强烈的粘合和保留在载体的表面上,且该光催化用于空气和水的净化和消毒的光催化元件 元件具有高的光催化活性。及其生产方法转让专利

申请号 : CN201280078229.6

文献号 : CN105073247B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 伊戈尔·罗维奇·巴利克钦维克托·伊万诺维奇·贝莱斯特恩伊戈尔·安纳多列维奇·多玛什涅叶夫根尼·尼古拉耶维奇·卡巴奇尼科夫叶夫根尼·尼古拉耶维奇·库尔金弗拉基米尔·尼古拉耶维奇·托洛伊茨基

申请人 : 克拉斯内波列有限责任公司

摘要 :

本发明涉及空气和水的净化和消毒的领域。光催化元件包括具有孔体积分数从20%至40%以及孔径从0.1至0.5mm的烧结玻璃珠,其表面涂覆有二氧化钛粉末,该二氧化钛粉末的比表面积为150m2/g至400m2/g,相对于光催化元件的总质量为0.5%至2%的比率。另外,玻璃珠的表面具有起伏形状,其中起伏凹陷为0.5微米至5微米。用于制备光催化元件的方法包括:在高于玻璃软化温度5℃至20℃的温度下,将玻璃珠烧结,利用化学蚀刻剂使玻璃珠表面改性,利用来自pH值2.9±0.1的水悬浮液的二氧化钛粉末涂覆玻璃珠表面。本发明提供了光催化元件的生产,其特征在于,在进行净化的介质流中,二氧化钛粉末

权利要求 :

1.一种用于空气和水的净化和消毒的光催化元件,包括覆盖有二氧化钛粉末的烧结玻璃珠,其中,所述烧结玻璃珠具有孔径为0.1mm至0.5mm和孔体积分数为20%至40%的开孔孔隙率;所述烧结玻璃珠的表面具有0.5微米至5微米的起伏深度的起伏形状;二氧化钛粉末的比表面积为150m2/g至400m2/g且所述二氧化钛粉末占所述光催化元件的重量百分比为

0.5%至2%。

2.一种用于生产根据权利要求1所述的光催化元件的方法,包括:将玻璃珠烧结,利用浓氢氟酸和浓硫酸对所烧结的玻璃珠进行表面改性,以及在所述烧结的玻璃珠的改性表面上涂覆二氧化钛粉末,其中,所述玻璃珠在高于玻璃软化点5℃至20℃的温度下烧结,以及在涂覆所述二氧化钛粉末之前通过蚀刻化学物质对所述烧结的玻璃珠的表面进行改性,以及所述二氧化钛粉末从pH值等于2.9±0.1的二氧化钛粉末水悬浮液中被涂覆到所述烧结的玻璃珠的改性表面上。

3.根据权利要求2所述的用于生产光催化元件的方法,其中,通过蚀刻化学物质对所述烧结的玻璃珠的表面进行改性包括以下连续处理:利用浓氢氟酸处理1分钟至5分钟,然后用浓硫酸处理1分钟至5分钟。

说明书 :

