PBN型InGaAs红外探测器转让专利

申请号 : CN201510527303.3

文献号 : CN105185846B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张志伟缪国庆宋航蒋红李志明黎大兵孙晓娟陈一仁

申请人 : 中国科学院长春光学精密机械与物理研究所

摘要 :

本发明公开了一种PBN型InGaAs红外探测器,属于光电子材料与器件技术领域。解决了现有技术中InGaAs探测器存在较多的暗电流的技术问题,进一步提高了InGaAs探测器的响应范围。该红外探测器,由从上至下依次排列的窗口层、阻挡层、吸收层、缓冲层和衬底组成,其中,阻挡层的材料为禁带宽度大于吸收层和窗口层的禁带宽度,且晶格与吸收层匹配的掺Si的InAlAs材料或者掺Si的InAsP材料,阻挡层的厚度为100-300nm。该红外探测器能够很好的抑制暗电流的产生,且具有高量子效率、低表面复合及更宽的响应范围,能够用于遥感探测。

权利要求 :

1.PBN型InGaAs红外探测器,包括从上至下依次排列的窗口层、吸收层、缓冲层和衬底;

其特征在于,所述窗口层和吸收层之间还设有阻挡层;

所述阻挡层的材料为掺Si的InAlAs材料或者掺Si的InAsP材料,阻挡层的禁带宽度大于窗口层和吸收层的禁带宽度,且晶格与吸收层匹配;

所述阻挡层的厚度为100-300nm。

2.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述窗口层的材料为与吸收层组分相同的P型InGaAs材料。

3.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述窗口层的厚度为

50-200nm。

4.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述吸收层的材料为In组分大于等于0.53,小于1的非故意掺杂的InGaAs材料。

5.根据权利要求4所述的PBN型InGaAs红外探测器,其特征在于,所述阻挡层的掺杂浓度低于吸收层的掺杂浓度。

6.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述吸收层的厚度为

2.5-3.5μm。

7.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述缓冲层的材料为线性渐变组分或者与吸收层晶格匹配的固定组分的n型InAsP材料。

8.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述缓冲层的厚度为

0.5-3μm。

9.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述衬底的材料为高掺杂的n型InP单晶衬底或高掺杂的n型GaAs单晶衬底。

10.根据权利要求1所述的PBN型InGaAs红外探测器,其特征在于,所述吸收层掺Si,掺杂浓度为8×1016-8×1017cm-3;窗口层掺Be,掺杂浓度为2×1017-2×1018cm-3;缓冲层掺Si,掺杂浓度为2×1018cm-3;阻挡层的掺杂浓度为2×1016-2×1017cm-3。

说明书 :

PBN型InGaAs红外探测器

技术领域

[0001] 本发明属于光电子材料与器件技术领域,具体涉及一种PBN型InGaAs红外探测器。

背景技术

[0002] 光电探测器是航天遥感仪器的核心,制约着航天光学遥感仪器的水平和发展。由于InGaAs材料制成的探测器具有灵敏度高、响应速度快、抗辐照特性良好、室温工作等优点,使其成为近红外波段空间遥感的理想材料。目前在探测器结构设计中,特别是半导体光伏型红外探测器中,都采用PIN结构。但随着材料制备工艺和器件结构设计的迅速发展,人们渴望发展新型红外探测器,以改善目前光电探测器件在探测器的响应范围和暗电流方面的性能。
[0003] 在航天应用中,探测器的响应范围和暗电流是决定遥感系统性能的关键参数。对于探测器的响应范围,由于InGaAs材料为全组分直接带隙材料,通过提高In组分,可有效扩展探测器的响应范围。但提高In组分必然导致InGaAs材料与衬底的晶格不再匹配,而当晶格失配较大时则会在吸收层中引入位错,形成较多缺陷,严重影响探测器材料性能。因此,需要在衬底与吸收层间生长缓冲层。现有技术中,一般采用在衬底与吸收层间生长组分渐变(或跃变)的缓冲层,以降低吸收层中的缺陷密度,抑制位错,改善吸收层的质量,从而使探测器性能得到改善,获得高质量的InGaAs材料。由于在衬底上生长InAsP缓冲层临界厚度较小,吸收层内的应变释放很快,在较小厚度范围内即可以获得很高的弛豫度,所以现有技术中的也可以采用在衬底与吸收层间生长InAsP缓冲层解决这个技术问题。
[0004] 另外,由于扩展波长的InGaAs光电子器件带隙较小,使与此相关的各种暗电流分量,如扩散电流、产生复合电流、表面复合电流和隧道电流等显著增加。为了获得性能优良的光电子器件,必须进行能带调控,选择合适结构材料体系进行设计优化。但是现有技术中,还没有能够很好的解决暗电流问题的InGaAs探测器的结构材料体系。

