使用含有金离子和氟离子的溶液形成金属硅化物的方法转让专利

申请号 : CN201480009890.0

文献号 : CN105074052B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 文森特·梅费里克多米尼克·祖尔

申请人 : 埃其玛公司

摘要 :

本发明涉及一种用于形成硅化镍或硅化钴的方法,包括以下步骤:‑将含硅基板的表面暴露到含有0.1mM~10mM的金离子和0.6M~3.0M的氟离子的水溶液中并持续在5秒~5分钟之间的时间,‑通过无电镀手段在活化的基板上沉积基本上由镍或钴构成的层,‑在300℃~750℃之间的温度下施加快速热处理,从而形成硅化镍或硅化钴。所述水溶液包含选自含有至少一种阴离子或非离子极性基团并含有10~16个碳原子的烷基链的化合物的表面活性剂。这种方法基本上可以应用到NAND存储器和光伏电池的制造。

权利要求 :

1.一种用于在含硅基板上形成硅化镍或硅化钴的方法,所述方法包括以下步骤:-使所述含硅基板的表面与包含金离子和氟离子的水溶液接触,从而在所述表面上形成金属金颗粒,其中所述水溶液包含选自含有至少一种阴离子或一种非离子极性基团并含有10~16个碳原子的一个烷基链的化合物的表面活性剂,-通过无电镀途径在覆盖有根据前述步骤获得的金属金颗粒的所述表面上沉积包含按重量计超过90%的镍或钴的层,其中所述层的厚度在10nm~45nm之间,和-在300℃~750℃之间的温度下施加快速热退火,从而形成硅化镍或硅化钴。

2.如权利要求1所述的方法,其中,使所述含硅基板的表面与所述水溶液接触的持续时间在5秒~5分钟之间。

3.如权利要求1所述的方法,其中,所述包含氟离子的水溶液通过将氢氟酸(HF)、NH4F或它们的一种混合物加到水中的步骤获得。

4.如权利要求1所述的方法,其中,所述包含金离子的水溶液通过将氯金酸(HAuCl4)加到水中的步骤获得。

5.如权利要求1所述的方法,其中,所述水溶液包含:

-0.1mM~10mM的金离子,和

-0.6M~3.0M的氟离子。

6.如权利要求1所述的方法,其中,所述烷基链含有10~14个碳原子。

7.如权利要求1所述的方法,其中,所述包含按重量计超过90%的镍或钴的层具有在10~150nm之间的均匀或一致的厚度。

8.如权利要求1所述的方法,其中,所述包含按重量计超过90%的镍的层是通过将覆盖有金属金颗粒的所述表面与包含镍盐、硼系还原剂、镍的稳定剂和多胺的水溶液接触的步骤获得的镍硼层,所述水溶液的pH值在9~12之间,并且所述水溶液的温度在50℃~90℃之间。

9.如权利要求1所述的方法,其中,所述含硅基板包含空心垂直结构,所述结构的尺寸表现为其开口的直径在20~100nm之间并且其深度在500nm~3μm之间。

10.如权利要求1所述的方法,其中,所述含硅基板包含在所述表面上垂直交替的硅区域与选自SiO2、Si3N4、SiC和SiOC的电介质区域。

11.如权利要求1所述的方法,还包括化学清洗硅化镍或硅化钴的步骤,从而去除在快速热退火步骤结束时没有迁移到硅中的镍或钴。

12.如权利要求1所述的方法,其中,所述快速热退火温度为350℃~450℃。

13.如权利要求1所述的方法,其中,所述表面活性剂的分子量在100g/mol~1500g/mol之间。

14.如权利要求1所述的方法,其中,所述表面活性剂包含阴离子极性基团。

15.如权利要求1所述的方法,其中,所述表面活性剂是十二烷基硫酸钠。

16.一种用于在含硅基板上形成包含镍或钴的层的方法,所述方法包括以下步骤:-将所述含硅基板的表面暴露到包含金离子、氟离子以及选自含有至少一种阴离子或非离子极性基团并含有10~16个碳原子的一个烷基链的化合物的表面活性剂的水溶液中,从而活化所述含硅基板的表面,和-通过无电镀途径在所述含硅基板的活化表面上沉积包含按重量计超过90%的镍或钴并且厚度在10~45nm之间的层。

