一种纳米铂掺杂/酶修饰碳糊电极的制备方法及应用转让专利

申请号 : CN201510389581.7

文献号 : CN105044171B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 李慧芝许崇娟杨春霞

申请人 : 济南大学

摘要 :

本发明公开了/一种纳米铂掺杂/酶修饰碳糊电极的制备方法及应用,其特征是:在碳糊电极中掺杂纳米铂离子,以1‑乙基‑3‑甲基咪唑四氟硼酸盐作为胶粘剂,将碳纳米管与石墨粉混合制备的碳糊电极,然后将甲基转移酶修饰碳糊电极上,即得纳米铂掺杂/酶修饰碳糊电极。比普通的碳糊电极导电性能提高1~2倍,电化学窗口宽、制备方法简单、成本低、表面易更新、残余电流小等优点;用该电极快速检测样品中SAM,该方法灵敏度高、选择性好、响应时间短、干扰少,优于其它检测方法,是一种简单快速、方便易行的SAM测定方法,本申请制备的固定甲基转移酶电极传感器成本低、制备工艺简单,特异性好,具有实现自动化现场测定的潜力。

权利要求 :

1.一种纳米铂掺杂/酶修饰碳糊电极的制备方法,其特征在于,该方法具有以下工艺步骤:(1)碳纳米管和石墨粉预处理:在反应器中,按如下质量百分比加入石墨粉:20~30%,碳纳米管:8~15%,浓硫酸:40~50%,浓硝酸:10~20%,各组分之和为百分之百,于80~

90℃恒温反应3~5h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得预处理碳纳米管和石墨粉混合物;

(2)碳纳米管和石墨粉负载纳米铂的制备:在反应器中,按如下质量百分比加入预处理碳纳米管和石墨粉混合物:25~35%,丙酮:58~70%,超声分散10min,加入氯铂酸:1~

5%,搅拌溶解,再加入柠檬酸:3~6%,搅拌均匀,调节pH=7.5~8.5,将温度升至120℃恒温反应20~24h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得负载纳米铂碳纳米管和石墨粉混合物;

(3)碳糊电极的制备:将甲基转移酶:1-乙基-3-甲基咪唑四氟硼酸盐:负载纳米铂碳纳米管和石墨粉混合物按质量比为1:4~10:80~90混合均匀,在玛瑙研钵中研磨均匀,即得甲基转移酶/1-乙基-3-甲基咪唑四氟硼酸盐/负载纳米铂碳纳米管和石墨粉混合物碳糊;

然后将所述碳糊装入连有铜线的内径为Φ4mm的玻璃管内,压实,用金相砂纸打磨,抛光,去离子水洗涤,即得碳糊电极;

(4)纳米铂掺杂/酶修饰碳糊电极的制备:取质量百分浓度为0.5%的壳聚糖乙酸溶液

15μL滴涂在步骤(3)制备的碳糊电极的表面,于室温干燥,再将电极浸泡在质量百分浓度为

0.2%的戊二醛溶液中1~2h,取出后,再于其表面滴涂15μL 15mg/mL的甲基转移酶的溶液,于5~8℃干燥,即得纳米铂掺杂/酶修饰碳糊电极。

2.根据权利要求1所述的一种纳米铂掺杂/酶修饰碳糊电极的制备方法,其特征在于,步骤(4)所述的甲基转移酶为EC 2.1.1.3型甲基转移酶。

3.根据权利要求1所述的一种纳米铂掺杂/酶修饰碳糊电极的制备方法所制备的纳米铂掺杂/酶修饰碳糊电极的用途,其特征在于,所制备的电极用于样品中S-腺苷甲硫氨酸的测定。

说明书 :

