设置的第三组预定值、指示发动机状态的第二组多个值、基于发动机特征设置的第四组预定值以及可能目标值组来产生指示用于时间k的发动机状态的多个值。
[0022] 在其他特征中,发动机控制方法进一步包括基于关系来产生指示用于时间k的发动机状态的多个值,其中是x(k)是包括指示用于时间k的发动机状态的多个值的向量,A是包括基于发动机特征设置的第三组预定值的矩阵,x(k-1)是包括指示在时间k之前的先前时间k-1确定的发动机状态的第二组多个值的向量,B是包括基于发动机特征设置的第四组预定值的矩阵,并且u(k)是包括用于先前时间k-1的可能目标值的向量。
[0023] 在另外其他特征中,一个或多个估计的操作参数包括排气压力和排气温度中的至少一个。
[0024] 在其他特征中,一个或多个估计的操作参数包括涡轮增压器速度。
[0025] 在其他特征中,一个或多个估计的操作参数包括排气再循环(EGR)流速。
[0026] 在另外其他特征中,发动机控制方法进一步包括基于发动机扭矩请求确定可能目标值组和N个其他可能目标值组。
[0027] 在其他特征中,发动机控制方法进一步包括:基于指示发动机状态的多个值和基于发动机特征设置的第一组预定值产生分别用于N个其他可能目标值组的N个其他预测发动机操作参数组;分别基于N个其他预测发动机操作参数组确定用于N个其他可能目标值组的N个其他成本;以及当用于可能目标值组的成本小于N个其他成本时从群组选择可能目标值组。
[0028] 本发明包括以下方案:
[0029] 1. 一种用于车辆的发动机控制系统,包括:
[0030] 预测模块,所述预测模块基于指示所述发动机的状态的多个值和基于所述发动机的特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数;
[0031] 参数估计模块,所述参数估计模块基于指示所述发动机的状态的多个值和第二组预定值确定所述车辆的一个或多个估计的操作参数;
[0032] 成本模块,所述成本模块基于所述预测发动机操作参数确定用于所述可能目标值组的成本;
[0033] 选择模块,所述选择模块基于所述成本从包括所述可能目标值组和N个其他可能目标值组的群组中选择可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值;以及
[0034] 致动器模块,所述致动器模块基于所述目标值中的一个值来控制发动机致动器。
[0035] 2. 如方案1所述的发动机控制系统,其进一步包括:
[0036] 升压致动器模块,所述升压致动器模块基于所述目标值中的第二值控制涡轮增压器的废气门的开度;
[0037] 排气再循环(EGR)致动器模块,所述EGR致动器模块基于所述目标值中的第三值控制EGR阀的开度;以及
[0038] 相位器致动器模块,所述相位器致动器模块分别基于所述目标值中的第四值和第五值控制进气门和排气门定相,
[0039] 其中所述致动器模块基于所述目标值中的所述一个值来控制所述节气门阀的开度。
[0040] 3. 如方案1所述的发动机控制系统,其中:
[0041] 所述预测模块基于以下关系来产生用于所述可能目标值组的所述预测发动机操作参数:
[0042] ,
[0043] 其中y(k)是包括用于时间k的所述预测发动机操作参数的向量,C是包括基于所述发动机的特征设置的所述第一组预定值的矩阵,并且x(k)是包括指示用于所述时间k的所述发动机的状态的所述多个值的向量;以及
[0044] 所述参数估计模块基于以下关系来确定所述一个或多个估计的操作参数:
[0045] ,
[0046] 其中E(k)是包括用于所述时间k的所述一个或多个估计的操作参数的向量并且C2是包括所述第二组预定值的矩阵。
[0047] 4. 如方案3所述的发动机控制系统,其中所述预测模块基于根据所述发动机的特征设置的第三组预定值、指示所述发动机的状态的第二组多个值、基于所述发动机的特征设置的第四组预定值以及所述可能目标值组来产生指示用于所述时间k的所述发动机的状态的多个值。
[0048] 5. 如方案4所述的发动机控制系统,其中所述预测模块基于以下关系来产生指示用于所述时间k的所述发动机的状态的多个值:
[0049] ,
[0050] 其中是x(k)是包括指示用于所述时间k的所述发动机的状态的多个值的向量,A是包括基于所述发动机的特征设置的第三组预定值的矩阵,x(k-1)是包括指示在所述时间k之前的先前时间k-1确定的所述发动机的状态的第二组多个值的向量,B是包括基于所述发动机的特征设置的第四组预定值的矩阵,并且u(k)是包括用于所述先前时间k-1的可能目标值的向量。
[0051] 6. 如方案1所述的发动机控制系统,其中所述一个或多个估计的操作参数包括排气压力和排气温度中的至少一个。
[0052] 7. 如方案1所述的发动机控制系统,其中所述一个或多个估计的操作参数包括涡轮增压器速度。
[0053] 8. 如方案1所述的发动机控制系统,其中所述一个或多个估计的操作参数包括排气再循环(EGR)流速。
[0054] 9. 如方案1所述的发动机控制系统,其进一步包括:
[0055] 序列确定模块,所述序列确定模块基于发动机扭矩请求确定所述可能目标值组和所述N个其他可能目标值组。
[0056] 10. 如方案1所述的发动机控制系统,其中:
[0057] 所述预测模块基于指示所述发动机的状态的所述多个值和基于所述发动机的特征设置的所述第一组预定值产生分别用于所述N个其他可能目标值组的N个其他预测发动机操作参数组;
[0058] 所述成本模块分别基于所述N个其他预测发动机操作参数组确定用于所述N个其他可能目标值组的N个其他成本;以及
[0059] 当用于所述可能目标值组的所述成本小于所述N个其他成本时所述选择模块从群组选择所述可能目标值组。
[0060] 11. 一种用于车辆的发动机控制方法,包括:
[0061] 基于指示所述发动机的状态的多个值和基于所述发动机的特征设置的第一组预定值产生用于可能目标值组的预测发动机操作参数;
[0062] 基于指示所述发动机的状态的多个值和第二组预定值确定所述车辆的一个或多个估计的操作参数;
[0063] 基于所述预测发动机操作参数确定用于所述可能目标值组的成本;
[0064] 基于所述成本从包括可能目标值组和N个其他可能目标值组的群组中选择所述可能目标值组,其中N是大于零的整数,并且基于选定的可能目标值组来设置目标值;以及[0065] 基于所述目标值中的一个值来控制发动机致动器。
[0066] 12. 如方案11所述的发动机控制方法,其进一步包括:
[0067] 基于所述目标值中的第二值控制涡轮增压器的废气门的开度;
[0068] 基于所述目标值中的第三值控制排气再循环(EGR)阀的开度;以及
[0069] 分别基于所述目标值中的第四值和第五值控制进气门和排气门定相,[0070] 其中所述发动机致动器是节气门阀。
[0071] 13. 如方案11所述的发动机控制方法,其进一步包括:
[0072] 基于以下关系来产生用于所述可能目标值组的所述预测发动机操作参数:
[0073] ,
[0074] 其中y(k)是包括用于时间k的所述预测发动机操作参数的向量,C是包括基于所述发动机的特征设置的所述第一组预定值的矩阵,并且x(k)是包括指示用于所述时间k的所述发动机的状态的所述多个值的向量;以及
[0075] 基于以下关系来确定所述一个或多个估计的操作参数:
[0076] ,
[0077] 其中E(k)是包括用于所述时间k的所述一个或多个估计的操作参数的向量并且C2是包括所述第二组预定值的矩阵。
[0078] 14. 如方案13所述的发动机控制方法,其进一步包括基于根据所述发动机的特征设置的第三组预定值、指示所述发动机的状态的第二组多个值、基于所述发动机的特征设置的第四组预定值以及所述可能目标值组来产生指示用于所述时间k的所述发动机的状态的所述多个值。
[0079] 15. 如方案14所述的发动机控制方法,其进一步包括基于以下关系来产生指示用于所述时间k的所述发动机的状态的所述多个值:
[0080] ,
