各向异性导电膜的组成物、各向异性导电膜及半导体装置转让专利

申请号 : CN201510072094.8

文献号 : CN105017980B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 金智软姜炅求朴憬修朴永祐孙秉勤申炅勳申颍株郑光珍韩在善黄慈英

申请人 : 三星SDI株式会社

摘要 :

本发明提供一种各向异性导电膜的组成物、各向异性导电膜以及通过所述各向异性导电膜连接的半导体装置。通过差示扫描热量测定法来测量,所述组成物包含放热峰值温度为80℃至110℃的第一环氧树脂和放热峰值温度为120℃至200℃的第二环氧树脂。因此,各向异性导电膜允许在低温下快速固化并且展现充足的储存稳定性,同时保证结合后的优良连接性质。

权利要求 :

1.一种各向异性导电膜,其在25℃下静置170小时后,通过差示扫描热量测定法测量并且根据以下方程1计算,热量变化率为35%或者小于35%,热量变化率(%)=[(H0-H1)/H0]×100  (1),

其中H0为所述各向异性导电膜在25℃下静置0小时后通过差示扫描热量测定法测量的热量;并且H1为所述各向异性导电膜在25℃下静置170小时后通过差示扫描热量测定法测量的热量,其中所述各向异性导电膜包括粘合剂树脂、放热峰值温度为80℃至110℃的第一环氧树脂以及放热峰值温度为120℃至200℃的第二环氧树脂,所述放热峰值温度通过差示扫描热量测定法测量,其中按所述第一环氧树脂以及所述第二环氧树脂为100重量份计,所述第二环氧树脂以60重量份至90重量份的量存在,其中按所述各向异性导电膜的组成物的固体含量的总重量计,所述第一环氧树脂以及所述第二环氧树脂以30重量%至50重量%的总量存在,所述粘合剂树脂包括聚酰亚胺树脂、聚酰胺树脂、苯氧基树脂、环氧树脂、聚甲基丙烯酸酯树脂、聚丙烯酸酯树脂、聚氨基甲酸酯树脂、经丙烯酸酯改质的氨基甲酸酯树脂、聚酯树脂、聚酯氨基甲酸酯树脂、聚乙烯醇缩丁醛树脂、苯乙烯-丁烯-苯乙烯树脂及其环氧化改质体、苯乙烯-乙烯-丁烯-苯乙烯树脂及其改质体、丙烯腈丁二烯橡胶或者其氢化化合物,其中按所述各向异性导电膜的所述组成物的固体含量的总重量计,所述粘合剂树脂以

30重量%至70重量%的量存在。

2.根据权利要求1所述的各向异性导电膜,其中所述第一环氧树脂包括选自由以下组成的群组的至少一种:环氧丙烷系环氧树脂、氢化双酚A环氧树脂、环脂族环氧树脂以及萘环氧树脂。

3.根据权利要求1所述的各向异性导电膜,其中所述第二环氧树脂包括选自由以下组成的群组的至少一种:双酚A环氧树脂、酚醛清漆环氧树脂、邻苯二甲酸酯环氧树脂以及联苯环氧树脂。

4.根据权利要求1至3中任一项所述的各向异性导电膜,其中所述各向异性导电膜具有

62℃至90℃的差示扫描热量测定法起始温度以及85℃至120℃的峰值温度。

5.根据权利要求1至3中任一项所述的各向异性导电膜,包括由式1表示的阳离子固化催化剂,[式1]

其中R1至R5各自独立地选自由以下组成的群组:

氢原子、经取代或者未经取代的C1至C6烷基、乙酰基、烷氧羰基、苯甲酰基以及苯甲氧羰基,并且R6及R7各自独立地选自由以下组成的群组:烷基、苯甲基、邻甲基苯甲基、间甲基苯甲基、对甲基苯甲基以及萘甲基。

6.根据权利要求1至3中任一项所述的各向异性导电膜,其中当放在包含电极的玻璃基板与IC驱动器芯片或者IC芯片之间的所述各向异性导电膜在140℃至160℃下、在60MPa至

80MPa负荷下压缩并加热3秒至7秒后立即在25℃下测量,所述各向异性导电膜具有3Ω或者小于3Ω的连接电阻,并且当已经在25℃下静置170小时然后放在所述包括电极的玻璃基板与所述IC驱动器芯片或者所述IC芯片之间的所述各向异性导电膜在140℃至160℃以及

60MPa至80MPa负荷的条件下压缩并加热3秒至7秒后测量,所述各向异性导电膜具有7Ω或者小于7Ω的连接电阻。

7.一种用于各向异性导电膜的组成物,包括:粘合剂树脂、放热峰值温度为80℃至110℃的第一环氧树脂;以及放热峰值温度为120℃至200℃的第二环氧树脂,所述放热峰值温度通过差示扫描热量测定法测量,以及其中按所述组成物的固体含量的总重量计,所述第一环氧树脂以及所述第二环氧树脂以30重量%至50重量%的总量存在,并且按所述第一环氧树脂以及所述第二环氧树脂为

