使受污染的含烃气流液化的方法转让专利

申请号 : CN201480019110.0

文献号 : CN105121986B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : M·G·范阿肯M·沃尔特斯-登·布里詹

申请人 : 国际壳牌研究有限公司

摘要 :

本发明提供一种使受污染的含烃气流液化的方法,该方法至少包括以下步骤:(a)提供受污染的含烃气流(20);(b)在第一换热器(3)中对受污染的含烃气流(20)进行冷却,从而获得已冷却的受污染的含烃气流(40);(c)在膨胀器(4)中对已冷却的受污染的含烃气流(40)进行冷却,从而获得部分液化的流(70);(d)在第一分离器(5)中对部分液化的流(70)进行分离,从而获得气态流(80)和液态流(90);(e)使在步骤(d)中获得的液态流(90)膨胀,从而获得多相流(100),所述多相流(100)至少包含蒸汽相、液相和固相;(f)在第二分离器(7)中对使多相流(100)进行分离,从而获得气态流(110)和泥浆流(120);(g)在固/液分离器(9)中对泥浆流(120)进行分离,从而获得液态烃流(170)和浓缩的泥浆流(140);(h)使得在步骤(d)中获得的气态流(80)流过第一换热器(3),从而获得已加热的气态流(270);以及(i)压缩已加热的气态流(270),从而获得压缩气流(220);以及(j)使在步骤(i)中获得的压缩气流(220)与在步骤(a)中提供的受污染的含烃气流(20)相组合。

权利要求 :

1.一种使受污染的含烃气流液化的方法,所述方法至少包括以下步骤:(a)提供受污染的含烃气流(20);

(b)在第一换热器(3)中对受污染的含烃气流(20)进行冷却,从而获得已冷却的受污染的含烃气流(40);

(c)在膨胀器(4)中对已冷却的受污染的含烃气流(40)进行冷却,从而获得部分液化的流(70);

(d)在第一分离器(5)中对部分液化的流(70)进行分离,从而获得气态流(80)和液态流(90);

(e)使在步骤(d)中获得的液态流(90)膨胀,从而获得多相流(100),所述多相流(100)至少包含蒸汽相、液相和固相;

(f)在第二分离器(7)中对多相流(100)进行分离,从而获得气态流(110)和泥浆流(120);

(f’)加压在步骤(f)中获得的泥浆流以获得加压的泥浆流(130);

(g)在固/液分离器(9)中对加压的泥浆流(130)进行分离,从而获得液态烃流(170)和浓缩的泥浆流(140);

(h)使得在步骤(d)中获得的气态流(80)流过第一换热器(3),从而获得已加热的气态流(270);

(i)压缩已加热的气态流(270),从而获得压缩气流(220);以及(j)使在步骤(i)中获得的压缩气流(220)与在步骤(a)中提供的受污染的含烃气流(20)相组合。

2.如权利要求1所述的方法,其中,受污染的含烃气流(20)包括至少50vol.%的甲烷。

3.如权利要求1所述的方法,其中,受污染的含烃气流(20)包括至少80vol.%的甲烷。

4.如权利要求1所述的方法,其中,在步骤(b)中获得的已冷却的受污染的含烃气流(40)的温度至多-40℃。

5.如权利要求1所述的方法,其中,在步骤(b)中获得的已冷却的受污染的含烃气流(40)的温度至多-50℃。

6.如权利要求1所述的方法,其中,在步骤(b)中获得的已冷却的受污染的含烃气流(40)的温度至多-60℃。

7.如权利要求1-6中任一项所述的方法,其中,在步骤(e)中获得的多相流(100)的温度至多-100℃。

8.如权利要求1-6中任一项所述的方法,其中,在步骤(e)中获得的多相流(100)的温度至多-120℃。

9.如权利要求1-6中任一项所述的方法,其中,在步骤(e)中获得的多相流(100)的温度至多-140℃。

10.如权利要求1-6中任一项所述的方法,其中,在步骤(e)中获得的多相流(100)的温度至多-150℃。

11.根据权利要求1-6中任一项所述的方法,还包括:通过第二换热器(15)对在步骤(i)中获得的压缩气流(220)的一部分(240)进行冷却,从而获得已冷却的压缩气流(250);使已冷却的压缩气流(250)膨胀,从而获得已膨胀的膨胀气流(260);以及将已膨胀的膨胀气流(260)与在步骤(d)中获得的气态流(80)相组合。

