卤素调控的各种位置取代芴类化合物的制备方法转让专利

申请号 : CN201510595241.X

文献号 : CN105198690B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 宋娟孙威李亚丽

申请人 : 南京邮电大学

摘要 :

本发明涉及一种通过卤素调控合成各种位置取代芴类化合物的制备方法:在120-130℃条件下,四氢呋喃溶液中,邻卤苄溴与芳基硼酸在醋酸钯/三环己基膦为催化体系,无机碱,添加剂,氮气氛围下反应12小时,得到一系列芴类化合物。本发明的两种方法均以简单、经济、易得的原料为底物,以钯催化串联反应实现各种位置取代芴类化合物的合成,这类化合物在医药合成中间体以及有机光电材料科学中有很大的应用前景。

权利要求 :

1.一种通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:四氢呋喃溶液中,邻卤苄溴与芳基硼酸,钯催化剂、膦配体以及无机碱、添加剂存在的条件下,120-

130℃,反应12小时,分离得到芴及其衍生物;添加剂为特戊酸、氯化锂、 分子筛。

2.根据权利要求1所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:所述邻卤苄溴为邻溴苄溴,邻溴苄溴、芳基硼酸、钯催化剂、膦配体、无机碱、特戊酸、氯化锂的物质的量比为1.0:1.5:0.03:0.06:6.0:0.8:1.5; MS 200mg。

3.根据权利要求1所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:所述邻卤苄溴为邻氯苄溴,邻氯苄溴、芳基硼酸、钯催化剂、膦配体、无机碱、特戊酸的物质的量比为1.0:1.1:0.03:0.06:6.0:1.0。

4.根据权利要求1或2或3所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:芳基硼酸为:苯硼酸、对甲基苯硼酸、对甲氧基苯硼酸、对叔丁基苯硼酸、对氟苯硼酸、对三氟甲基苯硼酸、3,5-二氟苯硼酸、邻氟苯硼酸、邻甲氧基苯硼酸、邻甲基苯硼酸、噻吩-3-硼酸、3-甲氧基苯硼酸、3-甲基苯硼酸中任一种。

5.根据权利要求1或2或3所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:钯催化剂为醋酸钯。

6.根据权利要求1或2或3所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:膦配体是三环己基膦。

7.根据权利要求1或2所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:无机碱为磷酸钾。

8.根据权利要求1或3所述的通过卤素调控合成各种位置取代芴类化合物的制备方法,其特征是:无机碱为碳酸钾。

说明书 :

卤素调控的各种位置取代芴类化合物的制备方法

技术领域

[0001] 本发明属于各种位置取代芴类化合物的制备方法领域。

背景技术

[0002] 芴类化合物广泛存在于自然界和天然产物中,是众多生物医药分子合成的关键中间体。通过在其9位以及2,7位官能团化,可以得到一系列结构多变的芴基材料分子。近四十年来,随着有机半导体材料的发展,芴基材料分子因其具有特殊的光电性质,成为有机光电材料领域最重要的结构骨架而广泛应用于有机/聚合物发光二级管(OLED)、有机太阳能电池(OPV)、有机场效应晶体管(OFET)等领域。由于芴是一个从焦油中提取的商业化的工业品,比较易得,而芴结构本身的改变并不多见,都需要通过人工合成的方法取得。因此这在一定程度上阻碍了取代芴及其衍生物的研究。迄今为止,合成芴的方法可以概括为三类:Friedel-Crafts酰基化反应、分子内反应(单组份反应)和分子间反应(双组份反应)。
Friedel-Crafts酰基化反应先合成9-芴酮在通过还原的手段得到芴。但是,此类反应需要使用过量的路易斯酸而且对底物的适用性比较大。单组份反应中,使用联芳烃类化合物借助过渡金属分子内C-H活化合成芴。与单分子反应相比,双分子反应可以在一定成程度上简化反应底物。2010年,Hu Qiaosheng课题组报道了一例钯催化的分子间串联偶联反应。然而,该反应需要使用邻甲基芳基硼酸作为底物,这在一定程度上限制了底物的适用性。