100重量份计,所述第二环氧树脂以60重量份至90重量份的量存在,

所述粘合剂树脂包括聚酰亚胺树脂、聚酰胺树脂、苯氧基树脂、环氧树脂、聚甲基丙烯酸酯树脂、聚丙烯酸酯树脂、聚氨基甲酸酯树脂、经丙烯酸酯改质的氨基甲酸酯树脂、聚酯树脂、聚酯氨基甲酸酯树脂、聚乙烯醇缩丁醛树脂、苯乙烯-丁烯-苯乙烯树脂及其环氧化改质体、苯乙烯-乙烯-丁烯-苯乙烯树脂及其改质体、丙烯腈丁二烯橡胶或者其氢化化合物,其中按所述组成物的固体含量的总重量计,所述粘合剂树脂以30重量%至70重量%的量存在。

8.根据权利要求7所述的各向异性导电膜的组成物,进一步包括:阳离子固化催化剂以及导电粒子。

9.根据权利要求7所述的各向异性导电膜的组成物,包括:为1重量%至15重量%的阳离子固化催化剂以及为1重量%至25重量%的导电粒子。

10.根据权利要求7至9中任一项所述的各向异性导电膜的组成物,进一步包括:稳定剂。

11.根据权利要求10所述的各向异性导电膜的组成物,其中所述稳定剂包括选自由以下组成的群组的至少一种:锍、胺、酚、冠酯、膦以及三嗪。

12.一种半导体装置,包括:

包含第一电极的第一连接部件;

包含第二电极的第二连接部件;以及

如权利要求1至3中任一项所述的各向异性导电膜,或者由如权利要求7至9中任一项所述的各向异性导电膜的组成物形成的各向异性导电膜,其中所述各向异性导电膜被放在所述第一连接部件与所述第二连接部件之间,并且连接所述第一电极与所述第二电极。

13.根据权利要求12所述的半导体装置,其中所述第一连接部件为玻璃基板,并且所述第二连接部件为IC驱动器芯片或者IC芯片,并且当放在所述玻璃基板与所述IC驱动器芯片或者所述IC芯片之间的所述各向异性导电膜在140℃至160℃下、在60MPa至80MPa负荷下压缩并加热3秒至7秒后立即在25℃下测量,所述半导体装置具有3Ω或者小于3Ω的连接电阻。

14.根据权利要求12所述的半导体装置,其中所述第一连接部件为玻璃基板,并且所述第二连接部件为IC驱动器芯片或者IC芯片,并且当已经在25℃下静置170小时然后放在所述玻璃基板与所述IC驱动器芯片或者所述IC芯片之间的所述各向异性导电膜在140℃至

160℃以及60MPa至80MPa负荷的条件下压缩并加热3秒至7秒之后所测量,所述半导体装置具有7Ω或者小于7Ω的连接电阻。

说明书 :

各向异性导电膜的组成物、各向异性导电膜及半导体装置

技术领域

[0001] 本发明涉及一种各向异性导电膜,其允许在初步热压后在低温下快速固化并且展现充足的稳定性,同时保证结合(bonding)后优良的连接性质;和一种使用所述各向异性导电膜的半导体装置。

背景技术

[0002] 含有环氧树脂的各向异性导电粘着剂用于如柔性印刷电路(flexible printed circuit,FPC)板、卷带式自动结合(tape automated bonding,TAB)板、印刷电路板(printed circuit board,PCB)、玻璃电路板等等电路板上的电极之间的电连接,同时使所述电路板彼此结合。需要这些粘着剂来保证电路板之间的电连接并且允许在相对较低温度下快速固化,以便防止对电路板造成热损伤。
[0003] 这类各向异性导电粘着剂的组成物是由阳离子可聚合环氧树脂组成物组成。阳离子可聚合环氧树脂组成物包含阳离子固化催化剂,所述阳离子固化催化剂借由热和光引起阳离子聚合反应来生成质子。锑酸锍络合物被认为是这类阳离子固化催化剂。然而,锑酸锍络合物具有作为抗衡阴离子的SbF6-,其中氟原子键结到金属锑,从而使氟离子大量生成并且在阳离子聚合反应期间发生异质金属的迁移,由此导致金属线或者连接垫受到腐蚀。因此,需要各种不会引起这一腐蚀问题同时展现能够实现在低温下快速固化的反应性的阳离子固化催化剂。另外,实现在低温下快速固化的常规技术具有储存稳定性不良的问题,并且需要改善稳定性。
[0004] 因此,需要一种各向异性导电膜,其允许在低温下快速固化并且展现充足的储存稳定性,同时保证结合后优良的连接性质。