12.如权利要求11所述的方法,还包括:使得在步骤(f)中获得的气态流(110)流过第二换热器(15),从而获得已加热的第二气态流(200);将已加热的第二气态流(200)压缩,从而获得第二压缩气流(210);以及将第二压缩气流(210)与在步骤(h)中获得的已加热的气态流(270)相组合。

13.如权利要求1-6中任一项所述的方法,其中,将在步骤(g)中获得的液态烃流(170)存储在储罐(11)中,并且将来自所述储罐(11)的汽化气流(180)与在步骤(f)中获得的气态流(110)相组合。

说明书 :

使受污染的含烃气流液化的方法

技术领域

[0001] 本发明涉及一种使受污染的含烃气流液化的方法,所述受污染的含烃气流尤其是含甲烷的受污气流,诸如天然气。

背景技术

[0002] 在本领域中已经公知了使含烃气流液化的方法。由于众多原因,期望使诸如天然气流的含烃气流液化。作为一个示例,天然气在液态时比气态形式更加易于存储或长距离运输,因为其占据较小的体积且并不需要以高压储存。典型地,在被液化之前,处理受污染的含烃气流以移除在液化处理期间可用冷冻法分离的一种或多种污染物(诸如H2O,CO2,H2S等)。
[0003] 已知的使受污染的含烃气流液化的方法的一个问题在于:其是一个相当复杂的过程,从而需要许多昂贵设备。

