高表面电阻率静电吸盘转让专利

申请号 : CN201510535576.2

文献号 : CN105196094B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 理查德·A·库克戴尔·K·史东卢德米拉·史东朱立安·布雷克大卫·苏罗纳

申请人 : 恩特格林斯公司维瑞安半导体设备联合公司

摘要 :

根据本发明之一具体实例,提供一种静电吸盘。该静电吸盘包含一电极及一表面层,该表面层由该电极中之一电压启动以形成一电荷以将一基板静电夹持至该静电吸盘,该表面层包括一电荷控制层,该电荷控制层包含大于约每平方1011欧姆之一表面电阻率。

权利要求 :

1.一种制造一静电吸盘的方法,所述方法包含在所述静电吸盘中形成一电荷控制层,所述电荷控制层包含含硅氧化物、含硅碳化物、含非化学计量硅的氧化物、含非化学计量硅的碳化物、碳及碳的氮化物化合物中的至少一者,且包含自1×1012欧姆/平方至1×1016欧姆/平方的一表面电阻率;其中形成所述电荷控制层包含更改已经产生的一表面层的所述表面电阻率;其中所述更改所述表面电阻率包含使用一反应性离子蚀刻制程处理已经产生的所述表面层;且其中对所述表面电阻率的所述更改在处理后产生一表面电阻率,所述表面电阻率在比处理前原为的值的增或减25%范围内。

说明书 :

高表面电阻率静电吸盘

[0001] 本发明申请为申请日为2011年5月24日,申请号为201180026596.7,发明名称为“高表面电阻率静电吸盘”的发明申请的分案申请。
[0002] 相关申请案
[0003] 本申请案主张2010年5月28日申请之美国临时申请案第61/349504号之权利。以上申请案之全部教示被以引用的方式并入本文中。

技术领域

[0004] 根据本发明之一具体实例,提供一种静电吸盘。该静电吸盘包含一电极及一表面层,该表面层由该电极中之一电压启动以形成一电荷以将一基板静电夹持至该静电吸盘,11
该表面层包括一电荷控制层,该电荷控制层包含大于约每平方10 欧姆之一表面电阻率。
[0005] 发明背景
[0006] 静电吸盘在制程期间固持且支撑基板,且亦自基板移除热,而不机械夹持基板。在静电吸盘之使用期间,藉由静电力将基板(诸如,半导体晶圆)之背面固持至静电吸盘之面。覆盖电极的表面材料层将基板与静电吸盘之面中的一或多个电极分开。在库仑吸盘中,表面层电绝缘,而在Johnsen-Rahbek静电吸盘中,表面层为弱导电的。静电吸盘之表面层可平坦,或可具有将基板之背面与经覆盖之电极进一步分开的一或多个突起、突出物或其他表面特征。
[0007] 在静电吸盘之设计中,正存在避免在移除了吸盘电力后当晶圆或其他基板静电黏附至吸盘表面时发生的「晶圆黏附」之问题之需要。