发明内容

[0005] 本发明的一个目标为提供一种各向异性导电膜,其允许在初步热压后在低温下快速固化并且展现充足的稳定性,同时保证结合后优良的连接性质;和一种使用所述各向异性导电膜的半导体装置。
[0006] 根据本发明的一个实施例,提供一种各向异性导电膜,通过差示扫描热量测定法(differential scanning calorimetry,DSC)测量且根据以下方程1计算,其在25℃下静置170小时后热量变化率为35%或者小于35%。
[0007] 热量变化率(%)=[(H0-H1)/H0]×100  (1),
[0008] 其中H0为各向异性导电膜在25℃下静置0小时后通过DSC测量的热量;并且H1为各向异性导电膜在25℃下静置170小时后通过DSC测量的热量。
[0009] 根据本发明的另一个实施例,提供一种各向异性导电膜的组成物,其可能包含放热峰值温度为80℃至110℃的第一环氧树脂和放热峰值温度为120℃至200℃的第二环氧树脂,所述放热峰值温度通过DSC测量,其中按组成物的固体含量的总重量计,第一环氧树脂和第二环氧树脂以30重量%至50重量%的量存在,并且按第一环氧树脂和第二环氧树脂为100重量份计,第二环氧树脂以60重量份至90重量份的量存在。
[0010] 根据本发明的另一个实施例,提供一种通过各向异性导电膜或者通过由各向异性导电膜的组成物形成的各向异性导电膜连接的半导体装置。
[0011] 根据本发明的各向异性导电膜和包含所述各向异性导电膜的半导体装置允许在100℃至150℃的低温下快速固化并且展现充足的稳定性,同时保证结合后优良的连接性质。

附图说明

[0012] 图1为根据本发明的一个实施例的半导体装置30的截面视图,包含第一连接部件50和第二连接部件60,其借助于各向异性导电粘着膜的粘着层10彼此连接并且分别包含第一电极70和第二电极80。