发明内容

[0004] 本发明的一个目的是解决或至少最小化上述问题。
[0005] 本发明的另一个目的是提供一种更加简单且更有成本效益的使受污染的含烃气流液化的方法,所述受污染的含烃气流液化尤其是含甲烷的受污气流,诸如天然气。
[0006] 再一个目的是提供一种用于小规模操作的使受污染的含烃气流液化的方法,也就是说,其具有至多0.1mtpa(百万吨/每年)的产量。
[0007] 上述目的或其他目的中的一个或多个根据本发明通过提供一种使受污染的含烃气流液化的方法来实现,所述方法至少包括以下步骤:
[0008] (a)提供一种受污染的含烃气流;
[0009] (b)在第一换热器中冷却受污染的含烃气流,从而获得已冷却的受污染的含烃气流;
[0010] (c)在膨胀器中对已冷却的受污染的含烃气流进行冷却,从而获得部分液化的流;
[0011] (d)在第一分离器中对部分液化的流进行分离,从而获得气态流和液态流;
[0012] (e)使在步骤(d)中获得的液态流膨胀,从而获得多相流,所述多相流至少包含蒸汽相、液相和固相;
[0013] (f)在第二分离器中对多相流进行分离,从而获得气态流和泥浆流;
[0014] (g)在固/液分离器中对泥浆流进行分离,从而获得液态烃流和浓缩的泥浆流;
[0015] (h)使在步骤(d)中获得的气态流流过第一换热器,从而获得已加热的气态流;
[0016] (i)压缩已加热的气态流,从而获得已压缩的气流;以及
[0017] (j)使在步骤(i)中获得的已压缩的气流与在步骤(a)中提供的受污染的含烃气流相组合。
[0018] 根据本发明的方法的一个优点是它具有极其简单的设计并且可被标准化来处理和液化宽范围的原料气成分。另外,具有相对有限的实用和化学要求,从而导致了OPEX和CAPEX显著减小。此外,与具有胺处理系统的设计相比,这种设计对于微量染污物(例如锈和油粒子)更加耐用。
[0019] 由于根据本发明的方法并不需要连接到格栅(因为在步骤(d)中获得的气态流与在步骤(a)中提供的受污染的含烃气流相组合),本方法的应用非常灵活。本发明的方法尤其适用于小规模操作(产量至多0.1百万吨/年).
[0020] 本发明的一个重要方面是在步骤(e)中获得的液态烃产品流可具有不同的组成物,例如包含比通常更多的CO2(例如至少250ppm-mol)以及更多的C5+(诸如0.1mol%以上)。
[0021] 在步骤(a)中,提供了一种受污染的含烃气流。虽然受污染的含烃气流没有特别受到限制,但是其优选的是富甲烷的气流,诸如天然气。根据一个优选实施例,受污染的含烃气流至少包括50mol%的甲烷,优选地包括至少80mol%的甲烷。优选地,受污染的含烃气流的烃部分包括尤其至少75mol%的甲烷,优选地包括至少90mol%的甲烷。在天然气流中的烃部分可适当地包含介于0mol%到25mol%之间的的C2+烃类(即每个分子包含2个或更多个碳原子的烃),优选地包含介于0到20mol%之间的C2-C6烃,优选地包含介于0.3mol%到18mol%之间的C2-C4烃类,特别是包含介于0.5mol%到15mol%之间的乙烷。
[0022] 污染物也没有特别限制。典型地,污染物是CO2、H2S、H2O、C6+烃、芳香化合物中的一种或多种,但是尤其是CO2。
[0023] 受污染的含烃气流中污染物的量适当地介于0.5mol%到90mol%之间,优选地为1.0mol%以上,以及优选地为10mol%以下。
[0024] 在步骤(b)冷却之前,受污染的含烃气流可能已经得到处理。作为一个示例,如果受污染的含烃气流包含水(例如,超过1ppmv),则受污染的含烃气流可被脱水,以防止在后续的冷却步骤中生成水合物。由于所属技术领域的技术人员熟悉气流脱水(例如使用干燥剂吸附),所以在这里不再进一步论述。优选地,将甲醇注入到受污染的含烃气流中以防止生成水合物。
[0025] 在步骤(b)中,在第一换热器中对受污染的含烃气流进行冷却,从而获得已冷却的受污染的含烃气流。换热器没有特别限制,但是优选的是间接式换热器。优选地,在步骤(b)中没有形成固体;因而,已冷却的受污染的含烃气流优选地没有固体。典型地,已冷却的受污染的含烃气流是一种可能包含一些液态甲醇的气流,如果之前已注入甲醇的话。
[0026] 优选地,在步骤(b)中获得的已冷却的受污染的含烃气流的温度至多-40℃,优选地至多-50℃,更优选地至多-60℃。
[0027] 在步骤(c)中,在膨胀器中对已冷却的受污染的含烃气流进行冷却,从而获得部分液化的流。如果期望的话,并且如果在上游已经注入甲醇来避免生成水合物,则使得已冷却的受污染的含烃气流在膨胀器进行冷却之前可经历甲醇分离步骤。
[0028] 在步骤(d)中,在第一分离器中对部分液化的流进行分离,从而获得了气态流和液态流。
[0029] 在步骤(e)中,使在步骤(d)中获得的液态流膨胀,从而获得了多相流,所述多相流至少包含蒸汽相、液相和固相。典型地,所述多相流包含至少20mol%的蒸汽。