一种纳米铂掺杂/酶修饰碳糊电极的制备方法及应用

技术领域

[0001] 本发明涉及一种电化学传感器的制备方法,特别涉及一种用于检测S-腺苷甲硫氨酸(SAM)的甲基转移酶修饰碳糊电极的电化学传感器的制备方法及应用。

背景技术

[0002] 碳糊电极是利用导电性的炭材料,如石墨粉与憎水性的粘合剂混合制成糊状物,然后将其涂在电极棒的表面或填充入电极管中而制成的一类电极。由于碳糊电极无毒、电化学窗口宽、制备方法简单、成本低、表面易更新、残余电流小等优点,已广泛应用于电化学分析、生物传感器制备和环境检测、食品药品分析中。但碳糊电极也存在一些缺点,如导电性能差,灵敏度低,稳定性差等。为了改进碳糊电极的性能,在碳糊电极制备以导电性能好的碳纳米管代替石墨粉,并在炭材料中加入导电性能优良的纳米铂,或者利用离子型的胶粘剂(如离子液体),这些尝试都在某种程度上改变了电极的性能。碳纳米管具有优良的电子传递性,在生物传感和催化方面表现出优异的性能。碳纳米管还具有自润滑性和生物兼容性,从而在分析化学领域得到广泛的应用。离子液体是完全有离子组成的在室温下呈液态的盐,具有性质稳定、导电性能优异和电化学窗口宽等优点,被广泛应用于材料、合成、生物催化和分离萃取等领域。离子液体加快了电子转移速率,提高了电极灵敏度和选择性。
[0003] S-腺苷甲硫氨酸(SAM),SAM含有活性甲基,细胞内几乎所有用于甲基化修饰的甲基都来自SAM甲硫高能键。由于甲基化反应的广泛性,可以说,SAM是细胞内参加反应的重要性仅次于ATP的一种辅酶,细胞内SAM浓度的微小改变,便会对细胞的生长、分化和功能产生重大影响。SAM在细菌体内主要是由SAM合成酶(MetK)通过甲硫氨酸(Met)和ATP来合成。当E.coli的SAM合成酶水平下降,造成细胞内甲基供体SAM缺乏时,细胞就不会正常分裂。如果将来自T3噬菌体的AdoMet水解酶基因导入E.coli菌体细胞,使胞内SAM水平下降时,大肠埃希氏菌也形成了不分裂的长丝状菌体。进一步研究表明,丝状菌体中,引发E.coli细胞分裂的Z环复合体装配可以正常起始,但不会完成,而当亮氨酸调节的SAM合成酶水平恢复正常,细胞内甲基供体SAM不再缺乏时,细胞分裂也随即恢复正常。很明显,细菌细胞的生长分裂与胞内SAM浓度是密切相关的。