[0081] 其中是x(k)是包括指示用于所述时间k的所述发动机的状态的所述多个值的向量,A是包括基于所述发动机的特征设置的所述第三组预定值的矩阵,x(k-1)是包括指示在所述时间k之前的先前时间k-1确定的所述发动机的状态的所述第二组多个值的向量,B是包括基于所述发动机的特征设置的所述第四组预定值的矩阵,并且u(k)是包括用于所述先前时间k-1的可能目标值的向量。
[0082] 16. 如方案11所述的发动机控制方法,其中所述一个或多个估计的操作参数包括排气压力和排气温度中的至少一个。
[0083] 17. 如方案11所述的发动机控制方法,其中所述一个或多个估计的操作参数包括涡轮增压器速度。
[0084] 18. 如方案11所述的发动机控制方法,其中所述一个或多个估计的操作参数包括排气再循环(EGR)流速。
[0085] 19. 如方案11所述的发动机控制方法,其进一步包括基于发动机扭矩请求确定所述可能目标值组和所述N个其他可能目标值组。
[0086] 20. 如方案11所述的发动机控制方法,其进一步包括:
[0087] 基于指示所述发动机的状态的多个值和基于所述发动机的特征设置的所述第一组预定值产生分别用于所述N个其他可能目标值组的N个其他预测发动机操作参数组;
[0088] 分别基于所述N个其他所述预测发动机操作参数组确定用于所述N个其他可能目标值组的N个其他成本;以及
[0089] 当用于所述可能目标值组的成本小于所述N个其他成本时从群组选择所述可能目标值组。
[0090] 本公开的其他适用领域将从详细描述、权利要求书以及图式变得显而易见。详细描述和具体实例仅意欲用于说明目的而非意欲限制本公开的范围。

附图说明

[0091] 本公开将从详细描述和附图变得更完整理解,其中:
[0092] 图1是根据本公开的示例性发动机系统的功能方框图;
[0093] 图2是根据本公开的示例性发动机控制系统的功能方框图;
[0094] 图3是根据本公开的示例性空气控制模块的功能方框图;以及
[0095] 图4包括描绘根据本公开的使用模型预测控制来估计操作参数和控制节气门阀、进气门和排气门定相、废气门以及排气再循环(EGR)阀的示例性方法的流程图。
[0096] 图中,可以重复使用参考数字以指示类似和/或相同元件。

具体实施方式

[0097] 发动机控制模块(ECM)控制发动机的扭矩输出。更具体来说,ECM分别基于根据所请求的扭矩量确定的目标值来控制发动机的致动器。例如,ECM基于目标进气和排气相位器角来控制进气和排气凸轮轴定相、基于目标节气门开度来控制节气门阀、基于目标EGR开度控制排气再循环(EGR)阀并且基于目标废气门占空比控制涡轮增压器的废气门。
[0098] ECM可以单独地使用多个单输入单输出(SISO)控制器(诸如比例积分微分(PID)控制器)来确定目标值。然而,当使用多个SISO控制器时,可以设置目标值以在有损可能的燃料消耗减少的情况下维持系统稳定性。此外,个别SISO控制器的校准和设计可能是昂贵且耗时的。
[0099] 本公开的ECM使用模型预测控制(MPC)来产生目标值。ECM基于发动机扭矩请求来识别目标值的可能组。ECM确定用于每个可能组的预测参数。ECM可以基于可能组的预测参数来确定与每个可能组的使用相关的成本。ECM可以选择可能组中具有最低成本的一个组,并且使用选定的可能组的目标值来设置用于控制发动机致动器的目标值。在各个实施中,作为识别目标值的可能组并且确定每个组的成本的替代或添加,ECM可以产生代表目标值的可能组的成本的面。ECM随后可以基于成本面的斜率来识别具有最低成本的可能组。
[0100] ECM基于根据发动机特征产生的数学模型和指示发动机状态的值确定用于可能组的预测参数。本公开的ECM还基于指示发动机状态的值确定车辆的一个或多个估计的操作参数。基于与用来确定预测参数的那些值相同的值确定估计的操作参数减少了与确定估计的操作参数相关的计算成本。另外,无需包括一个或多个传感器来测量那些操作参数。
[0101] 现在参照图1,呈现示例性发动机系统100的功能方框图。发动机系统100包括基于来自驾驶者输入模块104的驾驶者输入燃烧空气/燃料混合物以产生用于车辆的驱动扭矩的发动机102。发动机102可以是汽油火花点火内燃发动机。
[0102] 空气通过节气门阀112被吸入到进气歧管110中。仅举例而言,节气门阀112可以包括具有可旋转叶片的蝶形阀。发动机控制模块(ECM)114控制调节节气门阀112的开度以控制吸入到进气歧管110中的空气量的节气门致动器模块116。
[0103] 来自进气歧管110的空气被吸入到发动机102的汽缸中。虽然发动机102可以包括多个汽缸,但是为了说明目的,示出单个代表性汽缸118。仅举例而言,发动机102可以包括2、3、4、5、6、8、10和/或12个汽缸。ECM 114可以指示汽缸致动器模块120选择性地停用一些汽缸,这在某些发动机操作条件下可以提高燃料经济性。
[0104] 发动机102可以使用四冲程循环来操作。以下描述的四冲程可以被称为进气冲程、压缩冲程、燃烧冲程以及排气冲程。在曲轴(未示出)的每个旋转过程中,四个冲程中的两个在汽缸118内发生。因此,汽缸118经历所有四个冲程必需两次曲轴旋转。
[0105] 在进气冲程期间,来自进气歧管110的空气通过进气门122被吸入到汽缸118中。ECM 114控制调节燃料喷射以实现目标空气/燃料比的燃料致动器模块124。燃料可以在中心位置或者在多个位置(诸如靠近每个汽缸的进气门122)喷射到进气歧管110中。在各个实施(未示出)中,燃料可以直接喷射到汽缸中或者喷射到与汽缸相关的混合腔室中。燃料致动器模块124可以暂停对被停用的汽缸的燃料喷射。
[0106] 在汽缸118中,喷射的燃料与空气混合并且产生空气/燃料混合物。在压缩冲程期间,汽缸118内的活塞(未示出)压缩空气/燃料混合物。火花致动器模块126基于来自ECM 114的点燃空气/燃料混合物的信号来激励汽缸118中的火花塞128。火花的正时可以相对于活塞位于其最顶部位置(称为上止点(TDC))的时间来指定。
[0107] 火花致动器模块126可以由指定在TDC之前或之后多久的正时信号来控制产生火花。因为活塞位置与曲轴旋转直接有关,所以火花致动器模块126的操作可以与曲轴角同步。产生火花可以称为点火事件。火花致动器模块126可以具有对于每次点火事件改变火花正时的能力。当火花正时在最后一次点火事件与下一次点火事件之间变化时,火花致动器模块126可以对于下一次点火事件改变火花正时。火花致动器模块126可以暂停对被停用的汽缸的火花提供。
[0108] 在燃烧冲程期间,空气/燃料混合物的燃烧驱动活塞离开TDC,由此驱动曲轴。燃烧冲程可以被定义为活塞到达TDC与活塞到达下止点(BDC)的时间之间的时间。在排气冲程期间,活塞开始移动离开BDC,并且通过排气门130排出燃烧副产物。燃烧副产物通过排气系统134从车辆排出。
[0109] 进气门122可以由进气凸轮轴140控制,而排气门130可以由排气凸轮轴142控制。在各个实施中,多个进气凸轮轴(包括进气凸轮轴140)可以控制用于汽缸118的多个进气门(包括进气门122)和/或可以控制多排汽缸(包括汽缸118)的进气门(包括进气门122)。类似地,多个排气凸轮轴(包括排气凸轮轴142)可以控制用于汽缸118的多个排气门和/或可以控制用于多排汽缸(包括汽缸118)的排气门(包括排气门130)。在各个其他实施中,进气门
122和/或排气门130可以由除凸轮轴以外的设备(诸如无凸轮的阀致动器)控制。汽缸致动器模块120可以通过使得进气门122和/或排气门130不能打开来停用汽缸118。
[0110] 进气门122打开的时间可以通过进气凸轮相位器148相对于活塞TDC而改变。排气门130打开的时间可以通过排气凸轮相位器150相对于活塞TDC而改变。相位器致动器模块158可以基于来自ECM 114的信号来控制进气凸轮相位器148和排气凸轮相位器150。在实施时,可变气门升程(未示出)也可以由相位器致动器模块158来控制。
[0111] 发动机系统100可以包括涡轮增压器,该涡轮增压器包括由流过排气系统134的热排气供以动力的热涡轮160-1。涡轮增压器还包括由涡轮160-1驱动的冷空气压缩机160-2。压缩机160-2压缩引入节气门阀112中的空气。在各个实施中,由曲轴驱动的增压器(未示出)可以压缩来自节气门阀112的空气并且将压缩的空气传递到进气歧管110。
