一种具有空心六面体锰酸铜尖晶石的制备及其催化臭氧氧化除污染技术的应用方法转让专利

申请号 : CN201510658190.0

文献号 : CN105195168B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 齐飞郭杨

申请人 : 北京林业大学

摘要 :

本发明针对多相臭氧氧化技术中常规粉末状催化剂催化效率低、成本高、制备过程复杂、且具有一定的选择性等缺陷,提出一种新型锰酸铜尖晶石催化剂(CuMn2O4)的制备方法。该催化剂主要通过Mn3+和Cu2+构成晶体结构,同时存在少量的Mn4+和Cu1+以形成缺陷氧化物,催化臭氧产生高氧化能力、无选择性的羟基自由基,可以有效提高臭氧对水体中2‑羟基‑4‑甲氧基二苯甲酮等药物及个人护理品强化去除效果。此外,锰酸铜尖晶石具有独特的空心六面体结构,以低价铜盐和高锰酸钾为关键活性组分,在高温高压条件下制备而成,工艺简单,便于操作,且催化剂的制备周期相对较短,在含PPCPs的饮用水或污水处理中具有潜在的应用前景。

权利要求 :

1.一种具有空心六面体锰酸铜尖晶石催化剂的制备方法,通过如下具体步骤实现:(1)准确称量0.5g CuCl,溶解于25mL3.0mol/L HCl,并在磁力搅拌器上搅拌至固体完全溶解,为防止氯化亚铜被空气氧化,溶解过程在氮气保护下进行;

(2)准确称量2.0g KMnO4,溶解于25mL蒸馏水,使溶质完全溶解,以得到澄清溶液;

(3)将上述CuCl盐酸溶液和KMnO4溶液混合,并转移至200mL带有聚四氟材料内衬的高压反应釜中,在180℃条件下反应15h;

(4)待反应液冷却至室温后,将反应液转移到烧杯中,并用4mol/L NaOH调节混合溶液的pH为7~8,持续搅拌2h;

(5)将上述混合溶液在室温条件下陈化12h;

(6)用去离子水洗涤陈化固体3~5次,以确保滤液中不含有Cl-;

(7)将过滤沉淀物在60℃下鼓风干燥1h,获得干燥粉末;

(8)将干燥后的粉末放置在高温马弗炉中灼烧,灼烧温度为600℃,灼烧时间为2h,马弗炉的升温速度为5℃/min,之后自然冷却至室温,即完成锰酸铜尖晶石催化剂的制备,放入干燥器中待用;

根据上述条件所制备的锰酸铜尖晶石催化剂,是以低价铜盐和高锰酸钾为关键活性组分,在高温高压条件下形成催化剂,具有独特的空心六面体结构,颗粒平均粒径为122nm,比表面积1.3076m2/g,总孔容0.0027m3/g,平均孔径31.2754nm;锰酸铜尖晶石催化剂主要以Mn3+和Cu2+构成晶体结构,同时存在少量的Mn4+和Cu1+以形成缺陷氧化物;该催化剂能够有效提高臭氧对水体中含2-羟基-4-甲氧基二苯甲酮药物及个人护理品去除效能。

2.一种使用权利要求1所述方法制备的具有空心六面体锰酸铜尖晶石催化剂在催化臭氧氧化除污染工艺中的应用,通过以下几个操作参数实现:(1)工艺所需臭氧浓度为0.5~2.0mg/L;

(2)工艺所需臭氧气体流速为200~400mL/min;

(3)工艺所需锰酸铜尖晶石催化剂投量为100~500mg/L;

(4)待处理水体中难降解有机污染物浓度为0.002~0.018mmol/L水平;

(5)待处理水体pH范围为6.0~8.0。

说明书 :