发明内容

[0008] 根据本发明之一具体实例,提供一种静电吸盘。该静电吸盘包含一电极及一表面层,该表面层由该电极中之一电压启动以形成一电荷以将一基板静电夹持至该静电吸盘,该表面层包括一电荷控制层,该电荷控制层包含大于约每平方1011欧姆之一表面电阻率。
[0009] 在另外的有关具体实例中,该电荷控制层可包含大于约每平方1012欧姆、或大于约每平方1013欧姆、或自约1×1011欧姆/平方至约1×1016欧姆/平方、或自约1×1012欧姆/平方至约1×1016欧姆/平方、或自约1×1013欧姆/平方至约1×1016欧姆/平方之一表面电阻率。该电荷控制层可包含聚合物,诸如,聚醚酰亚胺(PEI)、聚酰亚胺及聚醚醚酮(PEEK)中之至少一者。该电荷控制层可包含含硅氮化物、含硅氧化物、含硅碳化物、含非化学计量硅之氮化物、含非化学计量硅之氧化物、含非化学计量硅之碳化物、碳及碳之氮化物化合物;诸如,SiOxNy、氮化硅、氧化硅、碳化硅及类钻碳。如本文中所使用,「SiOxNy」可含有元素氢,且忽略氢(例如,其可按高达约20原子百分率存在),变数x可(例如)在0至2之范围内,且变数y可(例如)在0至1.4之范围内,其中希望在x及/或y为零值之情况下,氧及/或氮可不存在。或者,在此范围中,氧及氮中之一或多者可按至少某一非零量存在。
[0010] 在另外的具体实例中,该表面层可包括多个聚合物突起,该多个聚合物突起延伸至在该电荷控制层之包围该多个聚合物突起的部分上方之一高度以在该基板之静电夹持期间在该多个聚合物突起上支撑该基板。形成该多个聚合物突起之该聚合物可包含聚醚酰亚胺(PEI)、聚酰亚胺及聚醚醚酮(PEEK)中之至少一者。该多个聚合物突起可实质上在该表面层上等距间隔(如按成对的相邻聚合物突起之间的中心至中心距离所量测);且可按三角形图案排列。
[0011] 在根据本发明之另一具体实例中,提供一种制造一静电吸盘之方法。该方法包含在该静电吸盘中形成一电荷控制层,该电荷控制层包含大于约每平方1011欧姆之一表面电阻率。
[0012] 在另外的有关具体实例中,该电荷控制层可包含大于约每平方1012欧姆、或大于约每平方1013欧姆、或自约1×1011欧姆/平方至约1×1016欧姆/平方、或自约1×1012欧姆/平方至约1×1016欧姆/平方、或自约1×1013欧姆/平方至约1×1016欧姆/平方之一表面电阻率。该方法可包含在该静电吸盘之使用中减少晶圆黏附之频率,而不修改该静电吸盘之机能,诸如,不修改该静电吸盘之电源供应器、电极结构、介电层厚度、机械性质及夹持力中之至少一者。该方法可包含控制以原子百分率计的该电荷控制表面层中硅对其他物质之一比率,以便达成表面电阻率之一所要位准。形成该电荷控制层可包含更改已经产生的一表面层之该表面电阻率。该更改该表面电阻率可包含使用一反应性离子蚀刻制程处理已经产生之该表面层。该更改该表面电阻率可包含执行已经产生的该表面层之一电浆处理、一化学处理及一重新氢化处理中之至少一者。该表面电阻率之该更改可在处理后产生处于在处理前该表面电阻率将为的值之增或减25%范围内之表面电阻率。该方法可包含:在形成该电荷控制层前:将该静电吸盘之一介电层结合至该静电吸盘之一绝缘体层;用一黏着涂层涂布该静电吸盘之该介电层,该黏着涂层包含含硅氮化物、含硅氧化物、含硅碳化物、含非化学计量硅之氮化物、含非化学计量硅之氧化物、含非化学计量硅之碳化物、碳及碳之氮化物化合物中之至少一者;将包含一电荷控制层聚合物之一电荷控制层结合至该静电吸盘之该表面,该电荷控制层聚合物包含聚醚酰亚胺(PEI)、聚酰亚胺及聚醚醚酮(PEEK)中之至少一者;在该电荷控制层上沈积一光阻;反应性离子蚀刻该电荷控制层以移除该电荷控制层之将包围形成于该电荷控制层中之多个聚合物突起的部分;及从该静电吸盘剥离该光阻,藉此显露由与该电荷控制层相同的电荷控制层聚合物形成的多个聚合物突起。