[0112] 废气门162可以允许排气绕开涡轮160-1,由此减少由涡轮增压器提供的升压(进气空气压缩的量)。升压致动器模块164可以通过控制废气门162的开度来控制涡轮增压器的升压。在各个实施中,两个或更多个涡轮增压器可以被实施并且可以由升压致动器模块164来控制。
[0113] 空气冷却器(未示出)可以将来自压缩空气充量的热量转移到冷却介质(诸如发动机冷却液或空气)。使用发动机冷却液来冷却压缩空气充量的空气冷却器可以称为中间冷却器。使用空气来冷却压缩空气充量的空气冷却器可以称为充量空气冷却器。压缩空气充量可以例如通过压缩和/或从排气系统134的部件接收热量。尽管为了说明目的分开展示,但是涡轮160-1和压缩机160-2可以彼此附接,从而将进气空气置于紧密接近热排气。
[0114] 发动机系统100可以包括选择性地将排气重新引导回至进气歧管110的排气再循环(EGR)阀170。EGR阀170可以位于涡轮增压器的涡轮160-1的上游。EGR阀170可以由EGR致动器模块172基于来自ECM 114的信号来控制。
[0115] 曲轴的位置可以使用曲轴位置传感器180来测量。曲轴的旋转速度(发动机速度)可以基于曲轴位置来确定。发动机冷却液的温度可以使用发动机冷却液温度(ECT)传感器182来测量。ECT传感器182可以位于发动机102内或者在冷却液循环的其他位置处,诸如散热器(未示出)处。
[0116] 进气歧管110内的压力可以使用歧管绝对压力(MAP)传感器184来测量。在各个实施中,可以测量发动机真空(其是周围空气压力与进气歧管110内的压力之间的差)。流入到进气歧管110中的空气的质量流率可以使用空气质量流量(MAF)传感器186来测量。在各个实施中,MAF传感器186可以位于壳体(其也包括节气门阀112)中。
[0117] 节气门致动器模块116可以使用一个或多个节气门位置传感器(TPS)190来监控节气门阀112的位置。吸入到发动机102中的空气的周围温度可以使用进气温度(IAT)传感器192来测量。发动机系统100还可以包括一个或多个其他传感器193,诸如周围湿度传感器、一个或多个爆震传感器、压缩机出口压力传感器和/或节气门入口压力传感器、废气门位置传感器、EGR位置传感器和/或一个或多个其他适合的传感器。ECM 114可以使用来自传感器的信号来做出用于发动机系统100的控制决策。
[0118] ECM 114可以与变速器控制模块194通信以协调变速器(未示出)中的调档。例如,ECM 114可以在换档期间减少发动机扭矩。ECM 114可以与混合控制模块196通信以协调发动机102和电动机198的操作。
[0119] 电动机198也可以用作发电机,并且可以用来产生电能以供车辆电气系统使用和/或以供存储在电池中。在各个实施中,ECM 114、变速器控制模块194以及混合控制模块196的各种功能可以集成到一个或多个模块中。
[0120] 改变发动机参数的每个系统都可以称为发动机致动器。例如,节气门致动器模块116可以调整节气门阀112的开度以实现目标节气门打开面积。火花致动器模块126控制火花塞以实现相对于活塞TDC的目标火花正时。燃料致动器模块124控制燃料喷射器以实现目标加燃料参数。相位器致动器模块158可以分别控制进气凸轮相位器148和排气凸轮相位器
150以实现目标进气凸轮相位器角和目标排气凸轮相位器角。EGR致动器模块172可以控制EGR阀170以实现目标EGR打开面积。升压致动器模块164控制废气门162以实现目标废气门打开面积。汽缸致动器模块120控制汽缸停用以实现目标数量的启用的或停用的汽缸。
[0121] ECM 114产生用于发动机致动器的目标值以使得发动机102产生目标发动机输出扭矩。ECM 114使用模型预测控制来产生用于发动机致动器的目标值,如以下进一步论述。
[0122] 现在参照图2,呈现示例性发动机控制系统的功能方框图。ECM 114的示例性实施包括驾驶者扭矩模块202、车轴扭矩仲裁模块204以及推进扭矩仲裁模块206。ECM 114可以包括混合优化模块208。ECM 114还可以包括储备/负载模块220、扭矩请求模块224、空气控制模块228、火花控制模块232、汽缸控制模块236以及燃料控制模块240。
[0123] 驾驶者扭矩模块202可以基于来自驾驶者输入模块104的驾驶者输入255来确定驾驶者扭矩请求254。驾驶者输入255可以基于例如加速踏板的位置和制动踏板的位置。驾驶者输入255还可以基于巡航控制,该巡航控制可以是改变车辆速度以维持预定跟车间距的自适应巡航控制系统。驾驶者扭矩模块202可以存储加速踏板位置到目标扭矩的一个或多个映射并且可以基于选定的一个映射来确定驾驶者扭矩请求254。
[0124] 车轴扭矩仲裁模块204在驾驶者扭矩请求254与其他车轴扭矩请求256之间进行仲裁。车轴扭矩(车轮处的扭矩)可以由各种源(包括发动机和/或电动机)产生。例如,车轴扭矩请求256可以包括在检测到正车轮滑移时由牵引控制系统请求的扭矩减少。当车轴扭矩克服车轮与路面之间的摩擦时发生正车轮滑移,并且车轮开始与路面相反地滑移。车轴扭矩请求256还可以包括抵消负车轮滑移的扭矩增加请求,其中因为车轴扭矩为负而使得车辆的轮胎相对于路面沿另一方向滑移。
[0125] 车轴扭矩请求256还可以包括制动管理请求和车辆超速扭矩请求。制动管理请求可以减少车轴扭矩以确保车轴扭矩不会超出当车辆停止时保持住车辆的制动能力。车辆超速扭矩请求可以减少车轴扭矩以防止车辆超出预定速度。车轴扭矩请求256还可以由车辆稳定性控制系统产生。
[0126] 车轴扭矩仲裁模块204基于接收到的扭矩请求254与256之间的仲裁结果输出预测扭矩请求257和即时扭矩请求258。如以下所描述,来自车轴扭矩仲裁模块204的预测扭矩请求257和即时扭矩请求258可以在用于控制发动机致动器之前选择性地由ECM 114的其他模块来调整。
[0127] 一般而言,即时扭矩请求258可以是当前所需的车轴扭矩的量,而预测扭矩请求257可以是忽然可能需要的车轴扭矩的量。ECM 114控制发动机系统100以产生等于即时扭矩请求258的车轴扭矩。然而,目标值的不同组合可以产生相同的车轴扭矩。因此,ECM 114可以调整目标值以使得能够快速过渡到预测扭矩请求257,同时仍将车轴扭矩维持在即时扭矩请求258。
[0128] 在各个实施中,预测扭矩请求257可以基于驾驶者扭矩请求254来设置。即时扭矩请求258在一些情况下(诸如当驾驶者扭矩请求254使得车轮在冰面上滑移时)可以被设置成小于预测扭矩请求257。在此状况下,牵引控制系统(未示出)可以通过即时扭矩请求258请求减少,并且ECM 114减少到即时扭矩请求258的发动机扭矩输出。然而,一旦车轮滑移停止则ECM 114执行减少,因此发动机系统100可以迅速地恢复产生预测扭矩请求257。
[0129] 一般而言,即时扭矩请求258与(通常较高的)预测扭矩请求257之间的差异可以称为扭矩储备。扭矩储备可以代表发动机系统100可以开始以最小延迟产生的额外扭矩的量(高于即时扭矩请求258)。快速发动机致动器用来以最小延迟增加或减少当前车轴扭矩。快速发动机致动器与慢速发动机致动器相反地定义。
[0130] 一般而言,快速发动机致动器可以比慢速发动机致动器更迅速地改变车轴扭矩。慢速致动器可以比快速致动器更慢地响应于其相应的目标值的改变。例如,慢速致动器可以包括需要时间来响应于目标值的改变而从一个位置移动到另一个位置的机械部件。慢速致动器的特征还可以在于一旦慢速致动器开始实施改变的目标值则其使得车轴扭矩开始改变而花费的时间量。通常,此时间量对于慢速致动器而言将比对于快速致动器而言长。此外,即使在开始改变之后,车轴扭矩可能花费更长时间来完全响应慢速致动器中的改变。
[0131] 仅举例而言,火花致动器模块126可以是快速致动器。火花点火发动机可以通过施加火花来燃烧燃料,燃料包括例如汽油和乙醇。作为对比,节气门致动器模块116可以是慢速致动器。