[0004] 通用甲基供体SAM受甲基转移酶催化去甲基后,生成的通用产物是S-腺苷高半胱氨酸(SAH),SAH被发现对胞内蛋白质和核酸的甲基化过程具有普遍的反馈抑制作用,是转甲基化反应的有效竞争性抑制剂。在哺乳动物细胞内,SAH通过SAH水解酶(SAHH)催化水解生成腺苷酸和高半胱氨酸,而在大多数病原微生物的细胞内,SAH的代谢则采用完全不同的方式——通过S-腺苷高半胱氨酸核苷酶(SAHN)催化裂解生成腺嘌呤和S-核糖基高半胱氨酸,SRH进一步在S-核糖基高半胱氨酸酶(SRHH)的作用下生成高半胱氨酸和4,5二羟-2,3-乙酰基丙酮(DPD),高半胱氨酸最后通过几种甲硫氨酸合成酶(MetH、MetE)重新生成SAM的前体——甲硫氨酸,或者经过多步酶催化生成半胱氨酸。
[0005] 由于酶的高度专一性,该方法具有专一性高、稳定性好、检测速度快、选择性好、灵敏度高等特点。酶电极研究起步于20世纪60年代,自2000年以来,生物传感器技术在环境检测、食品安全、军事和医学等方面的应用日益广泛,在申请号为201410210210.3的专利中公开了检测对苯二酚和邻苯二酚的共固定酶电极制备方法及应用;在授权公告号为CN102435650 B的专利中公开了一种酶电极的制备及快速检测植物油过氧化值的方法;在授权公告号为CN102495115 B的专利中公开了利用生物酶电极法检测根系分泌物中苹果酸的电化学方法。
[0006] 目前,已报道的测定SAM的方法有HPLC,该方法存在色谱柱容易污染,分析价格昂贵的缺陷,分光光度法,谷劲松等研究S-腺苷甲硫氨酸依赖的甲级转移酶活性的检测方法 (谷劲松等,一种S-腺苷甲硫氨酸依赖的甲级转移酶活性的检测方法,高等学校化学学报,2012,33(3):521 525),该方法是依赖甲基转移酶、S-腺苷高半胱氨酸核苷酶和S-核糖基高~
半胱氨酸酶的催化作用将SAM分解为高半胱氨酸,再对高半胱氨酸显色反应,操作比较繁琐,准确度也不理想。由于样品的基质比较复杂,给检测带来了困难。因此,建立一种灵敏、快速、简便、特异性高、重复性好经济使用的检测方法,对研究人员、生产企业、质控人员、进出口商检、政府管理部门等的迫切需要的,对食品、药品、环境安全、生物样品中的SAM含量准确定量测定十分必要,对于SAM生产和药理研究也具有十分重要的意义。
[0007] 生物酶电极传感器是当前开发具有专一性、稳定性、检测速度快、选择性好、灵敏度高等特点,广泛用于医药临床、食品、环境及生物样品检测领域,而将甲基转移酶修饰在碳糊电极上用于SAM的检测未见报道。