一种具有空心六面体锰酸铜尖晶石的制备及其催化臭氧氧化

除污染技术的应用方法

技术领域

[0001] 本发明涉及一种具有空心六面体锰酸铜尖晶石的制备及其在催化臭氧氧化除污染技术的应用。

背景技术

[0002] 随着医药及洗化行业的大规模发展,药物及个人护理品(Pharmaceutical and Personal Care Products,PPCPs)的生产和使用量迅猛增长,PPCPs作为一种新兴污染物日益受到人们的关注。由于该物质在被去除的同时也在源源不断地被引入到环境中,导致其在水、大气和土壤环境中均有残留,含量为ng/L~μg/L。污水处理厂中检测到的PPCPs代表物质有抗微生物药、解热止痛消炎药、雌激素和其他药品(如调血脂药、抗癫痫药、镇定剂、造影剂等)以及化妆品中常用的香料。2-羟基-4-甲氧基二苯甲酮(BP-3)是一种广谱紫外线吸收剂,具有吸收率高、无毒、无致畸作用,对光、热稳定性好等优点,是常见防晒剂的主要成分之一,在工业与化妆品行业都有着广泛应用。但其在地表水、地下水、饮用水、土壤和污泥中的出现,将会给水环境质量及生态系统安全带来隐患,应该加强常规水处理技术对水中PPCPs的去除。
[0003] 由于常规给水处理和污水处理工艺是以去除水中悬浮及胶体污染物为主,对有机污染物,特别是对难降解有机污染物的去除能力十分有限,甚至无能为力。因此,水中低浓度、高稳定性PPCPs有必要采用臭氧氧化技术进行深度处理。大多数PPCPs中含有一个或多个电子供体基团,如碳碳双键、活性芳香环体系等,它们与臭氧有很好的反应性,然而,由于臭氧对此类官能团的选择性氧化,将产生大量不能臭氧氧化的副产物或中间产物,导致臭氧氧化技术对抗生素的矿化作用较弱。此外,产生臭氧要耗大量电能,在经济学角度和节能减排的社会背景下,存在着诸多不合理和不易长期使用的缺陷。催化臭氧技术是基于臭氧的高级氧化技术,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,可以强化臭氧对BP-3及其他PPCPs的去除效能及矿化能力。一般用于多相催化臭氧化的催化剂均为固态催化剂,主要通过以下三种作用降解污染物:
[0004] (1)吸附有机物,对那些吸附容量比较大的催化剂,当水与催化剂接触时,水中的有机物首先被吸附在这些催化剂表面,形成有亲和性的表面螯合物,使臭氧氧化更高效。
[0005] (2)催化活化臭氧分子,这类催化剂具有高效催化活性,能有效催化活化臭氧分子,臭氧分子在这类催化剂的作用下易于分解产生如羟基自由基之类有高氧化性的自由基,从而提高臭氧的氧化效率。
[0006] (3)吸附和活化协同作用,这类催化剂既能高效吸附水中有机污染物,同时又能催化活化臭氧分子,产生高氧化性的自由基,在这类催化剂表面,有机污染物的吸附和氧化剂的活化协同作用,可以取得更好的催化臭氧氧化效果。
[0007] 然而,这些催化剂存在催化效率有限、成本高、制备复杂,且具有一定的选择性等缺点,因此有必要研制新型的催化剂,使其具有高催化活性的同时降低成本、易于制备。
[0008] 锰酸铜尖晶石(CuMn2O4)催化剂,主要以Mn3+和Cu2+构成晶体结构,同时存在少量的Mn4+和Cu1+以形成缺陷氧化物,催化臭氧产生高氧化能力、无选择性的羟基自由基,有机物可通过直接与臭氧分子反应,或和臭氧分解产生的·OH反应,以实现臭氧对水体中BP-3等PPCPs类难降解有机物的强化去除。值得一提的是,锰酸铜尖晶石具有独特的空心六面体结构,采用低价铜盐和高锰酸钾为关键活性组分,在高温高压条件下通过水热法制备而成,工艺简单,便于操作,且催化剂的制备周期相对较短,在含PPCPs的饮用水或污水处理中具有潜在的应用前景。

发明内容

[0009] 1.本发明的技术方案如下,锰酸铜尖晶石催化剂的制备方法可通过以下几个步骤实现:
[0010] (1)准确称量0.5g CuCl,溶解于25mL 3.0mol/L HCl,并在磁力搅拌器上搅拌至固体完全溶解,为防止氯化亚铜被空气氧化,溶解过程在氮气保护下进行;
[0011] (2)准确称量2.0g KMnO4,溶解于25mL蒸馏水,使溶质完全溶解,以得到澄清溶液;
[0012] (3)将上述CuCl盐酸溶液和KMnO4溶液混合,并转移至200mL带有聚四氟材料内衬的高压反应釜中,在180℃条件下反应15h;
[0013] (4)待反应液冷却至室温后,将反应液转移到烧杯中,并用4mol/L NaOH调节混合溶液的pH为7~8,持续搅拌2h;
[0014] (5)将上述混合溶液在室温条件下陈化12h;
[0015] (6)用去离子水洗涤陈化固体3~5次,以确保滤液中不含有Cl-;
[0016] (7)将过滤沉淀物在60℃下鼓风干燥1h,获得干燥粉末;
[0017] (8)将干燥后的粉末放置在高温马弗炉中灼烧,灼烧温度为600℃,灼烧时间为2h,马弗炉的升温速度为5℃/min,之后自然冷却至室温,即完成锰酸铜尖晶石催化剂的制备,放入干燥器中待用;
[0018] 2.本发明的特征在于:
[0019] 锰酸铜尖晶石催化剂是以低价铜盐和高锰酸钾为关键活性组分,在高温高压条件下形成催化剂,其具有独特的空心六面体结构,颗粒平均粒径为122nm,比表面积1.3076m2/g,总孔容0.0027m3/g,平均孔径31.2754nm。
[0020] 3.本发明的突出效果如下:
[0021] 本发明提供的锰酸铜尖晶石高效催化剂,主要通过Mn3+和Cu2+构成晶体结构,同时存在少量的Mn4+和Cu+以形成缺陷氧化物,催化臭氧产生高氧化能力、无选择性的羟基自由基,可以有效提高臭氧对水体中含2-羟基-4-甲氧基二苯甲酮等药物及个人护理品(PPCPs)强化去除效果。此外,锰酸铜尖晶石具有独特的空心六面体结构,以锰盐和高锰酸钾为关键活性组分,在高温高压条件下通过水热法制备而成,工艺简单,便于操作,且催化剂的制备周期相对较短,在含PPCPs的饮用水或污水处理中具有潜在的应用前景。将锰酸铜尖晶石应用于催化臭氧氧化除污染技术是通过以下几个步骤实现:(1)工艺所需臭氧浓度为0.5~2.0mg/L;(2)工艺所需臭氧气体流速为200~400mL/min;(3)工艺所需锰酸铜尖晶石催化剂投量为100~500mg/L;(4)待处理水体中难降解有机污染物浓度为0.002~0.018mmol/L水平;(5)待处理水体pH范围为6.0~8.0。