[0132] 例如,如以上所描述,当火花正时在最后一次点火事件与下一次点火事件之间变化时,火花致动器模块126可以改变用于下一个点火事件的火花正时。作为对比,节气门开度的改变花费较长时间来影响发动机输出扭矩。节气门致动器模块116通过调整节气门阀112的叶片的角来改变节气门开度。因此,当用于节气门阀112的开度的目标值被改变时,由于节气门阀112响应于该改变从其前一位置移动到新位置而存在机械延迟。此外,基于节气门开度的空气流量改变在进气歧管110中经历空气输送延迟。此外,进气歧管110中增加的空气流量直到汽缸118在下一个进气冲程中接收额外空气、压缩额外空气并且开始燃烧冲程才被实现为发动机输出扭矩的增加。
[0133] 使用这些致动器作为实例,扭矩储备可以通过将节气门开度设置为将会允许发动机102产生预测扭矩请求257的值来产生。同时,火花正时可以基于即时扭矩请求258来设置,该即时扭矩请求小于预测扭矩请求257。尽管节气门开度产生足够发动机102产生预测扭矩请求257的空气流量,但是火花正时基于即时扭矩请求258而受到延迟(这减少扭矩)。因此,发动机输出扭矩将等于即时扭矩请求258。
[0134] 当需要额外扭矩时,火花正时可以基于预测扭矩请求257或预测扭矩请求257与即时扭矩请求258之间的扭矩来设置。通过随后的点火事件,火花致动器模块126可以将火花正时返回到允许发动机102产生可通过已经存在的空气流量实现的全部发动机输出扭矩的最佳值。因此,发动机输出扭矩可以被快速增加到预测扭矩请求257,而不会由于改变节气门开度而经历延迟。
[0135] 车轴扭矩仲裁模块204可以将预测扭矩请求257和即时扭矩请求258输出到推进扭矩仲裁模块206。在各个实施中,车轴扭矩仲裁模块204可以将预测扭矩请求257和即时扭矩请求258输出到混合优化模块208。
[0136] 混合优化模块208可以确定发动机102应产生多少扭矩和电动机198应产生多少扭矩。混合优化模块208随后分别将修改后的预测扭矩请求259和修改后的即时扭矩请求260输出到推进扭矩仲裁模块206。在各个实施中,混合优化模块208可以在混合控制模块196中实施。
[0137] 推进扭矩仲裁模块206接收到的预测扭矩请求和即时扭矩请求从车轴扭矩域(车轮处的扭矩)转换为推进扭矩域(曲轴处的扭矩)。此转换可以在混合优化模块208之前、之后、作为其一部分或替代其发生。
[0138] 推进扭矩仲裁模块206在推进扭矩请求290(包括转换后的预测扭矩请求和即时扭矩请求)之间进行仲裁。推进扭矩仲裁模块206产生仲裁的预测扭矩请求261和仲裁的即时扭矩请求262。仲裁的扭矩请求261和262可以通过从接收到的扭矩请求中选择获胜的请求来产生。替代地或额外地,仲裁的扭矩请求可以通过基于接收到的扭矩请求中的另一个或多个来修改接收到的请求中的一个来产生。
[0139] 例如,推进扭矩请求290可以包括用于发动机超速保护的扭矩减少、用于失速防止的扭矩增加以及由变速器控制模块194请求适应换档的扭矩减少。推进扭矩请求290还可以由离合器燃油切断导致,离合器燃油切断在驾驶者踩下手动变速器车辆中的离合器踏板以防止发动机速度的突变时减少发动机输出扭矩。
[0140] 推进扭矩请求290还可以包括在检测到致命故障时可以开始的发动机关闭请求。仅举例而言,致命故障可以包括车辆盗窃、卡住起动器电机、电子节气门控制问题以及非预期的扭矩增加的检测。在各个实施中,当存在发动机关闭请求时,仲裁选择发动机关闭请求作为获胜的请求。当存在发动机关闭请求时,推进扭矩仲裁模块206可以输出零作为仲裁的预测扭矩请求261和仲裁的即时扭矩请求262。
[0141] 在各个实施中,发动机关闭请求可以与仲裁过程分开地仅关闭发动机102。推进扭矩仲裁模块206仍可以接收发动机关闭请求,这样使得例如适当的数据可以被反馈到其他扭矩请求者。例如,所有其他扭矩请求者可以被通知他们已输掉仲裁。
[0142] 储备/负载模块220接收仲裁的预测扭矩请求261和仲裁的即时扭矩请求262。储备/负载模块220可以调整仲裁的预测扭矩请求261和仲裁的即时扭矩请求262来创建扭矩储备和/或补偿一个或多个负载。储备/负载模块220随后将调整后的预测扭矩请求263和调整后的即时扭矩请求264输出到扭矩请求模块224。
[0143] 仅举例而言,催化剂熄灯过程或冷启动减排过程可能要求延迟的火花正时。因此,储备/负载模块220可以将调整后的预测扭矩请求263增加到高于调整后的即时扭矩请求264以创建用于冷启动减排过程的延迟的火花。在另一个实例中,发动机的空气/燃料比和/或空气质量流量可以直接改变,诸如通过诊断侵入等值比测试和/或新发动机净化。在开始这些过程之前,扭矩储备可以被创建或增加以迅速弥补在这些过程期间由于稀化空气/燃料混合物导致的发动机输出扭矩的减少。
[0144] 储备/负载模块220还可以在预期未来负载的情况下创建或增加扭矩储备,诸如动力转向泵操作或空气调节(A/C)压缩机离合器的接合。当驾驶者首次请求空气调节时,可以创建用于A/C压缩机离合器的接合的储备。储备/负载模块220可以增加调整后的预测扭矩请求263同时使得调整后的即时扭矩请求264不变以产生扭矩储备。随后,当A/C压缩机离合器接合时,储备/负载模块220可以通过A/C压缩机离合器的估计出的负载来增加调整后的即时扭矩请求264。
[0145] 扭矩请求模块224接收调整后的预测扭矩请求263和调整后的即时扭矩请求264。扭矩请求模块224确定将如何实现调整后的预测扭矩请求263和调整后的即时扭矩请求
264。扭矩请求模块224可以是发动机型号专有的。例如,扭矩请求模块224可以不同地实施或者对于火花点火发动机相对压缩点火发动机使用不同的控制方案。
[0146] 在各个实施中,扭矩请求模块224可以定义横跨所有发动机型号共用的模块与发动机型号专有的模块之间的界线。例如,发动机型号可以包括火花点火和压缩点火。扭矩请求模块224之前的模块(诸如推进扭矩仲裁模块206)可以是横跨发动机型号共用的,而扭矩请求模块224和随后的模块可以是发动机型号专有的。
[0147] 扭矩请求模块224基于调整后的预测扭矩请求263和调整后的即时扭矩请求264确定空气扭矩请求265。空气扭矩请求265可以是制动扭矩。制动扭矩可以指代在当前操作条件下曲轴处的扭矩。
[0148] 基于空气扭矩请求265确定用于控制发动机致动器的空气流的目标值。更具体来说,基于空气扭矩请求265,空气控制模块228确定目标废气门打开面积266、目标节气门打开面积267、目标EGR打开面积268、目标进气凸轮相位器角269以及目标排气凸轮相位器角270。空气控制模块228使用模型预测控制来确定目标废气门打开面积266、目标节气门打开面积267、目标EGR打开面积268、目标进气凸轮相位器角269以及目标排气凸轮相位器角
270,如以下进一步论述。
[0149] 升压致动器模块164控制废气门162以实现目标废气门打开面积266。例如,第一转换模块272可以将目标废气门打开面积266转换为目标占空比274以应用于废气门162,并且升压致动器模块164可以基于目标占空比274将信号应用于废气门162。在各个实施中,第一转换模块272可以将目标废气门打开面积266转换为目标废气门位置(未示出),并且将目标废气门位置转换为目标占空比274。
[0150] 节气门致动器模块116控制节气门阀112以实现目标节气门打开面积267。例如,第二转换模块276可以将目标节气门打开面积267转换为目标占空比278以应用于节气门阀112,并且节气门致动器模块116可以基于目标占空比278将信号应用于节气门阀112。在各个实施中,第二转换模块276可以将目标节气门打开面积267转换为目标节气门位置(未示出),并且将目标节气门位置转换为目标占空比278。
[0151] EGR致动器模块172控制EGR阀170以实现目标EGR打开面积268。例如,第三转换模块280可以将目标EGR打开面积268转换为目标占空比282以应用于EGR阀170,并且EGR致动器模块172可以基于目标占空比282将信号应用于EGR阀170。在各个实施中,第三转换模块280可以将目标EGR打开面积268转换为目标EGR位置(未示出),并且将目标EGR位置转换为目标占空比282。