17.一种NAND存储器的制造方法,包括如权利要求1~15中任一项所述的用于形成硅化镍或硅化钴的方法。

18.一种光伏电池的制造方法,包括如权利要求1~15中任一项所述的用于形成硅化镍或硅化钴的方法。

19.如权利要求1所述的方法,其中,所述层的厚度在10~25nm之间。

20.如权利要求1或19所述的方法,其中,所述层的厚度的变化低于5%。

21.如权利要求16所述的方法,其中,所述层的厚度在10~25nm之间。

22.如权利要求16或21所述的方法,其中,所述层的厚度的变化低于5%。

说明书 :

使用含有金离子和氟离子的溶液形成金属硅化物的方法

技术领域

[0001] 本发明总的来说涉及电子设备的制造,例如,特别是数据的储存和一般传输用的用于USB密钥、MS卡和SD卡中的可擦除NAND存储器的制造。
[0002] 本发明涉及通过在硅上化学沉积金属来制造金属硅化物。特别地,其涉及包含相对于其表面垂直交替的电介质和半导体层的基板的活化,用于利用通过无电镀工艺(也被称为自动催化法)沉积的薄金属层的后续涂布。

背景技术

[0003] 硅化镍通常通过汽相法在硅基板上沉积镍膜随后进行快速热退火(RTA)来形成。在通常为400~750℃的数量级的温度下的这种热退火期间,镍迁移到硅层中以形成硅化镍。没有迁移到硅中并且仍然保留在基板的表面上的镍随后可以通过选择性的化学清洗来去除,而不会损坏所形成的硅化物。
[0004] 硅化镍特别地用于VLSI集成电路中所使用的半导体器件相互连接的制造。硅化镍沉积层对于制造NAND存储器和MOS晶体管也有用。
[0005] NAND闪存存储器将信息储存在由串联连接的浮栅晶体管(MOS)构成的存储单元的网络中。在三维NAND中,希望能够在高宽比非常高的结构(特别是具有几十纳米的开口和几微米的深度的孔洞)的整个表面上产生具有均匀厚度的非常薄的硅化镍沉积层。
[0006] MOS(金属氧化物半导体)晶体管经常使用金属硅化物(钛、钴或钨硅化物)层来减小两种材料之间的电阻。
[0007] 在栅极长度小的MOS晶体管或结相对较浅的MOS晶体管中,必需产生较薄的镍沉积层,因为镍在硅中具有非常高的扩散系数,导致形成可以延伸到晶体管结构的侧壁的下面并且造成操作缺陷的硅化镍区域。
[0008] 为了获得具有均匀厚度的镍层,通常必需用钯使硅表面活化。特别地,专利US 6406743记载了一种用于制造硅化镍的方法,包括在环境温度下在氢氟酸和乙酸溶液中用氯化钯盐使多晶硅表面活化大约10秒。在该活化步骤之后,例如,在诸如乳酸和柠檬酸等镍络合剂的存在下利用硫酸镍和二甲胺硼烷的溶液通过无电镀途径来沉积厚度为180~
220nm的镍层。通过将镍升到高温(650℃)下以使其迁移到硅中来形成硅化镍。
[0009] 然而,申请人公司已经发现用钯活化不可以获得具有低的和均匀的厚度的镍层,因为钯在硅的表面上的活化密度太低。申请人公司也已能够观察到,通过使用银或铜来活化硅表面,获得了薄的和均匀的镍层,但是在快速热退火(RTA)步骤期间不形成硅化镍。
[0010] 已经提出通过汽相法来沉积镍。然而,化学气相沉积(CVD或ALD)方法很昂贵。当将它们应用到表现出孔洞或蚀刻特征的结构上时,它们也具有在该结构的开口和锐角处而不是在其底部形成非常厚的沉积层的缺点。当高宽比变得太高时,例如大于5:1,例如10:1的数量级,通过CVD沉积的层的厚度在结构的底部变得太低。
[0011] 因此,仍然需要获得具有低厚度的均匀镍层,该镍层可以在尽可能低的温度下通过快速热退火迁移到硅中以降低制造成本。该层必须通过较廉价并且易于执行的工业生产方法获得。这是为什么寻求通过自动催化途径而不是汽相途径沉积镍的理由。