用于空气和水的净化和消毒的光催化元件及其生产方法

技术领域

[0001] 本发明涉及空气和水的净化和消毒的领域,尤其涉及在利用光催化的分子和一体化处理装置中可被用作主要功能单元的光催化元件的设计和生产方法。

背景技术

[0002] 在紫外光的作用下,利用二氧化钛对有机污染物的光活化催化氧化降解是用于空气和水净化与消毒的先进方法。该方法是高效的、有成本效益的、环境友好的且通过将有机污染物矿化为水和二氧化碳可以消除几乎任何有机污染物。确保它们效率和持久性的光催化处理装置的主要功能单元是以将纳米晶体催化剂和UV辐射覆盖区中所安装的限定形状的载体结合的结构的形式的光催化元件。
[0003] 光催化元件可以被用作在医疗机构、儿童日托中心、学校、办公室、影院、居住空间等中采用的空气净化和消毒装置的部件,用于有效控制呼吸道感染、有毒污染物和臭味消除。
[0004] 已知一种用于制备光催化材料的方法(美国专利;专利号:5,919,726;公开日期:1999年7月6日),第一阶段包括在任一材料(金属、水泥、粘土、沙子、碎石、陶瓷、塑料、木材、石头、玻璃等)制成的基板上以任意方式涂覆(喷涂、涂刷等)具有0.05微米至2微米的厚度的亚层,该亚层含有颗粒尺寸约为20微米至50微米的硅胶,该亚层然后通过在100℃至900℃的温度下热处理3分钟至30分钟被固定。在第二阶段,亚层通过液态或雾状的四氯化钛(可以添加水蒸气)来处理。在第三状态处,所获得的材料在氧存在下在150℃至500℃的温度下被热处理,从而在表面上形成锐钛型二氧化钛。由于二氧化硅亚层的存在,得到的二氧化钛被固定在基板上且保留其光催化性能。该方法主要被推荐用于制造具有光催化空气净化和消毒效果的建筑材料(瓷砖、护墙板等)。
[0005] 杀菌活性测试包括,在所生产的瓷砖上涂抹细胞悬浮液(0.5ml)。瓷砖被放入皮氏培养皿且盖有石英玻璃盖。在25℃下在1200lux荧光照明下在无菌室中3小时内完成培养。在表2中给出结果。为了参考方便,没有二氧化钛层的瓷砖也经受测试。最好的测试样本表明,金黄色葡萄球菌(Staphylococcus aureus)活细胞的浓度从3100减小至135,以及肺炎克雷伯菌(Klebsiella pneumonia)活细胞的浓度从1725减小至400。
[0006] 上述光催化材料制备方法的主要缺点为复杂的且与使用高挥发性和有毒四氯化钛相关的环境危险的制备方法。此外,在二氧化钛层应用期间,有毒的和腐蚀性氯化氢由于四氯化钛水解的结果而产生。
[0007] 所产生的材料样本的杀菌活性不足以在空气净化和消毒装置中应用。
[0008] 已知一种光催化空气处理过滤器(美国专利;专利号:US 6,491,883 B2;专利日期:2002年12月10日)。过滤器由具有5微米至60微米厚涂层的基板组成,该涂层包括:
[0009] -允许紫外光通过的颗粒(例如,玻璃颗粒或纤维),该颗粒的最小尺寸为0.2微米至50微米,按重量计用量为5%至60%;
[0010] -光催化ТiO2颗粒,其平均尺寸为0.001微米至0.02微米,按重量计用量为20%至80%;
[0011] -二氧化硅颗粒,其平均尺寸为0.002微米至0.2微米,按重量计用量为10%至60%;
[0012] -可选地,粘土矿物,按重量计用量为2%至20%。
[0013] 涂层的特点为对基板材料的良好粘合力且可以透过紫外光,然而,磨碎成分的使用,尤其是粘土粘合剂的那些成分的使用,不可以确保涂层的良好透气性或者在涂层内含有的光催化ТiO2颗粒的有效性能。为了制造空气和水的净化和消毒装置的光催化元件,需要具有高开孔孔隙率的材料以确保被处理的介质到光催化剂的无障碍扩散。
[0014] 已知一种用于运输车辆的空气净化系统(美国,美国申请公开,公开号:US 2012/0128539 Al,公开日期:2012年5月24日)。该系统包括:空气入口、空气出口和用于在它们之间的空气流动的空间。具有响应表面的一个或多个元件和一个或多个紫外光源被安装在该空间中。响应表面包含催化材料且占据装置内表面的至少50%。二氧化钛或含有二氧化钛的材料被用作催化材料。发光管或发光二极管被用作紫外光源。空气通过风扇挤过该装置的空间。为了增大空气与响应表面接触的表面积和时间,提出在过滤器壳体内使用多种形状的固定元件,例如,波纹状的、螺旋的、星形的、指状的,以及具有松散材料的形式的元件(例如,短玻璃或塑料管、球),该松散材料充满空气流动所通过的整个空间。为了进一步改善净化效率,元件的响应表面可含有纳米沸石和/或纳米银。覆盖有催化剂的松散浇注元件的使用提供了大的与待处理的空气接触的响应表面,然而,非固定元件可相对于彼此移动,由于摩擦和从装置逸出的灰尘,从而不可避免地导致催化床的机械磨损,以及催化剂使用寿命变短。该装置的有效性能需要具有高的内部孔隙率和透气性的固定的光催化元件。催化剂必须被涂抹在载体的整个表面(包括内部孔的表面)。
[0015] 与本发明最类似的主要特征的组合具有光催化元件以及一种用于制备该光催化元件的方法(俄罗斯联邦专利号,2151632,公开日期,1998年10月20日),其包含限定形状的多孔载体(优选地,为管或板的形式),和具有施加到载体表面的锐钛型二氧化钛粉末,该多孔载体由5层至10层烧结的玻璃珠制成,该锐钛型二氧化钛粉末具有的比表面积为100м2/g至150м2/g。该光催化元件生产方法包括:
[0016] 通过以下生产限定形式的载体:在低于玻璃软化点的温度下在由金属、石墨或脆性材料制成的壳体中烧结直径为0.1mm至1.5mm的玻璃珠,冷却,从壳体移除载体,用氢氟酸蒸汽或1%至2%的溶液进行载体表面活化,将来自水悬浮液的二氧化钛粉末涂抹到载体表面上,以及空气干燥该载体。
[0017] 上述光催化元件和用于生产该光催化元件的方法具有下列缺点:
[0018] -由于玻璃珠在低于玻璃软化点的温度下烧结的事实,得到的光催化元件不具有足够的机械强度,因此,在光催化装置运输、装配和操作期间存在大百分数的光催化元件破坏;
[0019] -所用的二氧化钛粉末的不足够高的比表面积(100m2/g至150m2/g)限制了光催化元件在空气和水净化过程中的最大可实现活性;
[0020] -通过上述方法(用氢氟酸蒸汽或1%至2%的溶液处理)进行的载体表面活化对于改善二氧化钛粉末与玻璃珠粘合的强度不是十分有效,尤其是对于在水净化装置中所用的光催化元件。在以水蒸气的光催化元件操作期间,二氧化钛粉末的一部分从载体的表面移除,导致降低的活性和光催化元件较短的使用寿命;
[0021] -在将二氧化钛涂抹到载体上的过程中对水悬浮液pH值的缺少控制不允许最大活性的光催化元件的可持续生产。