附图说明

[0013] 自如在随附图式(其中同样的参考字元贯穿不同视图指相同的零件)中说明的本发明之实例具体实例之以下更特定描述,前述内容将显而易见。图式未必按比例,实情为着重说明本发明之具体实例。
[0014] 图1为根据本发明之一具体实例的静电吸盘之顶层之横截面图。
[0015] 图2为展示根据本发明之一具体实例的静电吸盘之另外层之横截面图。
[0016] 图3为在根据本发明之一具体实例的静电吸盘之表面上的突起之图案之说明。
[0017] 图4为根据本发明之一具体实例的静电吸盘之表面外观之图。
[0018] 图5为说明将具有厚氧化物或氮化物绝缘层之基板抬离先前技术静电吸盘之表面的起模顶杆之图。
[0019] 图6为当具有厚氧化物或氮化物绝缘层之基板正上升离开根据本发明之一具体实例的静电吸盘之表面时的该基板之图。
[0020] 图7为当具有厚氧化物或氮化物绝缘层之基板正上升离开先前技术静电吸盘之表面时的该基板之图。

具体实施方式

[0021] 接着为本发明之实例具体实例之描述。
[0022] 根据本发明之一具体实例,提供一种静电吸盘,其包括一具有高表面电阻率(例如,大于约每平方1011欧姆,包括大于约每平方1012欧姆及大于约每平方1013欧姆)之电荷控制层。已发现包括具有此等高表面电阻率之电荷控制表面层可防止晶圆黏附至静电吸盘,而不干扰静电吸盘与基板之间的静电吸引。根据本发明之一具体实例,可藉由更改一最初具有较低表面电阻率的表面层之表面电阻率(例如,藉由反应性离子蚀刻,包括电浆处理、化学处理及/或重新氢化处理)来产生高表面电阻率电荷控制表面层。
[0023] 并不希望受理论约束,咸信根据本发明之一具体实例的电荷控制表面层之高表面电阻率帮助抵消静电吸盘与基板之间的摩擦电效应之影响。在基板涂布有厚绝缘体涂层之情况下,此可尤其成问题。涂布有厚绝缘体(诸如,氧化物或氮化物)之基板可倾向于黏附至静电夹持表面,其可导致晶圆处置问题及甚至将晶圆报废之需求。此等问题可发生于静电及机械夹持系统两者之情况下。根据本发明之一具体实例,咸信将夹持表面之表面电阻率控制至高表面电阻率(诸如,大于约每平方1011欧姆或本文中论述之其他范围)使在涂布有绝缘体之基板之脱离吸盘期间基板与夹具之摩擦生电之影响最小化。此高表面电阻率可用于静电及机械夹持系统两者。根据本发明之一具体实例,可防止晶圆黏附,而不修改夹具之机能,诸如,不修改电源供应器、电极结构、介电层厚层、机械性质及/或夹持力(如在防止晶圆黏附之其他技术中所进行)。
[0024] 图1为根据本发明之一具体实例的静电吸盘之顶层之横截面图。该静电吸盘可以在其表面上之用于安装基板的突起101为特征。静电吸盘以突起101可黏着至之一电荷控制表面层102为特征。电荷控制层102之目的在于提供一传导层以泄放表面电荷。电荷控制层102减少了晶圆黏附之可能性。具有在适当范围(诸如,大于约每平方1011欧姆,包括大于约每平方1012欧姆、大于约每平方1013欧姆、及/或自约1×1011欧姆/平方至约1×1016欧姆/平方之范围、及/或自约1×1012欧姆/平方至约1×1016欧姆/平方之范围、及/或自约1×1013欧姆/平方至约1×1016欧姆/平方之范围)中之表面电阻率的电荷控制层102减少晶圆黏附。略微有传导性的表面层将电荷泄放至地面(图中未示),而不干扰静电吸盘与基板之间的静电吸引。黏着层103可在电荷控制层102之下。或者,无需存在黏着层103。在黏着层103之下(或在电荷控制层102正下方),静电吸盘可包括一黏着涂层104,其促进在其上方之层黏附至介电层105。黏着涂层104可(例如)包括含硅氮化物、氧化物、碳化物及此等之非化学计量型式,例如(但不限于),SiOxNy、氮化硅、氧化硅或碳化硅。黏着涂层亦可包含碳或碳之氮化物化合物;且可包含类钻碳;及/或前述者中之任何者的组合。在黏着涂层104之下为介电层