发明内容

[0012] 在本发明的上下文中,已经发现这个目的可以通过在特定的表面活性剂的存在下使用水溶液中的金盐和氟源来实现。
[0013] 因此,本发明的第一主题是一种用于形成硅化镍或硅化钴的方法,包括以下步骤:
[0014] -使含硅基板的表面与包含金离子和氟离子的水溶液接触,从而形成金属金颗粒(Au(0)),
[0015] -通过无电镀途径在覆盖有金属金颗粒的所述基板上沉积基本上由镍或钴构成的层,
[0016] -在300℃~750℃之间的温度下施加快速热退火(RTA),从而形成硅化镍或硅化钴。
[0017] 根据本发明的方法获得的镍沉积层符合复合规格:
[0018] -其粘附到硅基板上,
[0019] -其在整个基板表面上具有不变的厚度,而无论该基板类型如何(平的或蚀刻的),即使在通常小于50nm的低厚度时,也是这种情况,和
[0020] -即使在通常为350℃的数量级的低温下的快速热退火期间,其也扩散到硅中。
[0021] 在该结构中,其表面包含交替的硅区域和绝缘区域,本发明的方法有利地使得可以在硅上进行镍或钴的选择性沉积,这限制了初始原料的过多使用和与去除在RTA结束之后没有迁移到硅中的镍的步骤相关联的成本。
[0022] 对于在微电子领域的应用,硅基板可以由覆盖有厚度在70~110nm之间的二氧化硅(SiO2)层、然后由厚度在150~230nm之间的硅(例如,多晶硅)层覆盖的硅试片构成。
[0023] 多晶硅被理解为表示特定形式的硅,其不同于单晶硅和非晶硅。与第一种(仅由一种晶体构成)和第二种(没有或非常低的晶体一致性)不同,多晶硅由不同尺寸和形状的多种小晶体构成。
[0024] 本发明方法的第一步骤在于使含硅基板的表面与包含金离子和氟离子的水溶液接触,从而在硅基板的表面上形成金颗粒,也被称为金粒。
[0025] 所述水溶液优选包含0.1mM~10mM的金离子,优选0.1mM~5.0mM,更优选0.5mM~1.0mM的金离子。例如,金离子的浓度在0.65mM~0.75mM之间。
[0026] 在本专利申请中,表述“为…~…”和“包含…~…”表示值的范围并且包括它们的限值。表述“…~…之间”将限值排除在值的范围之外。
[0027] 所述水溶液优选包含0.6M~3.0M的氟离子,优选1.0~2.0M,更优选1.4~1.6M的氟离子。
[0028] 所述氟离子可以由氢氟酸(HF)、NH4F或NH4F/HF的混合物供给。
[0029] 所述水溶液优选包含0.6M~3.0M的氢氟酸(HF),优选1.0M~2.0M,更优选1.4M~1.6M的氢氟酸(HF)。
[0030] 所述金离子可以由选自金(I)和金(III)盐的金盐供给,例如,氯化金(I)、氯化金(III)或溴化金(III)。例如,选择氯金酸(HAuCl4)。
[0031] 所述水溶液优选包含0.1mM~10mM的金(III)离子,优选0.1~5.0mM,更优选0.5~1.0mM的金(III)离子。例如,金(III)离子的浓度在0.65~0.75mM之间。
[0032] 根据优选的实施方案,所述水溶液包含:
[0033] -0.1mM~10mM,优选0.5mM~1.0mM的金离子,和
[0034] -0.6M~3.0M,优选1.0M~2.0M的氟离子。
[0035] 水溶液可以包含有机或无机酸化合物,不论是强酸还是弱酸,以改变对硅的侵蚀速度,特别地以增大或减小该速度。在一个实施方案中,水溶液不含有乙酸CH3COOH。
[0036] 另外,如果期望进一步减小需要在后续的步骤中沉积的镍或钴层的厚度,那么所述溶液可以包含表面活性剂。
[0037] 所述表面活性剂可以选自含有至少一种阴离子或非离子极性基团并含有至少10个碳原子,例如10~16个碳原子,优选10~14个碳原子的烷基链的化合物。所述烷基链优选为直链。其有利地含有12个碳原子(也被称为十二烷基)。
[0038] 这种特定的表面活性剂使得可以使在与多晶硅进行氧化/还原反应之后形成的金纳米颗粒稳定。其也使得可以提高它们的数量并进一步将它们分散在硅的表面上。通过向活化槽添加这种表面活性剂,可以减小金属金颗粒的尺寸,而同时增大它们的密度。发明人已证实了,较大尺寸的表面活性剂不能获得如此有利的结果。