[0152] 相位器致动器模块158控制进气凸轮相位器148以实现目标进气凸轮相位器角269。相位器致动器模块158还控制排气凸轮相位器150以实现目标排气凸轮相位器角270。
在各个实施中,可以包括第四转换模块(未示出)并且其可以将目标进气和排气凸轮相位器角分别转换为目标进气占空比和目标排气占空比。相位器致动器模块158可以分别将目标进气占空比和目标排气占空比应用于进气凸轮相位器148和排气凸轮相位器150。在各个实施中,空气控制模块228可以确定目标重叠因数和目标有效位移,并且相位器致动器模块
158可以控制进气凸轮相位器148和排气凸轮相位器150以实现目标重叠因数和目标有效位移。
[0153] 扭矩请求模块224还可以基于预测扭矩请求263和即时扭矩请求264产生火花扭矩请求283、汽缸关闭扭矩请求284和燃料扭矩请求285。火花控制模块232可以基于火花扭矩请求283来确定使得火花正时从最佳火花正时延迟多少(这减少发动机输出扭矩)。仅举例而言,可以反转扭矩关系以求解目标火花正时286。对于给定扭矩请求(TReq),可以基于以下公式确定目标火花正时(ST)286:
[0154] (1)ST = f-1 (TReq, APC, I, E, AF, OT, #),
[0155] 其中APC是APC,I是进气门定相值,E是排气门定相值,AF是空气/燃料比,OT是油温,并且#是启动的汽缸的数量。此关系可以实施为方程和/或查找表。空气/燃料比(AF)可以是实际空气/燃料比,如由燃料控制模块240所报告的。
[0156] 当火花正时被设置为最佳火花正时时,所得的扭矩可以尽可能接近用于最佳扭矩的最小火花提前(MBT火花正时)。最佳扭矩是指在使用具有比预定辛烷额定值大的辛烷额定值的燃料并且使用化学计量加燃料时,由于火花正时提前而对于给定空气流量产生的最大发动机输出扭矩。此最佳发生的火花正时称为MBT火花正时。最佳火花正时可能由于例如燃料质量(诸如当使用较低辛烷燃料时)和环境因素(诸如周围湿度和温度)而与MBT火花正时稍微不同。因此,最佳火花正时的发动机输出扭矩可以小于MBT。仅举例而言,对应于不同发动机操作条件的最佳火花正时的表可以在车辆设计的校准阶段期间确定,并且基于当前发动机操作条件从该表确定最佳值。
[0157] 汽缸关闭扭矩请求284可以由汽缸控制模块136用来确定将禁用的汽缸的目标数量287。在各个实施中,可以使用将启动的汽缸的目标数量。汽缸致动器模块120基于目标数量287来选择性的启动和禁用汽缸的阀。
[0158] 汽缸控制模块236还可以指示燃料控制模块240以停止对禁用的汽缸提供燃料并且可以指示火花控制模块232以停止对禁用的汽缸提供火花。一旦已经存在于汽缸中的燃料/空气混合物被燃烧,则火花控制模块232可以停止对汽缸提供火花。
[0159] 燃料控制模块240可以基于燃料扭矩请求285来改变提供给每个汽缸的燃料的量。更具体来说,燃料控制模块240可以基于燃料扭矩请求285来产生目标加燃料参数288。目标加燃料参数288可以包括例如目标燃料质量、目标喷射起动正时以及燃料喷射的目标数量。
[0160] 在正常操作过程中,燃料控制模块240可以在空气引导模式下操作,其中燃料控制模块240试图通过基于空气流量控制加燃料来维持化学计量的空气/燃料比。例如,燃料控制模块240可以确定在与当前每汽缸空气(APC)质量相组合时将产生化学计量的燃烧的目标燃料质量。
[0161] 图3是空气控制模块228的示例性实施的功能方框图。现在参照图2和3,如以上所论述,空气扭矩请求265可以是制动扭矩。扭矩转换模块304将空气扭矩请求265从制动扭矩转换为基础扭矩。由于转换为基础扭矩而产生的扭矩请求将被称为基础空气扭矩请求308。
[0162] 基础扭矩可以指代当发动机102温热并且附件(诸如交流发电机和A/C压缩机)不对发动机102施加扭矩负载时,测力计上的在发动机102的操作过程中产生的曲轴上的扭矩。扭矩转换模块304可以例如使用将制动扭矩与基础扭矩相关联的映射或函数来将空气扭矩请求265转换为基础空气扭矩请求308。在各个实施中,扭矩转换模块304可以将空气扭矩请求265转换为另一种适合类型的扭矩(诸如指示的扭矩)。指示的扭矩可以指代由于通过汽缸内的燃烧产生的功而导致的曲轴处的扭矩。
[0163] MPC模块312使用MPC(模型预测控制)方案产生目标值266至270。目标值266至270还可以称为系统/发动机输入和致动器命令。MPC模块312可以是单个模块或者可以包括多个模块。例如,MPC模块312可以包括序列确定模块316。序列确定模块316确定可以在N个未来的控制回路期间一起使用的目标值266至270的可能序列。由序列确定模块316识别出的每个可能序列包括用于目标值266至270中的每一个的N个值的一个序列。换言之,每个可能序列包括用于目标废气门打开面积266的N个值的序列、用于目标节气门打开面积267的N个值的序列、用于目标EGR打开面积268的N个值的序列、用于目标进气凸轮相位器角269的N个值的序列以及用于目标排气凸轮相位器角270的N个值的序列。N个值中的每一个是用于N个未来控制回路中的一个对应回路。N是大于或等于一的整数。
[0164] 预测模块323基于发动机102的数学模型324、外源输入328和反馈输入330来分别确定发动机102对目标值266至270的可能序列的预测响应。更具体来说,基于目标值266至270的可能序列、外源输入328和反馈输入330,预测模块323使用模型324产生用于N个控制回路的发动机102的预测扭矩序列、用于N个控制回路的预测APC序列、用于N个控制回路的预测量外部稀释序列、用于N个控制回路的预测量剩余稀释序列、用于N个控制回路的预测燃烧定相值序列以及用于N个控制回路的预测燃烧质量值序列。虽然描述产生预测扭矩、预测APC、预测外部稀释、预测剩余稀释、预测燃烧定相以及预测燃料质量的实例,但是预测参数可以包括一个或多个其他预测发动机操作参数。
[0165] 模型324可以是例如基于发动机102的特征校准的函数或映射。稀释可以指代被捕捉在汽缸内以用于燃烧事件的来自先前燃烧事件的排气量。外部稀释可以指代通过EGR阀170提供以用于燃烧事件的排气。剩余稀释可以指代在燃烧周期的排气冲程之后汽缸中剩余的排气和/或被推回到汽缸中的排气。剩余稀释也可以称为内部稀释。
[0166] 燃烧定相可以指代相对于用于燃烧预定量的喷射燃料的预定曲轴位置的在汽缸内燃烧预定量的喷射燃料的曲轴位置。例如,燃烧定相可以按照相对于预定CA50的CA50来表达。CA50可以指代在汽缸内已经燃烧喷射燃料质量的50%情况下的曲轴角(CA)。预定CA50可以对应于由喷射燃料产生最大量的功的CA50并且在各个实施中可以为在TDC(上止点)之后的约8.5至约10度。虽然将就CA50值来论述燃烧定相,但是可以使用指示燃烧定相的另一个适合的参数。此外,虽然燃烧质量将被论述为指示的平均有效压力(IMEP)值的变化系数(COV),但是可以使用指示燃烧质量的另一个适合的参数。
[0167] 外源输入328可以包括不直接受节气门阀112、EGR阀170、涡轮增压器、进气凸轮相位器148以及排气凸轮相位器150影响的参数。例如,外源输入328可以包括发动机速度、涡轮增压器入口空气压力、IAT和/或一个或多个其他参数。反馈输入330可以包括例如发动机102的估计出的扭矩输出、涡轮增压器的涡轮160-1下游的排气压力、IAT、发动机102的APC、估计出的剩余稀释、估计出的外部稀释和/或一个或多个其他适合的参数。反馈输入330可以使用传感器(例如,IAT)来测量和/或基于一个或多个其他参数来估计。
[0168] 例如,预测模块323可以基于以下关系来产生用于给定的可能目标值组的预测参数:
[0169] ;以及
[0170]