发明内容

[0005] 本发明的目的是解决现有技术中InGaAs探测器存在较多的暗电流的技术问题,进一步提高InGaAs探测器的响应范围,提供一种PBN型InGaAs红外探测器。
[0006] 本发明解决上述技术问题采用的技术方案如下。
[0007] 本发明的PBN型InGaAs红外探测器,包括从上至下依次排列的窗口层、吸收层、缓冲层和衬底;
[0008] 所述窗口层和吸收层之间还设有阻挡层;
[0009] 所述阻挡层的材料为掺Si的InAlAs材料或者掺Si的InAsP材料,阻挡层的禁带宽度大于窗口层和吸收层的禁带宽度,且晶格与吸收层匹配;
[0010] 所述阻挡层的厚度为100-300nm。
[0011] 进一步的,所述窗口层的材料为与吸收层组分相同的P型InGaAs材料。
[0012] 进一步的,所述窗口层的厚度为50-200nm。
[0013] 进一步的,所述吸收层的材料为In组分大于等于0.53,小于1的非故意掺杂的InGaAs材料。
[0014] 进一步的,所述吸收层的厚度为2.5-3.5μm。
[0015] 进一步的,所述缓冲层的材料为线性渐变组分或者与吸收层晶格匹配的固定组分的n型InAsP材料。
[0016] 进一步的,所述缓冲层的厚度为0.5-3μm。
[0017] 进一步的,所述衬底的材料为高掺杂的n型InP单晶衬底或高掺杂的n型GaAs单晶衬底。
[0018] 进一步的,所述吸收层掺Si,掺杂浓度为8×1016-8×1017cm-3;窗口层掺Be,掺杂浓度为2×1017-2×1018cm-3;缓冲层掺Si,掺杂浓度为2×1018cm-3;阻挡层的掺杂浓度为2×1016-2×1017cm-3。
[0019] 与现有技术相比,本发明的有益效果:
[0020] 1、本发明的PBN型InGaAs红外探测器,采用InAlAs或InAsP作为阻挡层,能够产生导带带阶势垒,高的势垒使少子扩散运动变得更困难,从而很好的抑制暗电流的产生,经检测,发现相比于现有的PIN结构,PBN结构探测器件暗电流显著降低,当所加偏压为-0.5V时,-4 2 -4 2暗电流密度从1.7×10 A/cm降低到0.44×10 A/cm;
[0021] 2、本发明的PBN型InGaAs红外探测器,采用InAlAs或InAsP作为阻挡层,抑制暗电流产生的同时,由于InAlAs和InAsP是宽禁带半导体材料,其禁带宽度大于晶格相匹配的InGaAs材料,所以对于所探测的光波长几乎不吸收,这有助于提高红外探测器的量子效率,同时也有利于减小表面复合;
[0022] 3、本发明的PBN型InGaAs红外探测器,在增加阻挡层抑制暗电流的产生的同时,还采用50-200nm的p型InGaAs作为窗口层,降低了材料外延生长的要求和器件成本,进而减少了由于晶格失配所引起的光信号损失,使InGaAs探测器具有更宽的响应范围。

附图说明

[0023] 图1为本发明的PBN型InGaAs红外探测器的结构示意图;
[0024] 图2为实施例中的PBN型InGaAs红外探测器和现有技术中的PIN型InGaAs红外探测器的暗电流对比曲线图;
[0025] 图中,1、窗口层,2、阻挡层,3、吸收层,4、缓冲层,5衬底。

具体实施方式

[0026] 如图1所述,本发明的PBN型InGaAs红外探测器,由从上至下依次排列的窗口层1、阻挡层2、吸收层3、缓冲层4和衬底5。其中,窗口层1的材料为与吸收层3组分相同的P型InGaAs材料,厚度为50-200nm,窗口层1一般掺Be,掺杂浓度为2×1017-2×1018cm-3。阻挡层2的材料为掺Si的InAlAs材料或者掺Si的InAsP材料,阻挡层2的禁带宽度大于窗口层1和吸收层3的禁带宽度,且晶格与吸收层3匹配,阻挡层2的厚度为100-300nm,阻挡层2的掺杂浓16 17 -3
度为2×10 -2×10 cm 。吸收层3的材料为In组分大于等于0.53,小于1的非故意掺杂的InGaAs材料,厚度为2.5-3.5μm,非故意掺杂的InGaAs材料一般掺Si,掺杂浓度为8×1016-8×1017cm-3。缓冲层4的材料为线性渐变组分或者与吸收层3晶格匹配的固定组分的n型InAsP材料,缓冲层4的厚度为0.5-3μm,缓冲层4一般掺Si,掺杂浓度与衬底5掺杂浓度相同,为2×1018cm-3。衬底5的材料为高掺杂的n型InP单晶衬底或高掺杂的n型GaAs单晶衬底,衬底5的厚度为330μm,其中高掺杂的量在本领域有公知定义,一般为2×1018cm-3。
[0027] 实施例
[0028] 一种截止波长为2.6μm的PBN型InGaAs红外探测器结构为:在n型InP衬底上依次生长厚度为1μm、Si掺杂浓度为2×1018cm-3的n型InAs0.60P0.40缓冲层,继续生长厚度为3μm、Si掺杂浓度为8×1016cm-3的In0.82Ga0.18As吸收层,再生长厚度为200nm、Si掺杂浓度为2×16 -3 17 -3
10 cm 的In0.82Al0.18As阻挡层,最后生长厚度为100nm、Be掺杂浓度为2×10 cm 的p型In0.82Ga0.18As窗口层,形成PBN探测器结构。
[0029] 上述PBN型InGaAs红外探测器的制作方法,可以首先在n型InP衬底,采用MOCVD系统在InP衬底上使用两步法生长掺Si的InAs0.60P0.40缓冲层,即第一步先在温度为450℃时生长一层厚度为100nm的InAs0.60P0.40,然后升高温度至580℃,在升温过程中缓冲层InAs0.60P0.40退火重结晶,释放由晶格失配所造成的应力,变成下一步生长的界面;然后在550℃恒温3-5分钟后,在缓冲层上生长一层3μm的In0.82Ga0.18As吸收层,再在吸收层上继续生长一层200nm的In0.82Al0.18As阻挡层,最后在阻挡层上生长100nm掺Be的In0.82Ga0.18As窗口层,形成PBN探测器结构。
[0030] 如图2所示,为实施例的PBN器件和现有技术中的PIN结构器件(现有PIN结构没有阻挡层,其他结构均与实施例相同)的暗电流对比曲线,从图中可以看出,发现相比于现有的PIN结构,PBN结构探测器件暗电流显著降低,当所加偏压为-0.5V时,暗电流密度从1.7×10-4A/cm2降低到0.44×10-4A/cm2。