发明内容

[0008] 本发明的目的是将甲基转移酶和纳米铂包埋在碳糊电极中,采用1-乙基-3-甲基咪唑四氟硼酸盐作为胶粘剂制备一种碳糊电极,然后在用甲基转移酶修饰碳糊电极与电化学相结合,提供了纳米铂掺杂/酶修饰碳糊电极的制备方法,并应用检测SAM中。
[0009] 仪器与试剂
[0010] CHI660B电化学工作站(上海辰华仪器公司),实验采用三电极体系:铂丝电极为辅助电极,Ag/AgCl为参比电极(SCE),酶修饰碳糊电极(GCE)为工作电极;KQ-250E型超声波清洗器(坤峰超声仪器有限公司)。
[0011] 石墨粉,碳纳米管,氯铂酸,1-乙基-3-甲基咪唑四氟硼酸盐,戊二醛(GA),无水乙醇,甲基转移酶(E.C.2.1.1.3),DNA,SAM;硫酸,硝酸,双氧水,磷酸盐缓冲溶液,所用试剂均为分析纯,水为去离子水。
[0012] 本发明的目的通过如下技术方案实现。
[0013] 一种纳米铂掺杂/酶修饰碳糊电极的制备方法,其特征在于,该方法具有以下工艺步骤:
[0014] (1)碳纳米管和石墨粉预处理:在反应器中,按如下质量百分比加入石墨粉:20~30%,碳纳米管:8 15%,浓硫酸:40 50%,浓硝酸:10 20%,各组分之和为百分之百,于80 90℃~ ~ ~ ~
恒温反应3 5h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉~
末,即得预处理碳纳米管和石墨粉混合物;
[0015] (2)碳纳米管和石墨粉负载纳米铂的制备:在反应器中,按如下质量百分比加入预处理碳纳米管和石墨粉混合物:25 35%,丙酮:58 70%,超声分散10 min,加入氯铂酸:1 5%,~ ~ ~搅拌溶解,再加入柠檬酸:3 6%,搅拌均匀,调节pH=7.5 8.5,将温度升至120℃恒温反应20~ ~ ~
24h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得负载纳米铂碳纳米管和石墨粉混合物;
[0016] (3)碳糊电极的制备:将甲基转移酶:1-乙基-3-甲基咪唑四氟硼酸盐:负载纳米铂碳纳米管和石墨粉混合物按质量比为1:4 10:80 90混合均匀,在玛瑙研钵中研磨均匀,即~ ~得甲基转移酶/1-乙基-3-甲基咪唑四氟硼酸盐/负载纳米铂碳纳米管和石墨粉混合物碳糊;然后将其碳糊装入连有铜线的内经为Φ4mm的玻璃管内,压实,用金相砂纸打磨,抛光,去离子水洗涤,即得碳糊电极;
[0017] (4) 纳米铂掺杂/酶修饰碳糊电极的制备:取质量百分浓度为0.5%的壳聚糖乙酸溶液15μL滴涂在步骤(3)制备的碳糊电极的表面,于室温干燥,再将电极浸泡在质量百分浓度为0.2%的戊二醛溶液中1 2 h,取出后,再于其表面滴涂15μL 15mg/mL的甲基转移酶的溶~液,于5 8℃干燥,即得纳米铂掺杂/酶修饰碳糊电极。
~
[0018] 纳米铂掺杂/酶修饰碳糊电极传感器测定SAM步骤如下:
[0019] (1)标准溶液配制:配制一组包括空白标样在内的不同浓度的SAM标准溶液,底液为pH7.0 8.0的磷酸盐缓冲溶液;~
[0020] (2)将Ag/AgCl为参比电极,铂丝电极为辅助电极,本发明制备的纳米铂掺杂/酶修饰碳糊电极为工作电极组成三电极系统, 连接CHI660B电化学工作站,底液为pH7.0的磷酸盐缓冲溶液,在-1.5 0.2V的电位范围,以50mV/s循环扫描15min,取出洗涤。然后采用计时~电流法扫描该溶液,工作电压为-1.1V,取不同浓度下SAM的峰电流值与SAM浓度做工作曲线;
[0021] (3)SAM的检测:用待测样品代替步骤(1)中的SAM标准溶液,按照步骤(2)的方法进行检测,根据响应电流降低的差值△I和工作曲线,得到待测样品中SAM的含量。
[0022] 本发明的优点及效果是:
[0023] (1)本发明制备纳米铂掺杂/酶修饰碳糊电极,在碳糊电极中掺杂纳米铂离子,以1-乙基-3-甲基咪唑四氟硼酸盐作为胶粘剂,将碳纳米管与石墨粉混合制备的碳糊电极比普通的碳糊电极导电性能提高1 2倍,电化学窗口宽、制备方法简单、成本低、表面易更新、~
残余电流小等优点;
[0024] (2)该纳米铂掺杂/酶修饰碳糊电极传感器对SAM表现出很高选择性和灵敏性,响应电流与SAM的浓度在0.5 15μmol/L范围内呈良好的线性关系,相关系数R=0.9992,检测限~为1.12×10-6mol/L;
[0025] (3)该纳米铂掺杂/酶修饰碳糊电极在制备的过程中不使用有毒的试剂,环保绿色;
[0026] (4)将本发明制备的纳米铂掺杂/酶修饰碳糊电极传感器成功用于药品、食品中SAM的检测中,解决了SAM检测困难。