105,诸如,氧化铝介电质。如本文中所使用,术语「表面层(surface layer)」包括一电荷控制层102及存在于静电吸盘中之任何突起101。
[0025] 在根据本发明之一具体实例中,突起101可由诸如聚醚酰亚胺(PEI)、聚酰亚胺或聚醚醚酮(PEEK)之聚合物形成。电荷控制表面层102可由与突起101相同之聚合物物质形成,诸如,聚醚酰亚胺(PEI)、聚酰亚胺或聚醚醚酮(PEEK)。电荷控制表面层102及突起101亦可由不同材料形成。突起及电荷控制表面层可辅助静电吸盘与基板之接触以促进接触冷却,同时亦减少不良粒子之产生。静电吸盘之气体密封环(图中未示)可由诸如与突起101相同之聚合物的聚合物形成。黏着层103可包含与电荷控制层102不同的聚合物。详言之,在电荷控制层102由聚醚醚酮(PEEK)形成之情况下,黏着层103可包含聚醚酰亚胺(PEI)。
[0026] 在根据本发明之另一具体实例中,吸盘中之电荷控制表面层102及/或任何突起101不需要包括聚合物,且可由含硅氮化物、氧化物、碳化物及此等物之非化学计量型式(例如(但不限于),SiOxNy、氮化硅、氧化硅或碳化硅)形成。电荷控制表面层102中硅对其他物质之比率(按原子百分率计)可经控制以便达成高表面电阻率之所要的位准,包括藉由使用增大的硅对其他物质之比率以便增加表面电阻率,及/或减小的硅对其他物质之比率以便减小表面电阻率。电荷控制表面层102亦可包含碳或碳之氮化物化合物;且可包含类钻碳;及/或前述者中之任何者的组合。具有所要范围中之表面电阻率的其他物质可用于电荷控制表面层102。
[0027] 图2为展示根据本发明之一具体实例的静电吸盘之另外层之横截面图。除了突起201、电荷控制层202、黏着层203、黏着涂层204及介电层205之外,该静电吸盘亦包括金属电极206。金属电极206藉由导电环氧树脂黏结剂208结合至电极接脚207。介电层205藉由陶瓷至陶瓷结合210结合至绝缘体层209(诸如,氧化铝绝缘体)。陶瓷至陶瓷结合210可由诸如聚四氟乙烯(PTFE)或改质PTFE(除了PTFE之外,其亦包括PFA及/或FEP)之聚合物形成。另外,陶瓷至陶瓷结合210可由诸如全氟烷氧基酯(PFA)、氟化乙烯-丙烯(FEP)及聚醚醚酮(PEEK)之聚合物形成。在绝缘体209之下,存在导热结合211(可例如使用由美国Bedford,MA之TRA-CON,Inc.出售之TRA-CON热导性环氧树脂来形成其)及水冷却基底212。黏着涂层204可沿着静电吸盘之边缘(包括沿着气体密封环之边缘)延伸以形成金属减少层213,其防止照射于静电吸盘之边缘上的射束使铝粒子撞击基板。
[0028] 根据本发明之一具体实例,用于突起201、电荷控制层202或静电吸盘之其他组件的聚醚酰亚胺(PEI)可由未填充之非晶聚醚酰亚胺(PEI)形成,厚度处于约12微米与约25微米之间。举例而言,可使用在商标名ULTEM 1000下出售之PEI(由Sabic Innovative Plastics Holdings BV出售)。在突起201及/或电荷控制层202或其他组件由聚醚醚酮(PEEK)形成之情况下,其可自未填充之PEEK制造,厚度处于约12微米与约25微米之间。举例而言,可使用在商标名 APTIV PEEKTM FILM,2000-006(未填充之非晶等级)下出售之PEEK(由美国West Conshohocken,PA之Victrex U.S.A.,Inc.出售)。