具体实施方式

[0013] 在下文中,将更详细地描述本发明的实施例。为了清楚起见,将省略本领域的技术人员显而易知的细节描述。
[0014] 本发明的一个实施例提供一种各向异性导电膜的组成物,所述各向异性导电膜的组成物包含放热峰值温度为80℃至110℃的第一环氧树脂和放热峰值温度为120℃至200℃的第二环氧树脂,所述放热峰值温度通过差示扫描热量测定法(DSC)测量。
[0015] 在本文中,环氧树脂的放热峰值温度可以在将由式1表示的阳离子固化催化剂添加到所述环氧树脂中后,使用例如型号Q20(TA仪器(TA Instruments))的差示扫描式热量计(differential scanning calorimeter)以10℃/min测量。
[0016] 第一环氧树脂的放热峰值温度为80℃至110℃,特定地为85℃至105℃。第二环氧树脂的放热峰值温度为120℃至200℃,特定地为130℃至185℃。
[0017] 在具有不同放热峰值温度的两种类型的环氧树脂的情况下,各向异性导电膜的组成物在低温下可以通过调节固化率来快速固化,同时保证在室温下的储存稳定性。
[0018] 第一环氧树脂可能包含选自由以下组成的群组的至少一种:环氧丙烷系环氧树脂(propylene oxide-based epoxy resin)、氢化双酚A环氧树脂(hydrogenated bisphenol A epoxy resin)、环脂族环氧树脂(cycloaliphatic epoxy resin)以及萘环氧树脂(naphthalene epoxy resin)。特定地说,第一环氧树脂可以是环氧丙烷系环氧树脂或者氢化双酚A环氧树脂。
[0019] 第二环氧树脂可能包含选自由以下组成的群组的至少一种:双酚A环氧树脂(bisphenol A epoxy resin)、酚醛清漆环氧树脂(novolac epoxy resin)、邻苯二甲酸酯环氧树脂(phthalate epoxy resin)以及联苯环氧树脂(biphenyl epoxy resin)。特定地说,第二环氧树脂可以是双酚A环氧树脂(例如JER834,日本三菱化学(Mitsubishi Chemicals,Japan))或邻苯二甲酸酯系环氧树脂(phthalate-based epoxy resin)(例如EX721,日本长濑(Nagase,Japan))。按组成物的固体含量的总重量计,第一环氧树脂和第二环氧树脂可能以30重量%至50重量%的量存在,并且按第一环氧树脂和第二环氧树脂为100重量份计,第二环氧树脂可能以60重量份至90重量份的量存在。在这一范围内,各向异性导电膜的组成物可以在100℃至150℃的低温下快速固化,同时保证充足的储存稳定性。
[0020] 在一个实施例中,按组成物的固体含量的总量计,第二环氧树脂可能以20重量%至40重量%的量存在。这一范围的第二环氧树脂就各向异性导电膜的组成物在室温下的稳定性来说是有利的。
[0021] 在本发明的另一个实施例中,各向异性导电膜的组成物可能包含阳离子固化催化剂。根据本发明,本领域中已知的任何阳离子固化催化剂均可以不受限制地使用。
[0022] 阳离子固化催化剂可能包含锍系阳离子固化催化剂(sulfonium-based cationic curing catalyst),特定地为硼酸锍系阳离子固化催化剂(sulfonium borate-based cationic curing catalyst)。
[0023] 硼酸锍系阳离子固化催化剂的实例可能包含由式1表示的化合物:
[0024]
[0025] 其中R1至R5各自独立地选自由以下组成的群组:氢原子、经取代或者未经取代的C1至C6烷基、乙酰基(acetyl group)、烷氧羰基(alkoxycarbonyl group)、苯甲酰基(benzoyl group)以及苯甲氧羰基(benzyloxycarbonyl group),并且R6和R7各自独立地选自由以下组成的群组:烷基、苯甲基(benzyl group)、邻甲基苯甲基(o-methylbenzyl group)、间甲基苯甲基(m-methylbenzyl group)、对甲基苯甲基(p-methylbenzyl group)以及萘甲基(naphthylmethyl group)。
[0026] 由式1表示的阳离子固化催化剂可以防止在阳离子聚合反应期间生成大量的氟离子,由此防止金属线或连接垫受到腐蚀。另外,由式1表示的阳离子固化催化剂能够通过在较低的温度下生成阳离子来实现各向异性导电膜在例如150℃或者低于150℃,特定地140℃或者低于140℃,更特定地130℃的低温下固化。
[0027] 按各向异性导电膜的组成物的固体含量的总重量计,硼酸锍类阳离子固化催化剂可能以1重量%至15重量%、特定地3重量%至10重量%的量存在。
[0028] 根据本发明的另一个实施例,各向异性导电膜的组成物可能进一步包含粘合剂树脂。
[0029] 本发明不限于特定粘合剂树脂,并且本领域中已知的任何典型粘合剂树脂均可以不受限制地使用。