[0171] 其中k是当前控制回路,x(k+1)是具有指示用于下一个控制回路k+1的发动机102的状态的条目的向量,A是包括基于发动机102的特征校准的常数值的矩阵,x(k)是具有指示用于当前控制回路的发动机102的状态的条目的向量,B是包括基于发动机102的特征校准的常数值的矩阵,u(k)是包括用于当前控制回路的可能目标值的条目的系统输入或致动器设置的向量,y(k)是包括用于当前控制回路的预测参数的系统输出的向量,并且C是包括基于发动机102的特征校准的常数值的矩阵。向量x(k+1)和x(k)可以称为状态向量。在当前控制回路期间确定的向量x(k+1)将用作下一个控制回路期间的向量x(k)。因此,关系也可以写为:
[0172] ;以及
[0173]
[0174] 其中k是当前控制回路,x(k-1)是具有指示用于上一个控制回路的发动机102的状态的条目的向量,A是包括基于发动机102的特征校准的常数值的矩阵,x(k)是具有指示用于当前控制回路的发动机102的状态的条目的向量,B是包括基于发动机102的特征校准的常数值的矩阵,u(k-1)是包括用于上一个控制回路的可能目标值的条目的系统输入或致动器设置的向量。向量x(k-1)也可以称为状态向量。
[0175] 现在将描述如何对于包括预测扭矩、预测APC、预测外部稀释、预测剩余稀释、预测燃烧定相以及预测燃料质量的预测参数的实例重写以上关系的分量。x(k+1)可以重写为:
[0176]
[0177] 其中x1(k+1)是用于下一个控制回路的发动机102的第一状态参数,x2(k+1)是用于下一个控制回路的发动机102的第二状态参数,x3(k+1)是用于下一个控制回路的发动机102的第三状态参数,x4(k+1)是用于下一个控制回路的发动机102的第四状态参数,x5(k+
1)是用于下一个控制回路的发动机102的第五状态参数,并且x6(k+1)是用于下一个控制回路的发动机102的第六状态参数。状态参数也可以称为状态变量。
[0178] 矩阵A可以重写为:
[0179]
[0180] 其中a11至a66是基于发动机102的特征校准的常数值。
[0181] 向量x(k)可以重写为:
[0182]
[0183] 其中x1(k)是用于当前控制回路的发动机102的第一状态参数,x2(k)是用于当前控制回路的发动机102的第二状态参数,x3(k)是用于当前控制回路的发动机102的第三状态参数,x4(k)是用于当前控制回路的发动机102的第四状态参数,x5(k)是用于当前控制回路的发动机102的第五状态参数,并且x6(k)是用于当前控制回路的发动机102的第六状态参数。向量x(k)的条目是在先前控制回路期间计算出的向量x(k+1)的条目。在当前控制回路期间计算出的向量x(k+1)的条目在下一个控制回路期间用作向量x(k)的条目。
[0184] 矩阵B可以重写为:
[0185]
[0186] 其中b11至b65是基于发动机102的特征校准的常数值。
[0187] 向量u(k)可以重写为:
[0188]
[0189] 其中PTT是用于当前控制回路的可能序列的可能目标节气门开度,PTWG是用于当前控制回路的可能序列的可能目标废气门开度,PTEGR是用于当前控制回路的可能序列的可能目标EGR阀开度,PTICP是用于当前控制回路的可能序列的可能目标进气凸轮定相值,并且PTECP是用于当前控制回路的可能序列的可能目标排气凸轮定相值。
[0190] 向量y(k)可以重写为:
[0191]
[0192] 其中PT是用于当前控制回路的发动机102的预测扭矩,PAPC是用于当前控制回路的发动机102的预测APC,PED是用于当前控制回路的外部稀释的预测量,PRD是用于当前控制回路的剩余稀释的预测量,PCP是用于当前控制回路的预测燃烧定相,并且PCQ是用于当前控制回路的预测燃烧质量。
[0193] 矩阵C可以重写为:
[0194]
[0195] 其中c11至c66是基于发动机102的特征校准的常数值。
[0196] 对于包括预测扭矩、预测APC、预测外部稀释、预测剩余稀释、预测燃烧定相以及预测燃料质量的预测参数的实例,以上关系可以因此重写为:
[0197]
[0198] ;以及
[0199]
[0200] 成本模块332基于对于可能序列确定的预测参数和输出参考值356确定用于目标值266至270的每个可能序列的成本值。以下进一步论述示例性成本确定。
[0201] 选择模块344分别基于可能序列的成本来选择目标值266至270的可能序列中的一个。例如,选择模块344可以选择可能序列中具有最低成本同时满足致动器约束348和输出约束352的一个序列。在各个实施中,模型324可以选择可能序列中具有最低成本同时满足致动器约束348和输出约束352的一个序列。
[0202] 在各个实施中,可以在成本确定中考虑到致动器约束348和输出约束的满足。换言之,成本模块332可以进一步基于致动器约束348和输出约束352来确定成本值。如以下进一步论述,基于如何确定成本值,选择模块344将选择可能序列中最佳实现基础空气扭矩请求308同时最小化APC受制于致动器约束348和输出约束352的一个序列。
[0203] 选择模块344可以分别将目标值266至270设置为选定可能序列的N个值中的第一值。换言之,选择模块344可以将目标废气门打开面积266设置为用于目标废气门打开面积266的N个值的序列中的N个值的第一值,将目标节气门打开面积267设置为用于目标节气门打开面积267的N个值的序列中的N个值的第一值,将目标EGR打开面积268设置为用于目标EGR打开面积268的N个值的序列中的N个值的第一值,将目标进气凸轮相位器角269设置为用于目标进气凸轮相位器角269的N个值的序列中的N个值的第一值,并且将目标排气凸轮相位器角270设置为用于目标排气凸轮相位器角270的N个值的序列中的N个值的第一值。
[0204] 在下一个控制回路期间,MPC模块312识别可能序列、产生用于可能序列的预测参数、确定可能序列中的每一个的成本、选择可能序列中的一个并且将目标值266至270设置为选定可能序列中的第一组目标值266至270。此过程继续用于每一个控制回路。
[0205] 致动器约束模块360(参见图2)设置用于目标值266至270中的每一个的致动器约束348中的一个。换言之,致动器约束模块360设置用于节气门阀112的致动器约束、用于EGR阀170的致动器约束、用于废气门阀162的致动器约束、用于进气凸轮相位器148的致动器约束以及用于排气凸轮相位器150的致动器约束。
[0206] 用于目标值266至270中的每一个的致动器约束348可以包括用于相关目标值的最大值和用于那个目标值的最小值。致动器约束模块360通常可以将致动器约束348设置为用于相关致动器的预定操作范围。更具体来说,致动器约束模块360通常可以分别将致动器约束348设置为用于节气门阀112、EGR阀170、废气门162、进气凸轮相位器148以及排气凸轮相位器150的预定操作范围。
[0207] 然而,致动器约束模块360在某些情况下可以选择性地调整致动器约束348中的一个或多个。例如,当在给定发动机致动器中诊断出故障时,致动器约束模块360可以调整用于那个给定致动器的致动器约束以使得用于那个发动机致动器的操作范围变窄。仅举另一个实例而言,例如,对于故障诊断(诸如凸轮相位器故障诊断、节气门诊断、EGR诊断等),致动器约束模块360可以调整致动器约束以使得用于给定致动器的目标值遵循随时间的预定时间表或者改变预定量。对于遵循随时间的预定时间表或者改变预定量的目标值而言,致动器约束模块360可以将最小和最大值设置为相同的值。被设置为相同值的最小和最大值可以迫使对应的目标值被设置为与最小和最大值相同的值。致动器约束模块360可以随时间改变最小和最大值被设置为的相同值以使得目标值遵循预定时间表。
[0208] 输出约束模块364(参见图2)设置用于发动机102的预测扭矩输出、预测CA50、IMEP的预测COV、预测剩余稀释以及预测外部稀释的输出约束352。用于每一个预测值的输出约束352可以包括用于相关的预测参数的最大值和用于那个预测参数的最小值。例如,输出约束352可以包括最小扭矩、最大扭矩、最小CA50和最大CA50、IMEP的最小COV和IMEP的最大COV、最小剩余稀释和最大剩余稀释以及最小外部稀释和最大外部稀释。