发明内容

[0022] 本发明的目的是提供一种新型光催化元件,其特征在于:
[0023] -增强的机械强度;
[0024] -增大的催化活性;
[0025] -延长的使用寿命。
[0026] 通过提供具有以下特征的光催化的空气和水净化和消毒元件来实现该目的:
[0027] -具有限定形状的多孔载体,孔径为0.1mm至0.5mm,以及孔体积分数为20%至40%,包括具有表面起伏深度为0.5微米至5微米的烧结玻璃珠、以及以占总的光催化元件重量的0.5%至2%的用量涂覆到玻璃表面上的具有150m2/g至400m2/g的比表面积的二氧化钛粉末。
[0028] 该目的还通过提供一种光催化元件来实现,其包括:
[0029] -在高于玻璃软化点5℃至20℃的温度下,通过在给出载体所需形状和尺寸的壳体中烧结玻璃珠来制造载体;
[0030] -冷却载体且从壳体移除载体;
[0031] -通过用浓氢氟酸处理载体1分钟至5分钟,然后用浓硫酸处理载体1分钟至5分钟,形成具有0.5微米至5微米深度的载体的玻璃表面起伏;
[0032] -用水冲洗载体,然后在80℃至120℃的烘箱中干燥;
[0033] -通过将具有pH=2.9±0.1的二氧化钛水悬浮液涂覆到载体上,使占总的光催化元件重量的0.5%至2%用量的比表面积为150m2/g至400m2/g的二氧化钛粉末涂覆所烧结的珠的玻璃表面;
[0034] -在150℃至200℃下的烘箱中干燥所完成的光催化元件。
[0035] 在高于玻璃软化点5至20℃的温度下进行的玻璃珠烧结,可以提供载体的高的机械强度而同时保留高的开孔孔隙率(20%至40%的0.1mm至0.5mm孔)。
[0036] 通过浓的氢氟酸和硫酸溶液进行的烧结玻璃珠表面改性,能够提供0.5微米至5微米的玻璃表面起伏深度,其确保了二氧化钛粉末强有力地结合在载体表面处且在被净化的空气或水的流中保留在载体表面处。下图示出在酸处理之前(1)和之后(2)的烧结珠的表面的显微照片。该起伏不是通过蒸汽或稀的氢氟酸溶液的常规表面活化来实现。

附图说明

[0037] 图1示出酸改性之前(1)和之后(2)的载体表面。
[0038] 当将二氧化钛粉末涂覆到载体表面上时,确定光催化元件的最终活性的最重要因素是从中施用粉末的水悬浮液的pH值。在pH=2.9±0.1处实现最大活性。考虑到光催化剂活性对介质的pH值的极大依赖性(图2),悬浮液的特定酸度(рН=2.9±0.1)在二氧化钛粉末涂覆期间必须严格遵守。结合使用具有高比表面积(150m2/g至400m2/g)的二氧化钛粉末的该技术允许生产具有最大活性的光催化元件。
[0039] 图2示出随着悬浮液的pH值变化的二氧化钛的光催化活性。