[0030] 虽然根据本发明在步骤(e)中使用的膨胀器没有特别受到限制(并且可包括JT阀、孔口、普通的膨胀器等),但是优选的是,在膨胀器中将焓(enthalpy)从已冷却的受污染的含烃气流中抽出。在膨胀的同时抽出焓的适当膨胀器是一种涡轮膨胀机。优选地,供给到膨胀器的已冷却的受污染的含烃气流的压力从40bara到200bara,更加优选地从60bara到100bara。从膨胀器移除的多相流典型地具有的压力为从1bara到10bara,优选地低于
7bara,更优选地低于3bara。
[0031] 优选地,在步骤(e)中获得的多相流具有的温度为至多-100℃(即不比-100℃暖),优选为至多-120℃,更优选为至多-140℃,最优选为至多-150℃。
[0032] 在步骤(f)中,在第二分离器中对多相流进行分离,从而获得了气态流和泥浆流。优选的是,在步骤(f)中获得泥浆流在步骤(g)中进行分离之前被加压,以使得在步骤(g)中在固/液分离器中蒸汽生成最小化。同样,对在步骤(f)中获得的泥浆流进行加压防止在储罐(如果有的话)中生成固体,步骤(g)中获得的液态烃流储存在所述储罐中。优选地,泥浆流被泵到至少6bara。
[0033] 在步骤(g)中,在固/液分离器中对泥浆流进行分离,从而获得了液态烃流和浓缩的泥浆流。
[0034] 典型地,浓缩的泥浆流是富有污染物的。浓缩的泥浆流可包括多于一种的污染物。浓缩的泥浆流通常包含至少20mol%的一种或多种污染物和至少80mol%的甲烷。如果在浓缩的泥浆流中的所述一种或多种污染物(之一)是CO2,则浓缩的泥浆流优选地至少包括
25mol%的CO2。优选地,将浓缩的泥浆流加热而融化和/或蒸发所述一种或多种污染物。优选地,浓缩的泥浆流被融化(优选地在加热容器中),以获得液态污染物流(典型地包含至少
80mol%C5+)和气态污染物流(典型地包含至少80mol%CO2/N2,如果污染物包括CO2的话)。由于气态污染物流可能仍旧包括一些烃,其可能被再循环来用作燃料流(或燃料流的一部分)。
[0035] 在步骤(h)中,使在步骤(d)中获得的气态流流过第一换热器,从而获得了已加热的气态流。已加热的气态流典型地至少包括80mol%的甲烷和至多20mol%地N2。
[0036] 在步骤(i)中,使在步骤(h)中获得的已加热的气态流压缩,从而获得已压缩的气流。在步骤(j)中,在步骤(i)中获得的已压缩的气流与在步骤(a)中提供的受污染的含烃气流相组合。
[0037] 典型地,在与在步骤(a)中提供的受污染的含烃气流相组合之前,将在步骤(i)中获得的已加热的气态流压缩到等于在步骤(a)中提供的受污染的含烃气流的压力。将(贫乏的)已加热的气态流与受污染的含烃气流相组合的优点在于:进料中的污染物程度得到降低,从而允许更深的预冷却。将在步骤(i)中获得的已压缩气流进行组合的另一个优点在于:不需要格栅(grid)来排出该流;因此本方法可以在远距离处实施。
[0038] 再者,在步骤(a)中提供的受污染的含烃气流已经典型地在步骤(b)中进行冷却以及步骤(j)中相组合之前被压缩。
[0039] 根据本发明的方法的一个优选实施例,该方法还包括:通过第二换热器对在步骤(i)中获得的已压缩的气流的一部分(优选地至少60vol.%)进行冷却,从而获得已冷却的压缩气流;使已冷却的压缩气流膨胀,从而获得已膨胀的气流;以及将已膨胀的气流与在步骤(d)中获得的气态流相组合。
[0040] 进一步,优选的的是,本方法还包括:使在步骤(f)中获得的气态流流过第二换热器,从而获得已加热的第二气态流;将已加热的第二气态流压缩,从而获得第二压缩气流;将第二压缩气流与在步骤(h)中获得的已加热气态流相组合。
[0041] 典型地,将在步骤(g)中获得的液态烃流存储在储罐中,并且从将来自所述储罐中的汽化气流与在步骤(f)中获得的气态流相组合。可替代地,汽化的气流可被分别加热和压缩并且发送到燃料系统。
[0042] 在另一个方面,本发明提供了一种根据本发明方法的步骤(g)中获得的一种液态烃流,该液态烃流至少包括80mol%的甲烷和至少250ppm-mol的CO2。优选的是全部CO2得到溶解(dissolved);因此,液态烃流优选地不包含固态CO2。另外,液态烃流优选地包括所溶解的CO2高达存储条件下的饱和度;在至多-100℃的温度(优选至多-150℃)下,液态烃流优选地包括从800ppm-mol到3.5mol%的CO2。
[0043] 此外,优选的是,液态烃流还包括C5+,C5+为0.1mol%以上,优选为至少0.2mol%,更优选为至少0.5mol%,更加优选为至少0.8mol%,或者甚至至少为1.0mol%。在本发明的上下文中,C5+表示每个分子包含5个或者更多个碳原子的烃,诸如戊烷、己烷等。再者,液态烃流优选地至少包括苯,苯为0.002mol%,优选为至少0.005mol%。