[0209] 输出约束模块364通常可以分别将输出约束352设置为用于相关的预测参数的预定范围。然而,输出约束模块364在一些情况下可以改变输出约束352中的一个或多个。例如,输出约束模块364可以延迟最大CA50,诸如当发动机102内发生爆震时。举另一个实例,输出约束模块364可以在低负载条件下增加IMEP的最大COV,诸如在可能需要IMEP的较高COV来实现给定扭矩请求的发动机怠速过程中。
[0210] 参考模块368(参见图2)分别产生用于目标值266至270的参考值356。参考值356包括用于目标值266至270中的每一个的参考。换言之,参考值356包括参考废气门打开面积、参考节气门打开面积、参考EGR打开面积、参考进气凸轮相位器角以及参考排气凸轮相位器角。
[0211] 参考模块368可以例如基于空气扭矩请求265、基础空气扭矩请求308和/或一个或多个其他适合的参数来确定参考值356。参考值356分别提供用于设置目标值266至270的参考。参考值356可以用来确定用于可能序列的成本值。还可以鉴于一个或多个其他原因来使用参考值356,诸如由序列确定模块316用来确定可能序列。
[0212] 作为产生可能目标值的序列和确定每个序列的成本的替代或添加,MPC模块312可以使用凸优化技术来识别具有最低成本的可能目标值的序列。例如,MPC模块312可以使用二次规划(QP)解算器(诸如丹齐格QP解算器)来确定目标值266至270。在另一个实例中,MPC模块312可以产生用于目标值266至270的可能序列的成本值的面,并且基于成本面的斜率来识别具有最低成本的一组可能目标值。MPC模块312随后可以测试那组可能目标值以确定那组可能目标值是否满足致动器约束348和输出约束352。MPC模块312选择具有最低成本同时满足致动器约束348和输出约束352的可能目标值组。
[0213] 成本模块332可以基于以下各项之间的关系来确定用于目标值266至270的可能序列的成本:预测扭矩与基础空气扭矩请求308;预测APC与零;可能目标值与相应致动器约束348;其他预测参数与相应输出约束352;以及可能目标值与相应参考值356。所述关系可以例如被加权以控制每个关系对成本的影响。
[0214] 仅举例而言,成本模块332可以基于以下方程来确定用于目标值266至270的可能序列的成本:
[0215]
[0216] 其中Cost是用于目标值266至270的可能序列的成本,TPi是用于N个控制回路中的第i个控制回路的发动机102的预测扭矩,BATR是基础空气扭矩请求308,并且wT是与预测发动机扭矩与参考发动机扭矩之间的关系相关的加权值。APCPi是用于N个控制回路中的第i个控制回路的预测APC,并且wA是与预测APC与零之间的关系相关的加权值。
[0217] 成本模块332可以基于以下更详细的方程来确定用于目标值266至270的可能序列的成本:
[0218]
[0219] 该方程受制于致动器约束348和输出约束352。Cost是用于目标值266至270的可能序列的成本。TPi是用于N个控制回路中的第i个控制回路的发动机102的预测扭矩,BATR是基础空气扭矩请求308,并且wT是与预测发动机扭矩与参考发动机扭矩之间的关系相关的加权值。APCPi是用于N个控制回路中的第i个控制回路的预测APC,并且wA是与预测APC与零之间的关系相关的加权值。
[0220] PTTOi是用于N个控制回路中的第i个控制回路的可能目标节气门开度,TORef是参考节气门开度,并且wTV是与可能目标节气门开度与参考节气门开度之间的关系相关的加权值。PTWGOi用于N个控制回路中的第i个控制回路的可能目标废气门开度,WGORef是参考废气门开度,并且wWG是与可能目标废气门开度与参考废气门开度之间的关系相关的加权值。
[0221] PTEGROi是用于N个控制回路的第i个控制回路的可能目标EGR开度,EGRRef是参考EGR开度,并且wEGR是与可能目标EGR开度与参考EGR开度之间的关系相关的加权值。PTICi是用于N个控制回路的第i个控制回路的可能目标进气凸轮相位器角,ICPRef是参考进气凸轮相位器角,并且wIP是与可能目标进气凸轮相位器角与参考进气凸轮相位器角之间的关系相关的加权值。PTECi是用于N个控制回路的第i个控制回路的可能目标排气凸轮相位器角,ECPRef是参考排气凸轮相位器角,并且wEP是与可能目标排气凸轮相位器角与参考排气凸轮相位器角之间的关系相关的加权值。
[0222] ρ是与输出约束352的满足相关的加权值。ϵ是成本模块332可以基于输出约束352是否将被满足来设置的变量。例如,当预测参数大于或小于对应的最小或最大值(例如,至少预定量)时,成本模块332可以增加ϵ。当满足所有输出约束352时,成本模块332可以将ϵ设置为零。ρ可以大于加权值wT、加权值wA和其他加权值(wTV、wWG、wEGR、wIP、wEP),这样使得如果未满足输出约束352中的一个或多个则对于可能序列确定的成本将是巨大的。这可以帮助防止选择其中未满足输出约束352中的一个或多个的可能序列。
[0223] 加权值wT可以大于加权值wA以及加权值wTV、wWG、wEGR、wIP和wEP。以此方式,预测发动机扭矩与基础空气扭矩请求308之间的关系之间的关系对成本具有较大影响,且因此对可能序列中的一个的选择具有较大影响,如以下进一步论述。成本随着预测发动机扭矩与基础空气扭矩请求308之间的差异增加而增加,且反之亦然。
[0224] 加权值wA可以小于加权值wT并且大于加权值wTV、wWG、wEGR、wIP和wEP。以此方式,预测APC与零之间的关系对成本具有较大影响,但是小于预测发动机扭矩与基础空气扭矩请求308之间的关系的影响。成本随着预测APC与零之间的差异增加而增加,且反之亦然。虽然示出并且已经论述零的示例性使用,但是可以使用预定最小APC来取代零。
[0225] 因此,基于预测APC与零之间的差异确定成本有助于确保APC将被最小化。当基于实际APC控制加燃料以实现目标空气/燃料混合物时,减少APC减少燃料消耗。由于选择模块344可以选择可能序列中具有最低成本的一个序列,所以选择模块344可以选择可能序列中最佳实现基础空气扭矩请求308同时最小化APC的一个序列。
[0226] 加权值wTV、wWG、wEGR、wIP和wEP可以小于所有其他加权值。以此方式,在稳态操作过程中,目标值266至270可以分别设置接近参考值356或者处于所述参考值。然而,在瞬间操作过程中,MPC模块312可以调整目标值266至270远离参考值356以实现基础空气扭矩请求308,同时最小化APC并且满足致动器约束348和输出约束352。
[0227] 在操作中,MPC模块312可以确定用于可能序列的成本值。MPC模块312随后可以选择可能序列中具有最低成本的一个。MPC模块312接下来可以确定选定可能序列是否满足致动器约束348。如果满足,则可以使用可能序列。如果不满足,则MPC模块312基于选定的可能序列来确定满足致动器约束348并且具有最低成本的可能序列。MPC模块312可以使用满足致动器约束348并且具有最低成本的可能序列。
[0228] 参数估计模块372确定一个或多个估计的操作参数376。仅举例而言,估计的操作参数376可以包括估计的排气压力、估计的排气温度、估计的涡轮增压器速度和/或估计的EGR流速。虽然将论述确定以上的估计的操作参数376的实例,但是作为以上提供的那些参数的添加或替代,可以估计一个或多个其他操作参数。估计的操作参数376也可以称为估计的操作变量和系统/发动机输出。
[0229] 参数估计模块372基于如以上所论述由预测模块323用来确定预测参数的向量x(k)来确定估计的操作参数376。例如,参数估计模块372可以基于以下关系来确定估计的操作参数376:
[0230]
[0231] 其中E(k)是包括用于当前控制回路(k)的每个估计的操作参数376的一个条目的向量,C2是包括为了确定估计的操作参数376而校准的常数值的矩阵,并且x(k)是具有指示用于当前控制回路的发动机102的状态的条目的向量。
[0232] 此关系可以重写为:
[0233]