[0039] 金颗粒的这种分布使得可以沉积同时非常薄并且连续的镍层以及然后的硅化镍层,对于必需沉积更多的镍以保证在硅的整个表面上的均匀的沉积层的现有技术方法来说是不可以做到的。镍层的厚度可以有利地小于150nm,例如在10~45nm之间。在一些应用中,其可以是10~25nm的数量级。
[0040] 可以同时形成纳米颗粒在多晶硅表面上的静电和空间稳定化的离子、阳离子或阴离子表面活性剂是优选的。
[0041] 表面活性剂的分子量可以在100g/mol~5000g/mol之间,优选在100g/mol~1500g/mol之间,更优选在200g/mol~500g/mol之间。
[0042] 特别优选分子量在100g/mol~1500g/mol之间的阴离子表面活性剂。
[0043] 极性基团可以是非离子基团,优选聚氧化亚烷基二醇基团,例如聚氧化乙二醇或聚氧化丙二醇基团。在本实施方案中,表面活性剂可以选自聚氧化亚烷基二醇烷基醚,优选包含具有10~16个碳原子的烷基链的聚氧化亚烷基二醇烷基醚,例如,聚氧化乙二醇十二烷基醚。
[0044] 极性基团可以是阴离子基团,例如,磺酸根(-SO3-)、硫酸根(-OSO3-)或羧酸根(-COO-)。在本发明的背景下优选硫酸根。表面活性剂优选为分子式为R-OSO3-的烷基硫酸盐,其中R是具有10~14个碳原子,优选12个碳原子的直链烷基。例如,表面活性剂可以为十二烷基硫酸钠。
[0045] 表面活性剂按重量计优选为溶液的0.1~5%,例如,按重量计2.5~3.5%。
[0046] 根据优选的实施方案,所述水溶液包含相对于组合物重量的按重量计0.5mM~1mM的氯金酸(HAuCl4)、1.0~2.0M的氢氟酸(HF)和任选地2.5~3.5%的十二烷基硫酸钠。
[0047] 优选地,通过在其表面上沉积金属金粒来使硅基板活化的这个步骤在15~30℃之间的温度下,更优选在20~25℃之间的温度下进行。
[0048] 水溶液和硅基板之间接触的持续时间通常为5秒~5分钟的数量级,优选为10秒~2分钟,更优选在20~40秒之间。活化的持续时间将作为需要在硅基板的表面上形成的金粒的尺寸和数量的函数来选择。有利地,选择5~15nm的数量级,优选10nm的数量级的金粒尺寸。
[0049] 其中使基板的表面与活化溶液接触的操作有利地通过将基板浸渍在活化溶液中来进行,任选地利用搅拌。
[0050] 如此处理的基板有利地用去离子水彻底漂洗并在氮气流下干燥,以去除活化溶液的所有痕迹。
[0051] 本发明方法的第二步骤在于通过无电镀途径在覆盖有金颗粒的所述基板上沉积基本上由镍或钴构成的层。基本上被理解为表示按重量计超过90%,其他元素可以是硼、磷或钨。
[0052] 当基本上由镍或钴构成的层覆盖平的表面时有利地是均匀的并且当覆盖从硅中挖空的三维结构(TSV通孔和NAND存储器沟槽的例子)时是一致的。
[0053] 在本发明的含义内的均匀性相当于在覆盖表面上的基本上由镍或钴构成的层的厚度的变化。根据本发明的方法获得的基本上由镍或钴构成的层的均匀性有利地低于10%,优选低于5%,更优选低于1%。
[0054] 在本发明的含义内的一致性相当于结构顶部的层的厚度与在底部的层的厚度的比值。在本发明的含义内的一致性也可以相当于在由结构的顶部、侧面和底部构成的组件上的层的厚度变化。
[0055] 根据本发明的方法获得的基本上由镍或钴构成的层的一致性有利地在90~110%之间,优选大于95%,更优选大于99%。
[0056] 沟槽通常蚀刻到硅中,然后在使硅晶片变薄之前金属化至所需深度。沟槽的形状和尺寸可以作为所使用的装置的函数而变化。沟槽通常由它们的深度、其开口直径和限定腔的深度与直径的比值的其高宽比来表征。例如,高宽比为10:1的沟槽具有比其深度的尺寸小10倍的直径。
[0057] 当基本上由镍或钴构成的层覆盖非常深的结构的表面时有利地是一致的:当该层覆盖具有高的,特别是大于5:1,优选大于10:1的高宽比的沟槽时,结构顶部与底部的覆盖比值有利地在90~110%之间。