具体实施方式

[0040] 本发明的实质通过以下实施方式来说明。
[0041] 实施方式1
[0042] 玻璃珠(0.8mm至1mm的部分)被倒入以充满具有86mm外直径、6mm宽度和420mm高度的圆柱形可拆卸的不锈钢壳体。该壳体被放入烘箱,在烘箱中,在高于玻璃化软化点15℃的温度(约690℃)下持续1小时20分钟进行玻璃珠的烧结。在冷却到室温之后,该壳体被拆开,然后移除得到的多孔玻璃管形式的载体。
[0043] 然后通过以下将载体表面改性:首先浸入浓氢氟酸中持续1分钟,然后用水冲洗,然后用浓硫酸处理3分钟,用水冲洗,然后在100℃下的烘箱中干燥直到完全脱水。
[0044] 水悬浮液由蒸馏水和锐钛型二氧化钛粉末制成,该锐钛型二氧化钛粉末具有的比表面积为350м2/g且二氧化钛的重量百分比含量为10%。逐滴加入稀硫酸,使悬浮液的pH值为2.9±0.1。干载体被浸入得到的悬浮液中、移除、然后在150℃下的烘箱中干燥。
[0045] 所完成的光催化元件包含:
[0046] -包括具有改性表面的烧结玻璃珠的多孔管状载体,长为420mm,直径为86mm且壁厚为6mm;
[0047] -锐钛型二氧化钛粉末,其具有的比表面积为350m2/g,用量为12g/个元件。
[0048] 另一个光催化元件被制备作为参照样品。该样品的制备步骤仅具有以下不同:没有进行表面改性操作。在珠的表面上没有观测到起伏。在完成的光催化元件中的二氧化钛含量为10g。
[0049] 根据该实施方式所生产的样品(主要样品1号、参照样品2号)在含有大肠杆菌(Escherichia coli)培养物的水的净化的过程中进行测试。根据测试方式,含有大肠杆菌细胞的水通过竖向安装的光催化元件的壁以2l/min的流速循环。紫外灯被安装在管的内部,利用波长为320纳米至405纳米的紫外光,且在红外波段为9W功率,照亮光催化元件的内表面。以一定的时间间隔采集水样品,然后涂抹在皮氏培养皿中的培养基上。在培养基中生长的菌落的数量在48小时之后被计算。此外,在10小时的连续水流之后,通过测量干燥的光催化元件的重量,检测由水蒸气夹带的二氧化钛。测量结果在表1中给出。
[0050] 表1
[0051]
[0052] 测试结果表明,通过给予玻璃表面异形形状对载体的改性,当由悬浮液施加时,增大了二氧化钛粉末的捕获,该改性提供了催化剂与载体的更强的粘合且增强了光催化元件的总体光催化活性。
[0053] 实施方式2
[0054] 玻璃珠(0.8mm至1mm的部分)被倒入以充满在可拆卸的不锈钢壳体中的长度60mm、宽度5mm和高度400mm的扁管。进一步烧结,载体表面改性和催化剂涂膜操作以与实施方式1中相同的方式进行。
[0055] 所完成的光催化元件包含:
[0056] -尺寸为400mm□60mm□5mm的平行六面体形式的多孔载体,该载体包括具有改性表面的烧结玻璃珠;
[0057] -锐钛型二氧化钛粉末,其比表面积为350m2/g,用量为2g/个元件。
[0058] 除了二氧化钛粉末从pH=4.5的悬浮液被涂覆到载体上之外,以相同方式生成参照测试样品。
[0059] 表2
[0060]
[0061] 根据该实施方式所制备的样品(主要样品3号、参照样品4号)在空气中丙酮蒸汽的光催化氧化的反应下进行测试。测试在体积为300l的密封箱中进行,其中,安装具有受试样品的反应容器、类似于在实施方式1中所采用的紫外灯的紫外灯、以及提供空气流动的风扇。通过蒸发所需量的液态丙酮来获得初始的蒸汽浓度,达到100ppm。在UV灯打开之后,丙酮的浓度和其氧化最终产物(CO2)的浓度随时间通过气体传感器进行测量。测试结果在表2中给出。
[0062] 结果表明,样品1具有更大的催化活性,二氧化钛已经从pH=2.9±0.1的悬浮液中被沉积在样品1上。