发明内容

[0003] 发明目的:解决了以往芴合成中需要预官能团化或复杂底物的限制,优势在于反应条件相对温和,反应高效,具有良好的官能团兼容性,更重要的是,通过卤素调节,可以得到不同取代的芴类化合物。
[0004] 技术方案:基于以上研究的启发,我们希望发展一种简单、高效的合成方法以克服这些限制。在此我们设计了分别以简单,易得的亲电试剂和亲核试剂作为两个芳基拼块通过串联反应一步实现芴类分子的合成。然而,随着反应体系中反应组分数的增加,如何控制串联反应中每步反应的活性差异及选择性使得该反应更具挑战性。我们通过条件优化与控制和底物选择成功解决了反应体系兼容性和选择性问题。另外,我们还通过调节芳基卤代物的活性调节取代基的位置,实现了1,2,3,4四个反应位点的全覆盖。我们的方法解决了以往芴合成中需要预官能团化或复杂底物的限制,优势在于反应条件相对温和,反应高效,具有良好的官能团兼容性,更重要的是,通过卤素调节,可以得到不同取代的芴类化合物。这类化合物是有机光电材料的重要中间体。而到目前为止,除通过多步反应外暂无其他有效的方法来合成,这也凸显了我们方法在材料科学领域的实用性。因此,以简单原料为底物,通过串联反应一步构筑芴的方法不但完善了芴类化合物合成的方法学研究,也将有机方法学与材料科学紧密结合起来,极大的提高了我们反应的应用性和实用性。本发明的目的是提供一种芴类化合物的制备方法,该方法操作简单,原料经济、易得,可以一步实现传统方法难以高效合成的芴及其衍生物类化合物。
[0005] 一种卤素调控合成各种位置取代芴类化合物的制备方法技术方案为:如图1所示,在120-130℃条件下,四氢呋喃溶液中,邻卤苄溴与芳基硼酸在醋酸钯/三环己基膦为催化体系,无机碱,添加剂存在的条件下,氮气氛围下反应12小时,经分离得到芴类化合物。
[0006] 进一步的,当上述邻卤苄溴为邻溴苄溴时,邻溴苄溴、芳基硼酸、钯催化剂、膦配体、无机碱、特戊酸、氯化锂的物质的量比为1.0:1.5:0.03:0.06:6.0:0.8:1.5;200mg;当上述邻卤苄溴为邻氯苄溴时,邻氯苄溴、芳基硼酸、钯催化剂、膦配体、无机碱、特戊酸的物质的量比为1.0:1.1:0.03:0.06:6.0:1.0。
[0007] 芳基硼酸为:苯硼酸、4-甲基苯硼酸、4-甲氧基苯硼酸、4-叔丁基苯硼酸、4-氟苯硼酸、4-三氟甲基苯硼酸、3,5-二氟苯硼酸、2-氟苯硼酸、2-甲氧基苯硼酸、噻吩-3-硼酸。
[0008] 上述催化剂是醋酸钯。
[0009] 上述膦配体是三环己基膦。
[0010] 上述添加剂是邻溴苄溴时无机碱为磷酸钾;邻氯苄溴时无机碱为碳酸钾。
[0011] 上述添加剂是邻溴苄溴时添加剂为特戊酸、氯化锂、4A分子筛;邻氯苄溴时添加剂为特戊酸。
[0012] 有益效果:
[0013] 1.反应以简单、经济、易得的原料为底物,催化剂可以商业购买;
[0014] 2.此方法改进了在传统制备芴类化合物领域中,需要预官能团化或一些反应位点无法修饰的缺陷。附图说明:
[0015] 图1是本发明的反应方程式;
[0016] 图2是本发明实施例1的1H-NMR谱图;
[0017] 图3是本发明实施例1的13C-NMR谱图;
[0018] 图4是本发明实施例2的1H-NMR谱图;
[0019] 图5是本发明实施例2的13C-NMR谱图;
[0020] 图6是本发明实施例3的1H-NMR谱图;
[0021] 图7是本发明实施例3的13C-NMR谱图;
[0022] 图8是本发明实施例4的1H-NMR谱图;
[0023] 图9是本发明实施例4的13C-NMR谱图;
[0024] 图10是本发明实施例5的1H-NMR谱图;
[0025] 图11是本发明实施例5的13C-NMR谱图;
[0026] 图12是本发明实施例6的1H-NMR谱图;
[0027] 图13是本发明实施例6的13C-NMR谱图;
[0028] 图14是本发明实施例7的1H-NMR谱图;
[0029] 图15是本发明实施例7的13C-NMR谱图;
[0030] 图16是本发明实施例8的1H-NMR谱图;