[0030] 粘合剂树脂的实例可能包含聚酰亚胺树脂(polyimide resin)、聚酰胺树脂(polyamide resin)、苯氧基树脂(phenoxy resin)、环氧树脂、聚甲基丙烯酸酯树脂(polymethacrylate resin)、聚丙烯酸酯树脂(polyacrylate resin)、聚氨基甲酸酯树脂(polyurethane resin)、经丙烯酸酯改质的氨基甲酸酯树脂(acrylate modified urethane resin)、聚酯树脂(polyester resin)、聚酯氨基甲酸酯树脂(polyester urethane resin)、聚乙烯醇缩丁醛树脂(polyvinyl butyral resin)、苯乙烯-丁烯-苯乙烯(styrene-butylene-styrene,SBS)树脂及其环氧化改质体、苯乙烯-乙烯-丁烯-苯乙烯(styrene-ethylene-butylene-styrene,SEBS)树脂及其改质体、丙烯腈丁二烯橡胶(acrylonitrile butadiene rubber,NBR)或者其氢化化合物。这些可以单独使用或者以其组合的形式使用。尽管较高重量平均分子量的粘合剂树脂允许更容易地成膜,但是本发明并不限于特定的重量平均分子量的粘合剂树脂。举例来说,粘合剂树脂的重量平均分子量可能为5,000g/mol至150,000g/mol,更特定地为10,000g/mol至80,000g/mol。如果粘合剂树脂的重量平均分子量小于5,000g/mol,那么可能难以形成膜,并且如果粘合剂树脂的重量平均分子量超过150,000g/mol,那么可能出现与其它组份的相容性不佳的问题。按各向异性导电膜的组成物的固体含量的总量计,粘合剂树脂可能以30重量%至70重量%、特定地30重量%至60重量%、更特定地35重量%至50重量%的量存在。在这一范围内,组成物可能展现良好的成膜能力和粘着强度。
[0031] 根据本发明的又一个实施例,各向异性导电膜的组成物可能进一步包含导电粒子。
[0032] 本发明不限于特定导电粒子,并且用于本领域的任何典型导电粒子均可以不受限制地使用。
[0033] 导电粒子的实例可能包含金属粒子,如金(Au)、银(Ag)、镍(Ni)、铜(Cu)以及焊料粒子;碳粒子;树脂粒子,如聚乙烯、聚丙烯、聚酯、聚苯乙烯、聚乙烯醇以及其涂覆有金属(如金(Au)、银(Ag)、镍(Ni)、钯(Pd)等等)的改质树脂粒子;以及通过将绝缘粒子进一步涂覆到涂覆有金属的聚合物树脂粒子上所获得的绝缘导电粒子,但不限于此。这些可以单独使用或者以其组合的形式使用。
[0034] 导电粒子的平均粒度可以视待使用的电路的间距(pitch)而不同,并且可以视其目的在1μm至20μm的范围内选择。特定地说,导电粒子的平均粒度可能为1μm至10μm。
[0035] 在一些实施例中,按组成物的固体含量的总量计,导电粒子可能以1重量%至30重量%、特定地1重量%至25重量%、更特定地1重量%至20重量%的量存在。
[0036] 在导电粒子的这些范围内,组成物可以保证稳定的连接可靠性,同时展现较低的连接电阻。
[0037] 根据本发明的又一个实施例,各向异性导电膜的组成物可能进一步包含稳定剂。
[0038] 稳定剂的实例可能包含锍(sulfonium)、胺(amine)、酚(phenol)、冠酯(crown ester)、膦(phosphine)以及三嗪(triazine)等等。因为稳定剂的添加量可能视化合物的性质而不同,所以对于稳定剂的量不存在特定限制。在一些实施例中,按组成物的固体含量的总量计,稳定剂可能以0.01重量%至5重量%、特定地0.02重量%至3重量%的量存在。
[0039] 根据本发明的又一个实施例,各向异性导电膜的组成物可能进一步包含硅烷偶合剂。
[0040] 硅烷偶合剂可能包含选自由以下组成的群组的至少一种:含可聚合氟基的硅化合物,如乙烯基三甲氧基硅烷(vinyltrimethoxysilane)、乙烯基三乙氧基硅烷(vinyltriethoxysilane)、(甲基)丙烯氧基丙基三甲氧基硅烷((meth)acryloxypropyltrimethoxysilane)等等;含环氧基的硅化合物,如3-缩水甘油氧基丙基三甲氧基硅烷(3-glycidoxypropyl trimethoxysilane)、3-缩水甘油氧基丙基甲基二甲氧基硅烷(3-glycidoxypropylmethyldimethoxysilane)、2-(3,4-环氧基环己基)-乙基三甲氧基硅烷(2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane)等等;含氨基的硅化合物,如
3-氨基丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane)、N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷(N-(2-aminoethyl)-3-aminopropyltrimethoxysilane)、N-(2-氨基乙基) -3 - 氨基 丙基 甲 基二甲 氧 基硅 烷 (N - (2- a mi no e th yl) - 3 -aminopropylmethyldimethoxysilane)等等;以及3-氯丙基三甲氧基硅烷(3-chloropropyltrimethoxysilane),但不限于此。