[0058] 特别是在其表面由交替的多晶硅层和SiO2层构成的NAND存储装置的情况下,表示腔的深度与开口直径的比值的高宽比可以为5:1~1000:1。根据本发明的方法有利地使得可以在表现出特别高的,例如大于10:1以及更高的高宽比的腔中沉积镍金属层。沟槽的高宽比可以有利地非常高并且在10:1~1000:1之间,例如在50:1~500:1之间或在100:1~200:1之间。
[0059] 本发明的方法使得可以用厚度在10~150nm之间的基本上由镍或钴构成的层覆盖其开口直径为10~100nm并且深度为500nm~10μm的腔的表面,其一致性大于90%,优选大于95%,更优选大于99%。
[0060] 金属沉积通过不需要基板的电极化的非电化学方法(也被称为自动催化或“无电镀”方法)来进行。
[0061] 金属沉积层可以是镍、钴、镍硼(NiB)合金、钴硼(CoB)合金、镍磷(NiP)合金、钴磷(CoP)合金或钴钨磷(CoWP)合金。
[0062] 镍或钴的沉积层优选通过将活化的基板暴露到包含以下组成的水溶液中获得:
[0063] -至少一种镍或钴离子的金属盐,优选浓度在10-3M~1M之间;
[0064] -至少一种镍或钴离子的还原剂,优选量在10-4M~1M之间;和
[0065] -任选地至少一种镍或钴离子的稳定剂,优选量在10-3M~1M之间。
[0066] 镍或钴盐优选为选自氯化物、乙酸盐、乙酰丙酮化物、六氟磷酸盐、硝酸盐、高氯酸盐、硫酸盐和四氟硼酸盐的水溶性盐。
[0067] 在本发明的上下文中优选的金属盐选自硫酸镍或硫酸钴、氯化镍或氯化钴、乙酸镍或乙酸钴或者氨基磺酸镍或氨基磺酸钴。例如,选择硫酸镍六水合物。
[0068] 有利地,还原剂可以选自磷的衍生物、硼的衍生物、葡萄糖、甲醛和肼。
[0069] 磷的衍生物可以选自次磷酸(H3PO2)及其盐,硼的衍生物可以选自硼烷配合物。
[0070] 所使用的还原剂有利地选自硼的衍生物,特别地选自二甲胺硼烷、三甲胺硼烷、三乙胺硼烷、吡啶硼烷、吗啉硼烷或叔丁胺硼烷。优选地,使用二甲胺硼烷(DMAB)。
[0071] 稳定剂可以选自能够与镍离子或钴离子配合的化合物,以防止溶液中金属离子在不存在催化剂时被还原剂还原。
[0072] 金属离子的稳定剂可以选自乙二胺以及乙酸、丙酸、琥珀酸、羟基乙酸、丙二酸、氨基乙酸、苹果酸或柠檬酸的盐。优选地,选择柠檬酸或它的一种盐来使Ni2+或Co2+离子稳定。
[0073] 水溶液的pH值可以是酸性的或碱性的并且可以通过一种或多种pH值调节化合物(或者缓冲液)在所期望的pH值范围内进行调节,例如,在由CRC Press出版的David R.Lide的84th版Handbook of Chemistry和Physics中所述的那些pH值调节化合物(或者缓冲液)。
[0074] 例如,水溶液可以包含使得可以将pH值调节到3~12之间的值的试剂,例如,非聚合的胺以将pH值调节在8~12之间。
[0075] 通常,金属层可以根据所需的层厚度通过在50~90℃之间,优选65℃的温度下将基板在上述限定的水溶液中浸渍30s~30min的时间来制造。
[0076] 预润湿基板之前的步骤可以在将基板暴露到根据本发明的水溶液中之前进行。例如,将基板浸渍在包含金属盐及其稳定剂但是不含有还原剂的水溶液或溶液中。优选地,使用去离子水。使该组件在低于500mbar的部分真空下经历1~30min,优选5~15min。
[0077] 沉积镍或钴层的步骤可以通过在反应器中施加超声波或兆频超声波或通过施加水溶液的简单的再循环使待涂布的基板以每分钟20~600之间转的速度旋转来进行。
[0078] 通过利用在上述一般温度范围内使用的如上面所限定的水溶液,获得了接触时间在1min~20min之间时厚度在6~200纳米之间的金属膜。
[0079] 根据一个实施方案,基本上由镍或钴构成的层是通过将活化的基板的表面暴露到包含镍盐、硼系还原剂和稳定剂的水溶液中沉积的镍硼层,溶液的pH值在9~12之间,水溶液的温度在50℃~90℃之间。