[0029] 根据本发明之一具体实例的静电吸盘可包括2009年5月15日申请之美国专利申请案第12/454,336号(作为美国专利申请公开案第2009/0284894号公开)的静电吸盘之特征,该申请案之教示特此以引用的方式全部并入本文中。详言之,可包括关于等距间隔之突起、三角形图案突起及低粒子产生的特征,且亦可包括其他特征。另外,根据本发明之一具体实例的静电吸盘可包括2010年5月13日申请之题为「Electrostatic Chuck With Polymer Protrusions」的PCT申请案PCT/US2010/034667之静电吸盘之特征,该申请案之教示特此以引用的方式全部并入本文中。详言之,可包括关于聚合物突起及电荷控制层之特征,且亦可包括其他特征。
[0030] 图3为在根据本发明之一具体实例的静电吸盘之表面上的突起314之图案之说明,其中突起图案用以减小基板与突起314之间的力。可使用相等地分散此等力之突起图案,例如,突起之三角形或大体六边形图案。应了解,如本文中所使用,「三角形(trigonal)」图案意欲意谓突起之等边三角形之规则重复图案,使得这些突起实质上等距间隔开。(亦可将此图案看作形状为大体六边形,具有在形成正六边形之顶点的六个突起之阵列之中心的一中心突起)。亦可藉由增大突起之直径315或藉由减小突起314之中心至中心间距316来减小力。如在图3之具体实例中所示,可按等距间隔排列来安置这些突起,其中每一突起实质上与邻近突起以中心至中心间距尺寸316等距间隔开。由于此间距,基板的背面之实质部分接触突起之顶部部分,在突起之间留下用于氦或其他气体的间隙以用于背面冷却。相对比之下,在无此突起间距之情况下,这些突起之仅小部分(10%或更少)可接触基板。根据本发明之一具体实例,基板可接触突起之顶表面积的大于25%。
[0031] 在一实例中,静电吸盘可为300mm组态,包括铝基底、厚度约0.120吋之氧化铝绝缘体209、厚度约0.004吋之氧化铝介电质205,且具有旋转压板设计以允许旋转及倾斜安装至静电吸盘的基板。静电吸盘之直径可(例如)为300mm、200mm或450mm。突起314可为三角形图案,其中中心至中心间距尺寸316为(例如)自约6mm至约8mm。突起之直径315可(例如)为约900微米。突起314之高度可(例如)自约3微米至约12微米,诸如,约6微米。突起314可全部由聚合物形成,如同电荷控制层202(见图2)。
[0032] 图4为根据本发明之一具体实例的静电吸盘之表面外观之图。静电吸盘表面包括气体入口417、接地接脚通道418、气体密封环419、包括其自己的气体密封环(图4中的起模顶杆通道420之外部浅色结构)之起模顶杆通道420,及在吸盘之中心421处的小气体入口(在图4中不可见之入口)。接地接脚通道418可包括其自己的气体密封环(图4中的接地接脚通道419之外环)。详图(图4中之插图422)展示突起414。气体密封环419(及起模顶杆通道420及接地接脚通道418之气体密封环)宽度可为约0.1吋,且可具有等于突起414之高度的高度,诸如,自约3微米至约12微米,例如,约6微米,但其他宽度及高度是可能的。
[0033] 根据本发明之一具体实例,可藉由首先使用陶瓷至陶瓷结合制备陶瓷总成之制程来制造静电吸盘。举例而言,可使用以上结合图2之具体实例描述之结合物质将介电层205结合至绝缘体层209。接下来,用黏着涂层204(诸如,以上结合图1之具体实例论述之物质)涂布陶瓷总成至约1或2微米之厚度。接下来,将组成电荷控制层202及突起201之聚合物物质结合至黏着涂层204之表面。接着可电浆处理聚合物物质之顶部以帮助光阻(接下来涂覆)黏附。接下来,将光阻沈积于聚合物物质上,且曝光及显影。接下来,使用反应性离子蚀刻制程移除一厚度之聚合物物质(诸如,在约3微米与约12微米之间,详言之,约6微米)以在突起201之间产生区域。可针对将与静电吸盘一起使用之背面气体压力来最佳化蚀刻掉之量(导致突起之高度)。突起之高度较佳地与在背面冷却中使用的气体之平均自由路径大致相同或实质上相等。在蚀刻后,接着剥离光阻。接下来,可藉由更改已产生的表面层之表面电阻率来产生高表面电阻率电荷控制表面层。举例而言,可藉由处理已藉由反应性离子蚀刻产生之表面层(包括电浆处理、化学处理及/或重新氢化处理)来更改表面层以具有较高表面电阻率。电浆处理可为氧电浆处理。接下来,制程可继续进行至静电吸盘之最终组装。