[0031] 图17是本发明实施例8的13C-NMR谱图;
[0032] 图18是本发明实施例9的1H-NMR谱图;
[0033] 图19是本发明实施例9的13C-NMR谱图;
[0034] 图20是本发明实施例10的1H-NMR谱图;
[0035] 图21是本发明实施例10的13C-NMR谱图;
[0036] 图22是本发明实施例11的1H-NMR谱图;
[0037] 图23是本发明实施例11的13C-NMR谱图;
[0038] 图24是本发明实施例12的1H-NMR谱图;
[0039] 图25是本发明实施例12的13C-NMR谱图;
[0040] 图26是本发明实施例13的1H-NMR谱图;
[0041] 图27是本发明实施例13的13C-NMR谱图;
[0042] 图28是本发明实施例14的1H-NMR谱图;
[0043] 图29是本发明实施例14的13C-NMR谱图;
[0044] 图30是本发明实施例15的1H-NMR谱图;
[0045] 图31是本发明实施例15的13C-NMR谱图;
[0046] 图32是本发明实施例16的1H-NMR谱图;
[0047] 图33是本发明实施例16的13C-NMR谱图;
[0048] 图34是本发明实施例17的1H-NMR谱图;
[0049] 图35是本发明实施例17的13C-NMR谱图;
[0050] 图36是本发明实施例18的1H-NMR谱图;
[0051] 图37是本发明实施例18的13C-NMR谱图;具体实施方式:
[0052] 下面的实施例可以使本专业技术人员更全面的理解本发明,但不以任何方式限制本发明。
[0053] 实施例1:氮气保护下,在一Schlenk反应管中加入苯硼酸(0.45mmol,54.9mg),醋酸钯(0.009mmol,0.28mg),于手套箱中,加入磷酸钾(1.8mmol,382.0mg),三环己基膦(0.018mmol,5.0mg),氯化锂(0.45mmol,19.1mg), 分子筛(200mg)。在氮气氛围下向体系中依次加入向体系中依次加入邻溴苄溴(0.3mmol,75mg),特戊酸(0.24mmol,24.5mg),然后加入5毫升四氢呋喃,搅拌5分钟后,将反应置于120℃锅中反应12小时。反应结束后,向体系中加入3毫升饱和氯化铵溶液淬灭反应,分三次各加入15毫升乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,柱层析分离得到产物,产率85%。如图2、3所示。
[0054] 实施例2-10中除使用不同的芳基硼酸外,其他反应条件相同,具体如下:
[0055] 氮气保护下,在一Schlenk反应管中加入芳基硼酸(0.45mmol),醋酸钯(0.009mmol,2.8mg),于手套箱中,加入磷酸钾(1.8mmol,382.0mg),三环己基膦(0.018mmol,5.0mg),氯化锂(0.45mmol,19.1mg), 分子筛(200mg)。在氮气氛围下向体系中依次加入向体系中依次加入邻溴苄溴(0.3mmol,75mg),特戊酸(0.24mmol,24.5mg),然后加入5毫升四氢呋喃,搅拌5分钟后,将反应置于120℃锅中反应12小时。反应结束后,向体系中加入3毫升饱和氯化铵溶液淬灭反应,分三次各加入15毫升乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,柱层析分离得到产物。如图4至图21所示。
[0056] 表1:邻溴苄溴与芳基硼酸的反应。
[0057]
[0058] 实施例11:氮气保护下,在一Schlenk反应管中加入苯硼酸(0.33mmol,40.2mg),醋酸钯(0.009mmol,0.28mg),于手套箱中,加入碳酸钾(1.8mmol,248.8mg),三环己基膦(0.018mmol,5.0mg)。在氮气氛围下向体系中依次加入向体系中依次加入邻氯苄溴(0.3mmol,61.7mg),特戊酸(0.3mmol,30.6mg),然后加入2毫升四氢呋喃,搅拌5分钟后,将反应置于130℃锅中反应12小时。反应结束后,向体系中加入3毫升饱和氯化铵溶液淬灭反应,分三次各加入15毫升乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,柱层析分离得到产物,产率62%。如图22、23所示。