附图说明

[0022] 附图1表示锰酸铜尖晶石催化剂的X射线衍射图,从图中可以看出,600℃煅烧后的样品中存在Mn2O3,CuMn2O4的衍射峰,其中Mn2O3含量相对较低。
[0023] 附图2是锰酸铜尖晶石催化剂的扫描电镜图,从图中可以看出,锰酸铜尖晶石呈现出独特的空心六面体结构,其平均粒径为122nm。
[0024] 附图3是锰酸铜尖晶石吸附和催化臭氧氧化水中BP-3效能图,实验条件为:2-羟基-4-甲氧基二苯甲酮的初始浓度[BP-3]0=2.0mg/L,水中溶解性臭氧浓度[O3]0=1.0mg/L,锰酸铜尖晶石投量[催化剂]0=100mg/L,pH=7.12±0.14。从图中可以看出,锰酸铜尖晶石催化剂对BP-3的吸附效率为9.27%,当臭氧投量为1.0mg/L时,单独臭氧对BP-3的去除率较低,反应30min的去除率仅为47.41%,将锰酸铜尖晶石引入反应体系后,BP-3的去除率有较大幅度提高,其值为90.71%,较单独臭氧氧化提高43.3%。在催化臭氧氧化体系中,锰酸铜尖晶石催化剂对BP-3的去除有显著的催化活性。

具体实施方式

[0025] 下面结合具体实施方式对锰酸铜尖晶石催化剂的制备步骤进行说明,以进一步理解发明。本发明技术方案不局限于以下所例举具体实施方式,还包括各具体实施方式间的任意组合。
[0026] 具体实施方式一:锰酸铜尖晶石催化剂的制备方法可通过以下几个步骤实现:
[0027] (1)准确称量0.5g CuCl,溶解于25mL 3.0mol/L HCl,并在磁力搅拌器上搅拌至固体完全溶解,为防止氯化亚铜被空气氧化,溶解过程在氮气保护下进行;
[0028] (2)准确称量2.0g KMnO4,溶解于25mL蒸馏水,使溶质完全溶解,以得到澄清溶液;
[0029] (3)将上述CuCl盐酸溶液和KMnO4溶液混合,并转移至200mL带有聚四氟材料内衬的高压反应釜中,在180℃条件下反应15h;
[0030] (4)待反应液冷却至室温后,将反应液转移到烧杯中,并用4mol/L NaOH调节混合溶液的pH为7~8,持续搅拌2h;
[0031] (5)将上述混合溶液在室温条件下陈化12h;
[0032] (6)用去离子水洗涤陈化固体3~5次,以确保滤液中不含有Cl-;
[0033] (7)将过滤沉淀物在60℃下鼓风干燥1h,获得干燥粉末;
[0034] (8)将干燥后的粉末放置在高温马弗炉中灼烧,灼烧温度为600℃,灼烧时间为2h,马弗炉的升温速度为5℃/min,之后自然冷却至室温,即完成锰酸铜尖晶石催化剂的制备,放入干燥器中待用;
[0035] 本实施方式中制备的锰酸铜尖晶石催化剂对含2-羟基-4-甲氧基二苯甲酮等PPCPs的去除率好于现有常见粉末状多相催化剂(Al2O3和MnO2等),它可以促进臭氧产生高氧化能力、无选择性的羟基自由基,有机物可通过直接与臭氧分子反应,或和臭氧分解产生的·OH反应,以实现臭氧对水体中BP-3等PPCPs的强化去除。
[0036] 催化臭氧氧化除污染技术是通过以下几个步骤实现:(1)工艺所需臭氧浓度为0.5~2.0mg/L;(2)工艺所需臭氧气体流速为200~400mL/min;(3)工艺所需锰酸铜尖晶石催化剂投量为100~500mg/L;(4)待处理水体中难降解有机污染物浓度为0.002~0.018mmol/L水平;(5)待处理水体pH范围为6.0~8.0。
[0037] 具体实施方式二:本实施方式与具体实施方式一不同的是步骤(4)中NaOH溶液替换为KOH溶液,其它步骤及参数与具体实施方式一相同。
[0038] 具体实施方式三:本实施方式与具体实施方式一不同的是(4)NaOH溶液替换为30%的氨水溶液,其它步骤及参数与具体实施方式一相同。