[0034] 根据本发明之一具体实例,可藉由更改一最初具有较低表面电阻率的表面层之表面电阻率来产生高表面电阻率电荷控制表面层。表面电阻率之更改可在处理后产生处于在处理前该表面电阻率将为的值之增或减25%范围内之表面电阻率。可在已图案化了较低表面电阻率表面层后执行表面电阻率之更改。举例而言,初始较低表面电阻率表面层可包括聚合物,诸如,聚醚酰亚胺(PEI)、聚酰亚胺或聚醚醚酮(PEEK)。或者,初始较低表面电阻率表面层可包括含硅氮化物、氧化物、碳化物及此等之非化学计量型式,例如(但不限于),SiOxNy、氮化硅、氧化硅或碳化硅。初始较低表面电阻率表面层亦可包含碳或碳之氮化物化合物;且可包含类钻碳;及/或前述者中之任何者的组合。
[0035] 根据本发明之一具体实例,可藉由以上描述的制程中之任何者(诸如,反应性离子蚀刻)来处理最初形成之表面层以达成大于约每平方1011欧姆(包括大于约每平方1012欧姆、大于约每平方1013欧姆、及/或自约1×1011欧姆/平方至约1×1016欧姆/平方之范围、及/12 16 13
或自约1×10 欧姆/平方至约1×10 欧姆/平方之范围、及/或自约1×10 欧姆/平方至约1×1016欧姆/平方之范围)之表面电阻率。根据本发明之一具体实例,可根据在由美国West Conshohocken,PA之ASTM International公开的题为「Standard Test Methods for DC Resistance or Conductance of Insulating Materials」之ASTM标准D257-07中阐明之标准量测表面电阻率,该标准之全部揭示内容特此以引用的方式并入本文中。可使用标准表面电阻率探针(例如,由美国Medina,NY之TREK,Inc.出售之TREK圆形探针)在基板被夹持至之静电吸盘之表面上量测表面电阻率。在静电吸盘之表面包括突起之情况下,可在处于突起之间的表面区域上或在突起之表面上量测表面电阻率。对于大于约每平方1014欧姆之表面电阻率,物理吸附水可影响对表面电阻率之量测,且因此较佳地使用在干燥环境或真空中之量测。
[0036] 根据本发明之一具体实例,亦可直接将较高表面电阻率层涂覆至静电吸盘,而不修改初始较低表面电阻率层。又,可在首先使用蚀刻制程(诸如,反应性离子蚀刻制程)移除了初始较低表面电阻率层之至少部分后涂覆较高表面电阻率层。举例而言,在初始较低表面电阻率表面层包括含硅氮化物、氧化物、碳化物及此等之非化学计量型式的情况下,可藉由反应性离子蚀刻制程移除表面层之一部分直至曝露静电吸盘之绝缘体层,且接着可涂覆较高表面电阻率涂层。
[0037] 并不希望受理论约束,接下来论述导致晶圆黏附且可由根据本发明之一具体实例的高表面电阻率层减轻之摩擦电表面生电效应所基于之可能机制。静电夹持产生静电吸盘表面与基板之间的紧密接触界面,且产生强分子吸引力(诸如,凡得瓦尔力)。图5为说明将具有厚氧化物或氮化物绝缘层之基板523抬离先前技术静电吸盘524之表面之图。当抬高起模顶杆525时,基板523与静电吸盘524之间的紧密接触界面被扯开,且产生摩擦电表面电荷。基板523为负电性(吸引电子),且静电吸盘524之表面将电子526让与给基板之氧化物表面。如咸信在此处发生之摩擦生电(Triboelectric charging)系作为两个物件相互接触且接着分开之结果的电子转移之过程。字首「tribo」意谓「摩擦」。摩擦生电之过程导致一物件在其表面上获得电子,且因此变得带负电,且另一物件自其表面失去电子,且因此变得带正电。