[0059] 实施例12-18:氮气保护下,在一Schlenk反应管中加入芳基硼酸(0.33mmol),醋酸钯(0.009mmol,0.28mg),于手套箱中,加入碳酸钾(1.8mmol,248.8mg),三环己基膦(0.018mmol,5.0mg)。在氮气氛围下向体系中依次加入向体系中依次加入邻氯苄溴(0.3mmol,61.7mg),特戊酸(0.3mmol,30.6mg),然后加入2毫升四氢呋喃,搅拌5分钟后,将反应置于130℃锅中反应12小时。反应结束后,向体系中加入3毫升饱和氯化铵溶液淬灭反应,分三次各加入15毫升乙酸乙酯萃取,合并有机相,无水硫酸钠干燥,柱层析分离得到产物。如图24至图图37所示。
[0060] 表2:邻氯苄溴与芳基硼酸的反应。
[0061]
[0062] 以上所有实施案例得到的产物均通过1H-NMR,13C-NMR表征得到印证,所有未知样品通过高分辨质谱(HRMS)确认。具体如下:
[0063] 实施案例1的核磁数据:1H NMR(400MHz,CDCl3)δ7.79(d,J=7.5Hz,2H),7.60-7.53(m,2H),7.43-7.36(m,2H),7.32(m,2H),3.90(s,2H)ppm.13C NMR(101MHz,CDCl3)δ143.2,141.7,126.7,126.7,125.0,119.8,36.9ppm.
[0064] 实施案例2的核磁数据:1H NMR(400MHz,CDCl3)δ7.76(d,J=7.6Hz,1H),7.69(d,J=7.7Hz,1H),7.53(d,J=7.2Hz,1H),7.40-7.34(m,2H),7.30-7.27(m,1H),7.20(d,J=2.0Hz,1H),3.85(s,2H)2.45(s,3H)ppm.13C NMR(101MHz,CDCl3)δ143.5,143.1,141.8,
139.1,136.6,127.6,126.7,126.2,125.8,125.8,119.6,119.5,36.8,21.6ppm.[0065] 实施案例3的核磁数据:1H NMR(400MHz,CDCl3)δ7.69(dd,J=8.0,4.7Hz,2H),7.51(d,J=7.4Hz,1H),7.35(t,J=7.5Hz,1H),7.26-7.19(m,1H),7.11(d,J=2.3Hz,1H),6.94(dd,J=8.3,2.4Hz,1H),3.86(s,5H)ppm.13C NMR(101MHz,CDCl3)δ159.2,145.1,142.7,
141.7,134.8,126.7,125.6,124.9,120.5,119.1,112.9,110.6,55.5,37.0ppm.[0066] 实施案例4的核磁数据:1H NMR(400MHz,CDCl3)δ7.76(dd,J=16.1,7.8Hz,2H),
7.61(dd,J=1.9,0.9Hz,1H),7.55(dt,J=7.3,1.0Hz,1H),7.45(dd,J=8.1,1.8Hz,1H),
7.38(td,J=7.5,1.1Hz,1H),7.29(td,J=7.4,1.2Hz,1H),3.87(s,2H),1.38(s,9H)ppm.13C NMR(101MHz,CDCl3)δ150.0,143.3,143.2,141.7,139.1,126.6,126.2,124.9,123.9,
121.9,119.6,119.3,37.0,34.8,31.6ppm.
[0067] 实施案例5的核磁数据:1H NMR(400MHz,CDCl3)δ7.74-7.70(m,2H),7.54(d,J=7.6Hz,1H),7.38(t,J=7.6Hz,1H),7.29(dt,J=14.2,1.2Hz,1H),7.26-7.23(m,1H),7.08