具体实施方式

[0027] 实施例1
[0028] (1)碳纳米管和石墨粉预处理:在反应器中,分别加入25g石墨粉,12g碳纳米管,25mL浓硫酸,13mL浓硝酸,于85℃恒温反应4h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得预处理碳纳米管和石墨粉混合物;
[0029] (2)碳纳米管和石墨粉负载纳米铂的制备:在反应器中,分别加入15g预处理碳纳米管和石墨粉混合物,41mL丙酮,超声分散10 min,0.5g氯铂酸,搅拌溶解,再加入2.5g柠檬酸,搅拌均匀,调节pH=8.0,将温度升至120℃恒温反应22h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得负载纳米铂碳纳米管和石墨粉混合物;
[0030] (3)碳糊电极的制备:在玛瑙研钵中,分别加入0.2g甲基转移酶,1.0g1-乙基-3-甲基咪唑四氟硼酸盐,17g负载纳米铂碳纳米管和石墨粉混合物,混合均匀,在玛瑙研钵中研磨均匀,即得甲基转移酶/1-乙基-3-甲基咪唑四氟硼酸盐/负载纳米铂碳纳米管和石墨粉混合物碳糊;然后将其碳糊装入连有铜线的内经为Φ4mm的玻璃管内,压实,用金相砂纸打磨,抛光,去离子水洗涤,即得碳糊电极;
[0031] (4) 纳米铂掺杂/酶修饰碳糊电极的制备:取质量百分浓度为0.5%的壳聚糖乙酸溶液15μL滴涂在步骤(3)制备的碳糊电极的表面,于室温干燥,再将电极浸泡在质量百分浓度为0.2%的戊二醛溶液中1.5 h,取出后,再于其表面滴涂15μL 15mg/mL的甲基转移酶的溶液,于5 8℃干燥,即得纳米铂掺杂/酶修饰碳糊电极。~
[0032] 实施例2
[0033] (1)碳纳米管和石墨粉预处理:在反应器中,分别加入15g石墨粉,4g碳纳米管,14mL浓硫酸,5mL浓硝酸,于90℃恒温反应3h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得预处理碳纳米管和石墨粉混合物;
[0034] (2)碳纳米管和石墨粉负载纳米铂的制备:在反应器中,分别加入13g预处理碳纳米管和石墨粉混合物,45mL丙酮,超声分散10 min,1.0g氯铂酸,搅拌溶解,再加入3.0g柠檬酸,搅拌均匀,调节pH=7.5,将温度升至120℃恒温反应20h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得负载纳米铂碳纳米管和石墨粉混合物;
[0035] (3)碳糊电极的制备:在玛瑙研钵中,分别加入0.1g甲基转移酶,0.8g1-乙基-3-甲基咪唑四氟硼酸盐,9g负载纳米铂碳纳米管和石墨粉混合物,混合均匀,在玛瑙研钵中研磨均匀,即得甲基转移酶/1-乙基-3-甲基咪唑四氟硼酸盐/负载纳米铂碳纳米管和石墨粉混合物碳糊;然后将其碳糊装入连有铜线的内经为Φ4mm的玻璃管内,压实,用金相砂纸打磨,抛光,去离子水洗涤,即得碳糊电极;
[0036] (4) 纳米铂掺杂/酶修饰碳糊电极的制备:取质量百分浓度为0.5%的壳聚糖乙酸溶液15μL滴涂在步骤(3)制备的碳糊电极的表面,于室温干燥,再将电极浸泡在质量百分浓度为0.2%的戊二醛溶液中2 h,取出后,再于其表面滴涂15μL 15mg/mL的甲基转移酶的溶液,于5 8℃干燥,即得纳米铂掺杂/酶修饰碳糊电极。~
[0037] 实施例3
[0038] (1)碳纳米管和石墨粉预处理:在反应器中,分别加入10g石墨粉,6g碳纳米管,13mL浓硫酸,7mL浓硝酸,于80℃恒温反应5h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得预处理碳纳米管和石墨粉混合物;
[0039] (2)碳纳米管和石墨粉负载纳米铂的制备:在反应器中,分别加入7g预处理碳纳米管和石墨粉混合物,15mL丙酮,超声分散10 min,0.6g氯铂酸,搅拌溶解,再加入1.0g柠檬酸,搅拌均匀,调节pH=8.5,将温度升至120℃恒温反应24h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得负载纳米铂碳纳米管和石墨粉混合物;