[0041] 按组成物的固体含量的总量计,硅烷偶合剂可能以1重量%至10重量%的量存在。
[0042] 根据本发明的又一个实施例,各向异性导电膜的组成物可能进一步包含其它添加剂,如聚合抑制剂、抗氧化剂、热稳定剂等等,以便赋予各向异性导电膜额外的性质而不使其基本性质退化。按组成物的固体含量的总量计,添加剂可能以0.01重量%至10重量%的量存在。
[0043] 聚合抑制剂的实例可能包含氢醌(hydroquinone)、氢醌单甲基醚(hydroquinone monomethylether)、对苯醌(p-benzoquinone)、啡噻嗪(phenothiazine)或者其混合物。抗氧化剂的实例可能包含酚系或者羟基肉桂酸酯物质。举例来说,可以使用四-(亚甲基-(3,5-二-叔丁基-4-羟基肉桂酸酯)甲烷(tetrakis-(methylene-(3,5-di-t-butyl-4-hydroxycinnamate)methane)、3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸硫二-2,1-乙烷二基酯(3,5-bis(1,1-dimethylethyl)-4-hydroxybenzenepropanoic acid thiodi-2,1-ethanediyl ester)等等。
[0044] 根据本发明的又一个实施例,提供一种由本发明实施例之一的组成物形成的各向异性导电膜。
[0045] 各向异性导电膜可能包含由各向异性导电膜的组成物形成的各向异性导电粘着层和离型膜。离型膜可以在将各向异性导电膜初步压到第一连接部件或者第二连接部件后去除。因此,各向异性导电膜可以与各向异性导电粘着层相容。
[0046] 各向异性导电膜可能具有单层结构,其包含单一各向异性导电粘着层;双层结构,其中不含有导电粒子的非导电粘着层和含有导电粒子的导电粘着层依次堆叠;或者三层结构,其中非导电粘着层堆叠在导电粘着层的相对两侧上。应该理解,根据本发明的各向异性导电膜的组成物可以用作非导电粘着层、导电粘着层或者用作非导电粘着层和导电粘着层两个。
[0047] 本发明的另一个实施例提供一种各向异性导电膜,其在25℃下静置170小时后,通过差示扫描热量测定法(DSC)来测量且根据以下方程1来计算,热量变化率为35%或者小于35%。
[0048] 热量变化率(%)=[(H0-H1)/H0]×100  (1),
[0049] 其中H0为各向异性导电膜在25℃下静置0小时后通过DSC测量的热量;并且H1为各向异性导电膜在25℃下静置170小时后通过DSC测量的热量。
[0050] 各向异性导电膜的热量变化率可能为34%或者小于34%,特定地为25%或者小于25%。各向异性导电膜可能包含放热峰值温度为120℃至200℃的环氧树脂,所述放热峰值温度通过差示扫描热量测定法测量。或者,各向异性导电膜可能包含放热峰值温度为80℃至110℃的第一环氧树脂和放热峰值温度为120℃至200℃的第二环氧树脂,所述放热峰值温度通过差示扫描热量测定法测量。
[0051] 热量变化率可以通过本领域中已知的任何典型方法来测量。举例来说,热量变化率可以通过以下方法(但不限于此)来测量。在这一方法中,在取1mg根据本发明的一个实施例的各向异性导电膜作为试样后,使用例如型号Q20(TA仪器)的差示扫描式热量计在25℃下在-50℃至250℃的温度区中以10℃/min来测量试样的初始热量(H0)。然后将膜在25℃下静置170小时,并且以相同方式测量膜的热量(H1)。然后根据方程1来计算热量变化率。
[0052] 在热量变化率的这一范围内,各向异性导电膜可以展现良好的储存稳定性并且可以防止附着力退化或者连接电阻增加。
[0053] 各向异性导电膜可能具有62℃至90℃的差示扫描热量测定法起始温度(DSC起始温度(DSC onset temperature))和85℃至120℃的峰值温度。特定地说,各向异性导电膜可能具有63℃至87℃的DSC起始温度和89℃至110℃的峰值温度。起始温度和峰值温度的这些范围涉及各向异性导电膜在例如150℃或者低于150℃的低温下的快速固化。在本文中,DSC起始温度是指在测量各向异性导电膜取决于温度变化的热量时由于产生热而使得DSC图斜率第一次增加的时间点的温度。此外,峰值温度是指在热量达到DSC图中的最高点的时间点的温度。
[0054] 本发明的另一个实施例提供一种各向异性导电膜,当放在包含电极的玻璃基板与集成电路(Integrated Circuit,IC)驱动器芯片或者IC芯片之间的各向异性导电膜在140℃至160℃下、在60MPa至80MPa负荷下压缩并加热3秒至7秒后立即在25℃下测量,所述各向异性导电膜具有3Ω或者小于3Ω的连接电阻,并且当已经在25℃下静置170小时然后放在包含电极的玻璃基板与IC驱动器芯片或者IC芯片之间的各向异性导电膜在相同条件下压缩并加热后测量,所述各向异性导电膜具有7Ω或者小于7Ω的连接电阻。