13 1
(dt,J=8.8,2.4Hz,1H),3.89(s,2H)ppm. C NMR(101MHz,CDCl3)δ162.37(d,J C-F=
244.4Hz),145.3(d,3J C-F=8.7Hz),143.0(d,5J C-F=2.0Hz),140.9,137.7(d,4J C-F=
2.3Hz),126.9,126.4,125.0,120.7(d,3J C-F=9.0Hz),119.5,114.0(d,2J C-F=23.0Hz),
112.4(d,2J C-F=22.7Hz),36.7(d,4J C-F=2.5Hz)ppm.
[0068] 实施案例6的核磁数据:1H NMR(400MHz,CDCl3)δ7.84(t,J=7.2Hz,2H),7.79(s,1H),7.63(d,J=8.4Hz,2H),7.58(d,J=7.2Hz,1H),7.46-7.34(m,2H),3.95(s,2H)ppm.13C NMR(101MHz,CDCl3)δ 145.1(J=1.4Hz),143.8,143.3,140.3,128.6(J=32.0Hz),128.1,
127.1,125.2,124.7(J=272.7Hz),124.1(J=3.9Hz),121.9(J=3.9Hz),120.6,119.9,
36.9ppm.
[0069] 实施案例7的核磁、高分辨数据:1H NMR(400MHz,CDCl3)δ7.69(d,J=7.0Hz,1H),7.54(d,J=6.9Hz,1H),7.40-7.33(m,2H),7.25-7.22(m,1H),6.75-6.70(m,1H),3.84(s,
2H).13C NMR(101MHz,CDCl3)δ163.0(dd,J=245.7,10.7Hz),159.1(dd,J=248.8,13.2Hz),
145.5(dd,J=10.5,8.3Hz),143.4(d,J=1.0Hz),140.2(dd,J=3.5,2.8Hz),124.0(dd,J=
18.5,2.8Hz),103.1(dd,J=23.0,3.7Hz),101.7(dd,J=26.9,24.8Hz)ppm.HRMS(ESI)calcd for C13H8F2[M]+:202.0594;found:202.0592.
[0070] 实施案例8的核磁数据:1H NMR(400MHz,CDCl3)δ7.97(d,J=7.5Hz,1H),7.50(d,J=7.5Hz,1H),7.38(t,J=7.6Hz,1H),7.32-7.27(m,2H),7.24-7.19(m,1H),7.03(t,J=9.0Hz,1H),3.90(s,2H)ppm.13C NMR(101MHz,CDCl3)δ158.5(d,J=249.5Hz),146.0(d,J=
5.8Hz),142.5,138.8(d,J=3.0Hz),128.9(d,J=14.7Hz),127.8(d,J=7.1Hz),127.0,
126.8,124.6,123.4(d,J=5.8Hz),120.6(d,J=3.3Hz)113.6(d,J=19.8Hz),37.4(d,J=
1.5Hz)ppm.19F NMR(377MHz,CDCl3)δ-120.4(s)ppm.
[0071] 实施案例9的核磁数据:1H NMR(400MHz,CDCl3)δ8.21(d,J=7.6Hz,1H),7.57(d,J=7.4Hz,1H),7.47-7.38(m,1H),7.34-7.29(m,2H),7.24-7.17(m,1H),6.94(d,J=8.1Hz,1H),4.00(s,3H),3.90(s,2H)ppm.13C NMR(101MHz,CDCl3)δ155.9,145.2,142.5,140.9,
129.7,127.6,125.7,124.2,123.7,117.3,108.6,55.3,37.3ppm.