[0038] 图6为当具有厚氧化物或氮化物绝缘层627之基板623正上升离开根据本发明之一具体实例的静电吸盘624之表面时的该基板623之图。通常,基板623将永不会自静电吸盘624之表面精确平行地升起,且因此将存在基板623与静电吸盘624之间的最后接触点628。
在先前技术静电吸盘中,最后接触点628可为晶圆黏附点。然而,在根据本发明之一具体实例的静电吸盘624中,高电阻率表面629具有不活动的留在其表面上之正电荷630。在基板之氧化物或氮化物绝缘层627中的负电荷同样不活动。吸盘624之表面及基板623之表面带相反极性之电荷,但这些电荷系随机置放且散开,且因此过于弱而不能造成显著的晶圆黏附。
因此,根据本发明之一具体实例的高电阻率表面629帮助防止晶圆黏附。
[0039] 相对比之下,图7为当具有厚氧化物或氮化物绝缘层727之基板723正上升离开先前技术静电吸盘724之表面时的该基板723之图。在此情况下,静电吸盘724具有较低表面电阻率表面729。基板723中之负电荷731及较低电阻率表面729中之正电荷730皆为活动的;电荷732之分离发生于基板723中,且电荷731及730朝向最后接触点728迁移而形成强电容器,藉此将基板723之角落黏附至静电吸盘724。
[0040] 在一可能的失效模式下,在使用中当自传导性射束所指向的加热之石墨靶材排出砷及/或磷时,可有效地降低静电吸盘之表面电阻率。排出之砷及/或磷可沈积且冷凝于冷却之静电吸盘的表面上,藉此降低其表面电阻率且潜在地导致随后的晶圆黏附。因此,根据本发明之一具体实例的表面电阻率应足够高以便不会由于此等射束沈积物之效应而减小至不良的低表面电阻率位准。
[0041] 根据本发明之一具体实例,使用具有低电阻率表面及高电阻率表面之静电吸盘用涂布有氧化物/氮化物之晶圆执行实验,如下表1中所示。使用由美国Medina,NY之TREK,Inc.出售之TREK圆形探针量测表面电阻率。氧化物晶圆黏附至所有低表面电阻率静电吸盘,且正常晶圆循环是不可能的。然而,氧化物晶圆未黏附至高表面电阻率静电吸盘中之任一者。根据本发明之具体实例因此展现成功地减轻晶圆黏附。
[0042] 表1:针对不同表面电阻率之晶圆黏附之比较
[0043]
[0044] 根据本发明之一具体实例,静电吸盘可包括具有约6微米之高度且具有非常平滑的晶圆接触表面的突起。举例而言,突起可在晶圆接触表面上具有约0.02μm至约0.05μm的表面粗糙度。同样地,气体密封环可具有类似的平滑表面,其导致与基板之良好密封。根据本发明之一具体实例,静电吸盘之气体密封环可包含小于约8微吋或小于约4微吋或小于约2微吋或小于约1微吋之表面粗糙度。
[0045] 根据本发明之一具体实例,静电吸盘为库仑吸盘。介电质可包括铝,例如,氧化铝或氮化铝。在根据本发明之另一具体实例中,静电吸盘为Johnsen-Rahbek静电吸盘。或者,静电吸盘可不为Johnsen-Rahbek静电吸盘,且介电质可经选择使得Johnsen-Rahbek(JR)力或部分混合Johnsen-Rahbek力不作用于晶圆或基板上。
[0046] 本文中所引用之所有专利案、公开申请案及参考之教示全部被以引用的方式并入本文中。
[0047] 虽然本发明已经参照其实例具体实例特定展示及描述,但熟习此项技术者应理解,在不脱离由随附权利要求涵盖的本发明之范畴之情况下,可在其中进行形式及细节之各种改变。