[0055] 当在压缩并加热后立即在25℃下测量,各向异性导电膜可能具有2.7Ω或者小于2.7Ω、特定地为2.5Ω或者小于2.5Ω的连接电阻。当在25℃下静置170小时后测量,各向异性导电膜可能具有6.5Ω或者小于6.5Ω、特定地为6Ω或者小于6Ω的连接电阻。
[0056] 可以通过本领域中所使用的任何典型方法来测量连接电阻。举例来说,可以通过以下方法测量连接电阻。在这一方法中,将具有1200μm2的凸块区域和厚度为 的氧化铟锡(indium tin oxide,ITO)电路的玻璃基板和具有1200μm2的凸块区域且厚度为1.5mm的IC芯片放到各向异性导电膜的上表面和下表面上,随后在150℃和70Mpa的条件下压缩并加热5秒,由此制备各向异性导电膜的试样。然后通过4探针方法,使用电阻测试仪型号2000万用表(吉时利有限公司(Keithley Co.,Ltd))通过施加1mA的测试电流来测量试样的初始连接电阻。另外,在25℃下静置170小时后,使各向异性导电膜在相同条件下经历压缩和加热,以便制备试样。然后以相同方式测量样品的连接电阻。
[0057] 在连接电阻的以上范围内,各向异性导电膜具有良好的连接可靠性。
[0058] 本发明的又一个实施例提供通过如上文所述的各向异性导电膜中的一种连接的半导体装置。半导体装置可能包含第一连接部件,其包含第一电极;第二连接部件,其包含第二电极;以及各向异性导电膜,其放在第一连接部件与第二连接部件之间,并且连接第一电极与第二电极。此处,各向异性导电膜与根据本发明实施例的各向异性导电膜,或者与由根据本发明实施例的各向异性导电膜的组成物形成的各向异性导电膜相同。此处,第一连接部件和第二连接部件不受特定限制,并且本领域中已知的任何连接部件均可以用作第一连接部件和第二连接部件。第二连接部件可能包含例如半导体硅芯片、IC芯片或者IC驱动器芯片。第一连接部件可能包含例如上面形成有电极的玻璃基板、PCB(印刷电路板)或者fPCB(柔性印刷电路板)。参看图1,如上文所述,根据本发明的一个实施例的半导体装置30包含第一连接部件50,其包含第一电极70;第二连接部件60,其包含第二电极80;以及各向异性导电粘着层,其包含导电粒子3。此处,各向异性导电粘着层放在第一连接部件50与第二连接部件60之间,并且借助于导电粒子3连接第一电极70与第二电极80。用于制造根据本发明的半导体装置的方法不受特定限制,并且可以使用本领域中已知的任何方法。
[0059] 本发明的又一个实施例提供一种半导体装置,当放在对应于第一连接部件的玻璃基板与对应于第二连接部件的IC驱动器芯片或者IC芯片之间的各向异性导电膜在140℃至160℃下、在60MPa至80MPa负荷下压缩并加热3秒至7秒后立即在25℃下测量,所述半导体装置具有3Ω或者小于3Ω的连接电阻;并且当已经在25℃下静置170小时然后置放在包含电极的玻璃基板与IC驱动器芯片或者IC芯片之间的各向异性导电膜在140℃至160℃以及
60MPa至80MPa负荷的条件下压缩并加热3秒至7秒后测量,所述半导体装置具有7Ω或者小于7Ω的连接电阻。
[0060] 半导体装置当在压缩并加热后立即在25℃下测量可能具有2.7Ω或者小于2.7Ω、特定地为2.5Ω或者小于2.5Ω的连接电阻。半导体装置当在25℃下静置170小时后测量可能具有6.5Ω或者小于6.5Ω、特定地为6Ω或者小于6Ω的连接电阻。
[0061] 可以通过本领域中使用的任何典型方法来测量连接电阻。举例来说,可以通过以下方法测量连接电阻。在这一方法中,将具有1200μm2的凸块区域和厚度为 的氧化铟锡(ITO)电路的玻璃基板和具有1200μm2的凸块区域且厚度为1.5mm的IC芯片放到各向异性导电膜的上表面和下表面上,随后在150℃和70Mpa的条件下压缩并加热5秒,由此制备各向异性导电膜的试样。然后通过4探针方法,使用电阻测试仪型号2000万用表(吉时利有限公司)通过施加1mA测试电流来测量试样的初始连接电阻。另外,在25℃下静置170小时后,使各向异性导电膜在相同条件下经历压缩和加热,以便制备试样。然后以相同方式测量样品的连接电阻。
[0062] 在连接电阻的以上范围内,半导体装置具有良好的连接可靠性。
[0063] 接下来,本发明将参照一些实例作更详细地描述。然而,应该理解,提供这些实例仅仅用于说明,并且不应该理解为以任何方式限制本发明。
[0064] 实例和比较例
[0065] 制备各向异性导电膜的组成物
[0066] 实例1至实例3以及比较例1和比较例2的各向异性导电膜的组成物各自如表1中所列来制备。
[0067] 表1
[0068]
[0069]
[0070] 实例1