[0080] 另外,包含镍盐的水溶液还可以有利地包含在形成金属层时吸收在金属层的表面上的抑制剂。
[0081] 特别地,抑制剂优选为选自衍生于壳聚糖、聚(烯丙胺)、聚(乙烯胺)、聚(乙烯吡啶)、聚(氨基苯乙烯)、聚(乙烯亚胺)、聚(L-赖氨酸)和这些聚合物的酸(或者质子化)形式的聚合物和共聚物的包含“氨基”基团或官能团聚合物。
[0082] 根据本发明的一个实施方案,优选使用聚(乙烯亚胺)非质子化形式的均聚物或共聚物。
[0083] 例如,选择数均分子量Mn在500~25000g/mol之间的直链聚(乙烯亚胺)。
[0084] 根据本发明所使用的具有氨基官能团的聚合物的浓度有利地为1~250ppm,更特别地为1~100ppm,更优选为1~10ppm,例如为1.5~3ppm(1ppm相当于1mg/kg的溶液)。
[0085] 当具有氨基官能团的聚合物是聚(乙烯亚胺)时,水溶液的pH值有利地为8~12,优选为8.5~10。特别地,其为9的数量级,例如在8.9~9.1之间。在这种情况下,可以将羟化四甲铵(TMAH)、三乙醇胺、N,N-二甲基乙醇胺或N-甲基乙醇胺用作使得可以调节pH值的试剂。
[0086] 镍或钴层的厚度优选为均匀的或一致的。其在10nm~150nm之间,更优在10nm~100nm之间,甚至在10nm~40nm之间。镍或钴层的厚度甚至可以在10nm~20nm之间。
[0087] 覆盖有镍或硼金属层的基板随后可以经历本领域技术人员公知的快速热退火。温度通常在300℃~750℃之间,以形成硅化镍或硅化钴。在热的作用下,镍或钴原子迁移到硅层中。快速通常被理解为表示少于5分钟,例如少于3分钟。
[0088] 温度可以降低至300℃~500℃之间,甚至在350℃~450℃之间,例如在325℃~和375℃之间。根据本发明的一个实施方案,快速热退火在325℃~375℃之间的温度下进行30秒~2分钟。
[0089] 热退火可以用管式加热炉或加热板来进行。
[0090] 管式加热炉为使得可以容纳各种形状和尺寸的样品的管形的电加热烘箱。在本发明的背景下,其容纳通过装载在纵轴上包含样品的玻璃管。所选择并受控的气体流可以与在玻璃管内的组件的加热结合。
[0091] 在本发明的优选应用的情况下,刚刚描述的方法可以通过去除在RTA步骤结束之后没有迁移到硅中并仍然留在硅基板的表面上的镍或钴的步骤来补充。
[0092] 因此,在热退火步骤结束之后没有迁移到硅中的镍或钴能够通过化学清洗来去除。
[0093] 含硅基板可以是由硅,优选多晶硅构成的基板。该基板可以包含在其表面上垂直交替的硅区域和选自SiO2、Si3N4、SiOC和SiC的电介质区域。本发明表现出以下优点:可以在硅区域上选择性沉积镍;电介质区域没有覆盖镍,限制了不必要的金属消耗。
[0094] 待涂布的含硅基板可以是没有设计的平的,或平的并包含空心垂直结构,所述结构的尺寸表现为其开口的直径在20~100nm之间并且其深度在500nm~3μm之间。
[0095] 本发明的方法可应用于电子设备的制造,例如,特别是数据的储存和一般传输用的用于USB密钥、MS卡和SD卡中的可擦除NAND存储器的制造。
[0096] 本发明的第二主题是一种用于在硅基板上形成镍或钴层的方法,包括以下步骤:
[0097] -将含硅基板的表面暴露到包含金离子、氟离子以及选自包含阴离子或非离子极性基团并含有10~14个碳原子的烷基链的聚合物和化合物的表面活性剂的水溶液中,从而形成金属金颗粒,和
[0098] -通过无电镀途径在覆盖有金颗粒的所述基板上沉积基本上由镍或钴构成并且厚度在10~150nm之间,优选为10~40nm,更优选为10~25nm的层。
[0099] 关于本发明第一主题的特性可以应用到本发明的第二主题。
[0100] 本发明的第三主题是一种NAND存储器的制造方法,包括如上所述的用于形成硅化镍或硅化钴的方法。
[0101] 另一个,本发明的第四主题涉及一种光伏电池的制造方法,包括如上所述的用于形成硅化镍或硅化钴的方法。