[0234] 其中EOP1是第一个估计的操作参数,EOPR是第R个估计的操作参数,R是大于或等于零的整数,c11至cR6是为了确定估计的操作参数EOP1至EOPR而校准的常数值,并且x1(k)至x6(k)分别是用于当前控制回路的发动机102的第一至第六状态参数。常数值c11至cR6可以例如使用最小平方最佳接近方法或以另一种适合的方式来校准。
[0235] 因此,向量x(k)被利用以确定估计的操作参数376。这允许在无需用于确定估计的操作参数376的另一个复杂、计算昂贵并且可能数值上不稳定的关系的情况下确定估计的操作参数376。
[0236] 可以基于估计的操作参数376来调整一个或多个发动机操作参数。例如,在由MPC模块312设置之后,ECM 114可以基于估计的操作参数376中的一个或多个来设置或调整目标废气门打开面积266、目标节气门打开面积267、目标EGR打开面积268、目标进气凸轮相位器角269、目标排气凸轮相位器角270、目标火花正时286和/或目标加燃料参数288中的一个或多个。
[0237] 现在参照图4,呈现描绘使用MPC(模型预测控制)来估计操作参数和控制节气门阀112、进气凸轮相位器148、排气凸轮相位器150、废气门162(且因此涡轮增压器)以及EGR阀
170的示例性方法的流程图。控制可以从404开始,其中扭矩请求模块224基于调整后的预测扭矩请求263和调整后的即时扭矩请求264来确定空气扭矩请求265。
[0238] 在408,扭矩转换模块304可以将空气扭矩请求265转换为基础空气扭矩请求308或者转换为另一种适合的类型的扭矩以供MPC模块312使用。在412,序列确定模块316基于基础空气扭矩请求308来确定目标值266至270的可能序列。
[0239] 在416,预测模块323确定用于目标值的每个可能序列的预测参数。预测模块323基于以下关系来确定预测参数:
[0240] ;以及
[0241]
[0242] 其中k是当前控制回路,x(k+1)是具有指示用于下一个控制回路k+1的发动机102的状态的条目的向量,A是包括基于发动机102的特征校准的常数值的矩阵,x(k)是具有指示用于当前控制回路的发动机102的状态的条目的向量,B是包括基于发动机102的特征校准的常数值的矩阵,u(k)是包括用于当前控制回路的可能目标值的条目的向量,y(k)是包括用于当前控制回路的预测参数的向量,并且C是包括基于发动机102的特征校准的常数值的矩阵。在416确定的向量x(k+1)将用作在416的下一次执行时的向量x(k)。
[0243] 在420,成本模块332分别确定用于可能序列的成本。仅举例而言,成本模块332可以基于以下方程来确定用于目标值266至270的可能序列的成本
[0244]
[0245] 或者基于以下方程
[0246]
[0247] 该方程受制于致动器约束348和输出约束352,如以上所描述。
[0248] 在424,选择模块344分别基于可能序列的成本来选择目标值266至270的可能序列中的一个序列。例如,选择模块344可以选择可能序列中具有最低成本同时满足致动器约束348和输出约束352的一个。因此,选择模块344可以选择可能序列中最佳实现基础空气扭矩请求308同时最小化APC并满足输出约束352的一个序列。作为在412确定目标值230至244的可能序列并且在420确定每个序列的成本的替代或添加,MPC模块312可以使用如以上论述的凸优化技术来识别具有最低成本的可能目标值序列。
[0249] 在425,MPC模块312可以确定可能序列中的选定序列是否满足致动器约束348。如果425为真,则控制可以通过428继续。如果425为假,则在426,MPC模块312可以基于选定的可能序列来确定满足致动器约束348并且具有最低成本的可能序列,并且控制可以通过428继续。可以使用满足致动器约束348并且具有最低成本的可能序列,如以下论述。
[0250] 在428,第一转换模块272将目标废气门打开面积266转换为目标占空比274以应用于废气门162,第二转换模块276将目标节气门打开面积267转换为目标占空比278以应用于节气门阀112。在428,第三转换模块280还将目标EGR打开面积268转换为目标占空比282以应用于EGR阀170。第四转换模块还可以分别将目标进气凸轮相位器角269和目标排气凸轮相位器角270转换为目标进气占空比和目标排气占空比以用于进气凸轮相位器148和排气凸轮相位器150。
[0251] 在432,节气门致动器模块116控制节气门阀112以实现目标节气门打开面积267,并且相位器致动器模块158分别控制进气凸轮相位器148和排气凸轮相位器150以实现目标进气凸轮相位器角269和目标排气凸轮相位器角270。例如,节气门致动器模块116可以目标占空比278将信号应用于节气门阀112从而实现目标节气门打开面积267。另外在432,EGR致动器模块172控制EGR阀170以实现目标EGR打开面积268,并且升压致动器模块164控制废气门162以实现目标废气门打开面积266。例如,EGR致动器模块172可以目标占空比282将信号应用于EGR阀170从而实现目标EGR打开面积268,并且升压致动器模块164可以目标占空比274将信号应用于废气门162从而实现目标废气门打开面积266。虽然图4被示出为在432之后结束,但是图4可以示出一个控制回路,并且可以在预定速率下执行控制回路。
[0252] 如上所述,参数估计模块372确定估计的操作参数376。参数估计模块372基于由预测模块323用来确定预测参数的向量x(k)来确定估计的操作参数376。例如,参数估计模块372可以基于以下关系来确定估计的操作参数376:
[0253]
[0254] 其中E(k)是包括用于当前控制回路(k)的每个估计的操作参数376的一个条目的向量,C2是包括为了确定估计的操作参数376而校准的常数值的矩阵,并且x(k)是具有指示用于当前控制回路的发动机102的状态的条目的向量。参数估计模块372可以在预定速率下确定估计的操作参数376,该速率可以与MPC模块312用来设置目标值266至270的预定速率相同或不同。
[0255] 以上描述实质上仅是说明性的,而绝不意欲限制本公开、其应用或使用。本公开的广泛教示可以各种形式来实施。因此,虽然本公开包括具体实例,但是本公开的真实范围不应限于此,因为其他修改将在学习附图、说明书以及随附权利要求之后变得显而易见。如本文所使用,短语A、B和C中的至少一个应解释为意味着使用非排他性的逻辑或的逻辑(A或B或C)。应理解,在不改变本公开的原理的情况下,方法内的一个或多个步骤可以不同的次序(或同时地)执行。
[0256] 在包括以下定义的此申请中,术语模块可以由术语电路取代。术语模块可以指代以下内容、是其一部分或者包括以下内容:特定应用集成电路(ASIC);数字、模拟或混合模拟/数字分立电路;数字、模拟或混合模拟/数字集成电路;组合逻辑电路;场可编程门阵列(FPGA);执行代码的处理器(共享、专用或集群);存储由处理器执行的代码的内存(共享、专用或集群);提供所描述的功能性的其他适合的硬件部件;或者以上内容中的一些或所有的组合,诸如片上系统。
[0257] 如以上所使用的术语代码可以包括软件、固件和/或微代码,并且可以指代程序、例程、功能、分类和/或目标。术语共享处理器涵盖执行来自多个模块的一些或所有代码的单个处理器。术语集群处理器涵盖与额外处理器组合执行来自一个或多个模块的一些或所有代码的处理器。术语共享内存涵盖存储来自多个模块的一些或所有代码的单个内存。术语集群内存涵盖与额外内存组合存储来自一个或多个模块的一些或所有代码的内存。术语内存可以是术语计算机可读介质的子集。术语计算机可读介质并不涵盖通过介质传播的暂时电信号和电磁信号,并且因此可以被认为是有形且永久的。永久的有形计算机可读介质的非限制性实例包括非易失性内存、易失性内存、磁性存储器和光学存储器。
[0258] 此申请中描述的装置和方法可以部分地或完全地由一个或多个处理器所执行的一个或多个计算机程序来实施。计算机程序包括存储在至少一个永久的有形计算机可读介质上的处理器可执行指令。计算机程序也可以包括和/或依赖于所存储的数据。