[0071] 通过以下来制备各向异性导电膜的组成物:混合40重量%的以40体积%的量溶解于二甲苯/乙酸乙酯共沸溶剂中的苯氧基树脂(PKHH,美国英切摩里斯)、13重量%的DSC放热峰值温度为90℃的环氧丙烷系环氧树脂(EP-4000S,日本艾迪科)、17重量%的DSC放热峰值温度为130℃的双酚A环氧树脂(JER834,日本三菱化学)、5重量%的DSC放热峰值温度为180℃的邻苯二甲酸酯环氧树脂(EX721,日本长濑)、5重量%的阳离子固化催化剂(Si-B2A,日本三信化学)以及20重量%的经过绝缘处理的导电粒子(AUL-704F,平均粒度:4μm,日本积水)。此处,苯氧基树脂用作充当成形成膜基质的粘合剂系统,环氧树脂用作固化反应的固化系统,并且导电粒子用作赋予各向异性导电膜导电性的填料。
[0072] 关于通过添加5重量%阳离子固化催化剂SI-B2A到95重量%第一环氧树脂或者第二环氧树脂中所制备的环氧树脂组成物,使用型号Q20(TA仪器)以10℃/min测量各环氧树脂的DSC放热峰值温度。
[0073] 然后将所制备的各向异性导电膜的组成物沉积到白色离型膜上,随后在干燥器中在60℃下蒸发溶剂5分钟,由此制备经干燥的厚度为16μm的各向异性导电膜。
[0074] 实例2
[0075] 以与实例1相同的方式来制备各向异性导电膜,其中改用11重量%的环氧丙烷系环氧树脂(EP-4000S,日本艾迪科)、14重量%的双酚A环氧树脂(JER834,日本三菱化学)以及10重量%的邻苯二甲酸酯环氧树脂(EX721,日本长濑)。
[0076] 实例3
[0077] 以与实例1相同的方式来制备各向异性导电膜,其中改用9重量%的环氧丙烷系环氧树脂(EP-4000S,日本艾迪科)、11重量%的双酚A环氧树脂(JER834,日本三菱化学)以及15重量%的邻苯二甲酸酯环氧树脂(EX721,日本长濑)。
[0078] 比较例1
[0079] 以与实例1相同的方式来制备各向异性导电膜,其中改用23重量%的环氧丙烷系环氧树脂(EP-4000S,日本艾迪科)、0重量%的双酚A环氧树脂(JER834,日本三菱化学)以及12重量%的邻苯二甲酸酯环氧树脂(EX721,日本长濑)。
[0080] 比较例2
[0081] 以与实例1相同的方式来制备各向异性导电膜,其中改用35重量%环氧丙烷系环氧树脂(EP-4000S,日本艾迪科)并且未使用双酚A环氧树脂(JER834,日本三菱化学)和邻苯二甲酸酯环氧树脂(EX721,日本长濑)。
[0082] 实验实例
[0083] 各向异性导电膜的DSC起始温度、峰值温度、热量变化率以及连接电阻[0084] 通过以下方法来测量实例和比较例中制备的各向异性导电膜各自的DSC起始温度、峰值温度、热量变化率以及连接电阻。结果展示在表2和表3中。
[0085] (1)DSC起始温度和峰值温度
[0086] DSC起始温度定义为在使用差示扫描式热量计型号Q20(TA仪器)在氮气氛围下在0℃至300℃的温度范围内以10℃/min的速率测量关于各向异性导电膜的粘着层的热量时,由于产生热而使得DSC图的斜率第一次增加的时间点的温度。另外,峰值温度定义为在热量达到DSC图中的最高点的时间点的温度。
[0087] (2)在25℃下静置170小时后的热量变化率
[0088] 在取各1mg的初始各向异性导电膜和在25℃下静置170小时后的各向异性导电膜作为试样之后,使用型号Q20(TA仪器)在25℃下在-50℃至250℃的温度区中以10℃/min测量初始膜的初始热量(H0)和所述膜在25℃下静置170小时后的热量(H1)。然后通过计算所述膜静置170小时后的热量比初始膜热量的变化百分比来计算热量变化率。
[0089] (3)在25℃下静置170小时后的连接电阻
[0090] 为了测定各向异性导电膜的电特性,将具有1200μm2的凸块区域和厚度为2
的氧化铟锡(ITO)电路的玻璃基板和具有1200μm的凸块区域且厚度为1.5mm的IC芯片放在各向异性导电膜的上表面和下表面上,随后在150℃和70Mpa的条件下压缩并加热5秒,由此制备各向异性导电膜的试样。然后通过4探针方法,使用电阻测试仪型号2000万用表(吉时利有限公司)通过施加1mA的测试电流来测量试样的初始连接电阻。另外,在25℃下静置170小时后,使各向异性导电膜在相同条件下经历压缩和加热,以便制备试样,然后以相同方式测量试样的连接电阻。
[0091] 表2
[0092]
[0093] 表3
[0094]
[0095] 在表2和表3中,实例1至实例3的各向异性导电膜具有在62℃至90℃范围内的DSC起始温度和在85℃至120℃范围内的峰值温度,因此允许在低温下快速固化。实例1至实例3的各向异性导电膜具有35%或者小于35%的热量变化率,因此展现良好的储存稳定性。相比之下,采用按环氧树脂的总量计为60重量份或者低于60重量份的第二环氧树脂的比较例1的各向异性导电膜和不采用第二环氧树脂的比较例2的各向异性导电膜的热量变化率均为35%或者大于35%,导致储存稳定性退化。此外,各向异性导电膜在25℃下静置170小时后的连接性质出现退化,使得难以测量连接电阻。
[0096] 尽管本发明的一些实施例和特征已经在上文中描述过,但是应该理解,这些实施例和特征仅仅为了说明而给出,不应该理解为以任何方式限制本发明。因此,本发明的范围和精神应该仅仅由所附权利要求书和其等效物来限定。