附图说明

[0102] 在阅读参照附图对以下非限制性实施例进行的说明之后将会更好地理解本发明。
[0103] 图1示出了A)在不存在表面活性剂时和B)在存在表面活性剂时获得的显示出在多晶硅表面上的金纳米颗粒的两张扫描电子显微镜照片。
[0104] 图2示出了利用扫描电子显微镜获得的显示出在用本发明的溶液活化之后沉积非常薄的镍合金层(<20nm)的照片。
[0105] 图3是利用扫描电子显微镜获得的照片,显示出在热退火(350℃/1min)并且清洗未反应或未迁移的镍之后获得的硅化镍NiSi层(<40nm)。

具体实施方式

[0106] 以下实施例以实验室规模进行。
[0107] 除非另有说明,这些实施例在环境空气中标准温度和压力条件(在大约1atm下大约25℃)下进行,并且所使用的反应器直接购得,而不需要另外纯化。
[0108] 参考例1:从包含贵金属盐和氢氟酸的溶液开始对覆盖有多晶硅层的基板进行活化
[0109] a)清洗表面:
[0110] 取决于基板的来源和本领域技术人员的要求,本领域技术人员将知道如何改编实验计划以适合清洗表面。在我们的情况下,没有清洗是必要的,因为活化溶液也是缓慢蚀刻溶液。在本实施例中,所使用的基板是覆盖有厚度为大约90nm的二氧化硅(SiO2)层的具有1cm×2cm的边长并具有750μm的厚度的硅试片,该二氧化硅层本身覆盖有厚度为大约190nm的多晶硅层。
[0111] b)基板表面的活化:
[0112] b1)活化溶液的制备:
[0113] 在干净的PTFE烧杯中环境温度下制备50ml的按重量计含2.5%的氢氯酸(1.5M)和15mg的所选择的贵金属盐的混合物。表1给出了关于所使用的贵金属盐的类型和量的信息。
[0114] b2)对基板表面的活化处理:
[0115] 使在步骤a)中所述的基板在步骤b1)中制备的混合物中浸渍给定时间(参见表1)。用去离子水将如此处理的基板彻底漂洗并在氮气流下干燥。
[0116] c)通过无电镀工艺沉积NiB金属层:
[0117] c1)无电镀溶液的前期准备:
[0118] 将31.11g的硫酸镍六水合物(0.118mol)、44.67g的柠檬酸(0.232mol)、52.26g的N-甲基乙醇胺(0.700mol)和2.5ppm的Mn=600g/mol的聚乙烯亚胺(PEI)按顺序引入1升的容器并引入最少量的去离子水。用碱将最终pH值调节到9并且用去离子水将总体积调节到1升。
[0119] 在下一个步骤之前立即将1体积的还原溶液添加到9体积的前述溶液中。这种还原溶液包含28g/l的二甲胺硼烷(DMAB;0.475mol)和60.00g的N-甲基乙醇胺(0.798mol)。
[0120] c2)在多晶硅层上形成NiB合金层:
[0121] 根据所需要的最终厚度,通过使在步骤b)中处理的基板在之前制备的无电镀溶液中浸渍30秒~5分钟的时间并升到65℃来在步骤b)中处理的基板表面上沉积NiB镍合金层。
[0122] d)形成硅化镍:
[0123] 使在步骤c)获得的其上具有镍合金的样品在350℃下经历1分钟的快速热退火(RTA)。该操作可以利用管式加热炉或加热板来执行。
[0124] 结果:
[0125] 表1
[0126]
[0127] 评论:
[0128] 该第一系列的测试使得可以强调用于使镍迁移到硅中的贵金属的性质的重要性。钯(II)溶液能够活化表面,但是却给出比那些目标厚度大得多的一致的镍厚度。此外,观察到银和铜盐不可以在350℃的热退火温度下实现镍到硅中的迁移。最后,金(III)盐使得可以获得薄的镍硼合金层,而且也获得后者到硅中的均匀迁移。
[0129] 实施例2:从包含金(III)盐、氢氟酸和表面活性剂的根据本发明的溶液开始对覆盖有多晶硅层的基板进行活化
[0130] a)清洗表面:
[0131] 这个步骤与实施例1的步骤a)相同。
[0132] b)基板表面的活化:
[0133] b1)根据本发明的活化溶液的制备:
[0134] 在干净的PTFE烧杯中环境温度下制备50ml的按重量计含2.5%的氢氟酸和240ppm的盐酸金(III)与表面活性剂(参见表2)的混合物。
[0135] b2)对基板表面的活化处理:
[0136] 使在步骤a)中所述的基板在步骤b1)中制备的混合物中浸渍给定时间(参见表2),在这种情况下为30秒。用去离子水将如此处理的基板彻底漂洗并在氮气流下干燥。
[0137] c)通过无电镀工艺沉积NiB金属层:
[0138] c1)无电镀溶液的前期准备:
[0139] 所使用的无电镀溶液和操作条件与实施例1的步骤c1)的那些相同。
[0140] c2)在多晶硅层上形成NiB镍合金层:
[0141] 根据所需要的最终厚度,通过使在步骤b)中处理的基板在之前制备的无电镀溶液中浸渍30秒~5分钟的时间并升到65℃来在步骤b)中处理的基板表面上制备NiB金属合金层。确定在无电镀溶液中的浸渍持续时间以获得具有良好均匀性和导电性的最小镍厚度。
[0142] 层的厚度通过扫描电子显微镜拍摄样品的断面来测量。
[0143] 可以测量导电性和均匀性的方法是本领域技术人员已知的四点测量方法。
[0144] 结果示于表2中,其中最小厚度利用不同的稳定剂来获得。
[0145] 表2
[0146]
[0147] *Brij 35:聚氧化乙二醇十二烷基醚
[0148] 该第二系列示出了低分子量的表面活性剂在使在与多晶硅进行氧化/还原反应后形成的金纳米颗粒稳定方面的积极影响。通过向活化槽添加稳定剂,可以减小金属金颗粒的尺寸,而同时增大它们的密度。金颗粒的这种分布使得可以沉积较薄的镍层。最好的结果是用阴离子表面活性剂(SDS)获得的,其可以获得纳米颗粒在多晶硅表面上的电空间稳定化,而仅实现空间稳定化的非离子表面活性剂(Brij 35)却不可以。SDS分子使金纳米颗粒稳定并增大它们在多晶硅表面上的浓度(参见图1B)。
[0149] d)形成硅化镍:
[0150] 与实施例1的步骤d)中一样,使在步骤c)获得的覆盖有镍合金的样品在350℃下经历1分钟的快速热退火。随后用化学溶液对样品进行处理以去除未反应的镍。
[0151] 在热退火和化学蚀刻前后用扫描电子显微镜观察试验4的样品的断面。图2示出了在活化和无电镀沉积之后获得的镍合金层的厚度为20nm。图3呈现出了在热退火之后形成的薄的并且非常均匀的硅化镍层。
[0152] 硅化镍(NiSi)层是非常均匀的,其厚度比初始镍合金层的厚度大两倍。获得使镍和硅之间进行化学计量反应(Ni:Si=1:1)的完美扩散,所产生的层具有良好的均匀性。