附图说明

[0044] 下面,将通过下列非限制性的附图来进一步说明本发明。在此示出了:
[0045] 图1示意性图释了一种用于执行根据本发明的方法的处理方案。
[0046] 为了进行描述,相同的附图标记表示相同或类似的元件。

具体实施方式

[0047] 图1示意性图释了一种用来执行一种使受污染的含烃气流液化的方法的处理方案。该处理方案总体用附图标记1表示。
[0048] 该处理方案1包括:压缩机2、第一换热器3、膨胀器4、第一分离器5、JT阀6、第二分离器7、泵8、固/液分离器9(即,第三分离器)、用于存储LNG的储罐11、泥浆加热器12、另外的压缩机13和14、第二换热器15、膨胀器16和甲醇分离器17。该处理方案可包括除了第一换热器3和第二换热器15之外的另外的换热器。优选地,第一换热器3和第二换热器15是独立的换热器。
[0049] 在使用根据本发明的处理方案1期间,提供了一受污染的含烃气流20(其在之前已经在压缩机2中被压缩为流10)。这种受污染的含烃气流20典型地是天然气流。受污染的含烃气流20在第一换热器3中进行冷却(作为流30),从而获得已冷却的受污染的含烃气流40。第一换热器3是间接式换热器(类似于第二换热器15);由此在这些流之间没有产生直接接触,而仅仅进行换热接触。
[0050] 如在图1的实施例中所示的那样,已冷却的受污染的含烃气流40流到甲醇分离器17以分离出甲醇(作为流50),该甲醇在之前已经注入(例如注入到流20中)以防止生成水合物。在甲醇分离器17之后,在膨胀器4中对(甲醇已贫化)的已冷却的受污染的含烃气流作为流60进行进一步冷却,从而获得部分液化的流70。在第一分离器5中对部分液化的流70进行分离,从而获得气态流80和液态流90。在JT阀6使液态流90膨胀,从而获得了多相流100。在第二分离器7中对多相流100进行分离,从而获得了气态流110和泥浆流120。
[0051] 在固/液分离器9中对泥浆流120进行分离,从而获得液态烃流170和浓缩的泥浆流140。固/液分离器9没有特别受到限制,并且例如可选自旋流器、澄清器、过滤器或它们的组合。
[0052] 液态烃流170是产品流,并且典型地为LNG流。如根据本发明获得的液态流170可具有不同于已知组成物(就CO2和C5+而言)的组成物。
[0053] 如果期望的话,可对浓缩的泥浆流140进行进一步处理;典型地,它是富CO2流。优选地,在泥浆加热器12中将浓缩的泥浆流140加热,并且将浓缩的泥浆流140分离为液相160和气相150;该气相150可以与燃料气流相组合。
[0054] 正如图1中所示,泥浆流120在固/液分离器9中进行分离(作为流130)之前可被泵到高压。
[0055] 气态流80流过第一换热器3,从而获得已加热的气态流270;如果期望的话,一些惰性物质(例如N2)可从已加热的气态流270中移除作为(较小的)流280。因为流80用于冷却流30,则这是一种“自动冷冻”步骤。
[0056] 在压缩机13中对已加热的气态流270进行压缩,从而获得压缩气流220。压缩气流220的部分230与受污染的含烃气流20相组合。
[0057] 正如在图1的实施例中可以看到那样,压缩气流220的一部分240流过第二换热器15(并且在该处进行冷却),从而获得已冷却的压缩气流250。在膨胀器16中使已冷却的压缩气流250膨胀,从而获得已膨胀的膨胀气流260。随后,将已膨胀的气流260与气态流80相组合,以形成流265。
[0058] 此外,在图1的实施例中,气态流110作为流190而流过第二换热器15,从而获得已加热的第二气态流200。在压缩机14中将已加热的第二气态流200压缩,从而获得第二压缩气流210;该第二压缩气流210与已加热的气态流270相组合(以形成流215)。
[0059] 再者,优选的是,将液态烃流170存储在储罐11中,并且将来自所述储罐11的汽化气流180与气态流110相组合,以形成流190。
[0060] 下面表1示出一个实际的非限制性的实施例,其提供了在使用图1的方案来处理受CO2污染的天然气流时各种流的状态和组分方面的信息。在表格2中给出了LNG流90的组成物。流120包括84%的流110(和16%的流100)。
[0061] 表1,各种流的组成物和性质
[0062]
[0063]
[0064] 表2,流170的组成物
[0065]成分 mol%
氮气 0.56
CO2 0.08
甲烷 83.85
乙烷 7.77
丙烷 4.43
i-丁烷 1.11
n-丁烷 1.11
C5+(低于4的总和) 1.09
i-戊烷 0.43
n-戊烷 0.43
n-己烷 0.22
苯 0.01
[0066] 如表2中所看到那样,LNG流170的组成物不同于普通LNG产品(参见例如“Small-scale LNG facility development(小规模LNG设备开发)”,B.C.Price,Hydrocarbon Processing,January 2003),因为其包含更多的CO2(0.08mol%对比于上述参考中的0.0125mol%),以及更多的苯(0.01mol%对比于上述参考中的0.001mol%)。再者,LNG流
170的组成物具有不同寻常的高C5+含量(1.09mol%,而其典型为较低)。
[0067] 所属技术领域的技术人员容易理解的是,在没有脱离本发明范围的情况下可进行许多修改。