[0040] (3)碳糊电极的制备:在玛瑙研钵中,分别加入0.5g甲基转移酶,5g1-乙基-3-甲基咪唑四氟硼酸盐,40g负载纳米铂碳纳米管和石墨粉混合物,混合均匀,在玛瑙研钵中研磨均匀,即得甲基转移酶/1-乙基-3-甲基咪唑四氟硼酸盐/负载纳米铂碳纳米管和石墨粉混合物碳糊;然后将其碳糊装入连有铜线的内经为Φ4mm的玻璃管内,压实,用金相砂纸打磨,抛光,去离子水洗涤,即得碳糊电极;
[0041] (4) 纳米铂掺杂/酶修饰碳糊电极的制备:取质量百分浓度为0.5%的壳聚糖乙酸溶液15μL滴涂在步骤(3)制备的碳糊电极的表面,于室温干燥,再将电极浸泡在质量百分浓度为0.2%的戊二醛溶液中1h,取出后,再于其表面滴涂15μL 15mg/mL的甲基转移酶的溶液,于5 8℃干燥,即得纳米铂掺杂/酶修饰碳糊电极。~
[0042] 实施例4
[0043] (1)碳纳米管和石墨粉预处理:在反应器中,分别加入22g石墨粉,7g碳纳米管,11mL浓硫酸,7mL浓硝酸,于88℃恒温反应4.5h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得预处理碳纳米管和石墨粉混合物;
[0044] (2)碳纳米管和石墨粉负载纳米铂的制备:在反应器中,分别加入32g预处理碳纳米管和石墨粉混合物,76mL丙酮,超声分散10 min,2.0g氯铂酸,搅拌溶解,再加入6.0g柠檬酸,搅拌均匀,调节pH=7.8,将温度升至120℃恒温反应23h,冷却至室温,过滤,用去离子水洗涤为中性,在恒温干燥箱中干燥,研磨至粉末,即得负载纳米铂碳纳米管和石墨粉混合物;
[0045] (3)碳糊电极的制备:在玛瑙研钵中,分别加入0.25g甲基转移酶,1.0g1-乙基-3-甲基咪唑四氟硼酸盐,22g负载纳米铂碳纳米管和石墨粉混合物,混合均匀,在玛瑙研钵中研磨均匀,即得甲基转移酶/1-乙基-3-甲基咪唑四氟硼酸盐/负载纳米铂碳纳米管和石墨粉混合物碳糊;然后将其碳糊装入连有铜线的内经为Φ4mm的玻璃管内,压实,用金相砂纸打磨,抛光,去离子水洗涤,即得碳糊电极;
[0046] (4) 纳米铂掺杂/酶修饰碳糊电极的制备:取质量百分浓度为0.5%的壳聚糖乙酸溶液15μL滴涂在步骤(3)制备的碳糊电极的表面,于室温干燥,再将电极浸泡在质量百分浓度为0.2%的戊二醛溶液中1.5h,取出后,再于其表面滴涂15μL 15mg/mL的甲基转移酶的溶液,于5 8℃干燥,即得纳米铂掺杂/酶修饰碳糊电极。~
[0047] 实施例5
[0048] 将上述实施例1 4所制备的纳米铂掺杂/酶修饰碳糊电极传感器,用于药品中SAM~的检测,步骤如下:
[0049] (1)标准溶液配制:配制一组包括空白标样在内的不同浓度的SAM标准溶液,底液为pH 7.5的磷酸盐缓冲溶液;
[0050] (2)工作曲线绘制:将Ag/AgCl为参比电极,铂丝电极为辅助电极,本发明制备的电极为工作电极组成三电极系统, 连接CHI660B电化学工作站,采用计时电流法扫描该溶液,工作电压为-1.1V,取不同浓度下SAM的峰电流值与SAM浓度做工作曲线,工作曲线的回归方程为I=0.018+0.356c(μmol/L),相关系数R=0.9992,检测的线性范围为0.5 15μmol/L,检出~限1.12×10-6mol/L;
[0051] (3)SAM的检测:取思美泰药片20片,研磨后,用去离子水浸去1小时,过滤,滤液定容在250 mL容量瓶中,测定时稀释到工作曲线范围内,用待测样品代替步骤(1)中的SAM标准溶液,按照步骤(2)的方法进行检测,根据响应电流值和工作曲线,得到待测样品中SAM的含量;回收率在95.86 104.8%之间。~
[0052] 本发明制备的固载甲基转移酶电极传感器成功用于药品、食品、生物样品中SAM的检测中,回收率在95.86 104.8%之间,因此本发明制备的分子印迹传感器可广泛应用于化~工、生物医药、食品、环保检测等相关领域,解决了SAM检测的困难。