[0072] 实施案例10的核磁数据:1H NMR(400MHz,CDCl3)δ7.53(d,J=7.5Hz,1H),7.48(d,J=7.5Hz,1H),7.36-7.32(m,2H),7.30-7.27(m,1H),7.18(td,J=7.5,1.2Hz,1H),3.84(s,2H)ppm.13C NMR(101MHz,CDCl3)δ147.4,146.7,143.9,139.2,128.5,126.7,124.8,124.4,
119.1,118.6,34.5ppm.
[0073] 实施案例11的核磁数据:见实施案例1.
[0074] 实施案例12的核磁数据:1H NMR(400MHz,CDCl3)δ7.75(d,J=7.6Hz,1H),7.59(s,1H),7.52(d,J=7.4Hz,1H),7.41(d,J=7.6Hz,1H),7.35(t,J=7.5Hz,1H),7.27(t,J=
7.4Hz,1H),7.11(d,J=7.7Hz,1H),3.84(s,2H),2.45(s,3H).13C NMR(101MHz,CDCl3)δ
143.6,141.8,141.7,140.3,136.3,127.6,126.6,126.5,125.0,124.7,120.4,119.7,36.5,
21.5ppm.
[0075] 实施案例13的核磁数据:1H NMR(400MHz,CDCl3)δ7.84-7.75(m,1H),7.56(dt,J=7.3,1.0Hz,1H),7.50-7.38(m,2H),7.38-7.31(m,2H),6.91(dd,J=8.3,2.5Hz,1H),3.87(s,2H),3.80(s,3H)ppm.13C NMR(101MHz,CDCl3)δ159.1,144.3,142.9,141.6,135.3,
126.7,126.6,125.5,125.0,119.8,113.2,104.8,55.5,36.1ppm.
[0076] 实施案例14的核磁数据:1H NMR(400MHz,CDCl3)δ7.84-7.76(m,2H),7.51(d,J=7.4Hz,1H),7.46(d,J=7.9Hz,1H),7.35(t,J=4.9Hz,2H),7.27(td,J=7.4,1.2Hz,1H),
3.83(s,2H),1.40(s,9H)ppm.13C NMR(101MHz,CDCl3)δ149.9,143.6,142.0,141.6,140.4,
126.6,126.5,125.0,124.5,124.1,119.6,116.6,36.5,34.8,31.7ppm.
[0077] 实施案例15的核磁数据:1H NMR(400MHz,CDCl3)δ7.75(d,J=7.2Hz,2H),7.55(d,J=7.2Hz,2H),7.50-7.43(m,2H),7.42-7.38(m,1H),7.36-7.32(m,1H),3.84(s,2H)ppm.13C NMR(101MHz,CDCl3)δ162.6(d,1J C-F=240Hz),144.2,143.6(d,3J C-F=8.8Hz),140.9(d,4J C-F=3.1Hz),138.4(d,4J C-F=2.3Hz),127.3,126.8,125.9(d,3J C-F=8.9Hz),125.1,120.1,113.5(d,2J C-F=22.9Hz),106.8(d,2J C-F=22.8Hz),36.3ppm.
[0078] 实施案例16的核磁数据:1H NMR(400MHz,CDCl3)δ7.98(d,J=1.6Hz,1H),7.83-7.75(m,1H),7.60(d,J=7.9Hz,1H),7.56–7.53(m,2H),7.42-7.33(m,2H),3.90(s,2H)ppm.13C NMR(101MHz,CDCl3)δ 146.8(q,J=13Hz),143.2,142.2,140.3,129.3(q,J=
31.9Hz),127.6,127.0,124.5(q,J=272.1Hz),125.2,125.1,123.4(q,J=3.9Hz),120.2,
116.7(q,J=3.9Hz),36.9ppm.
[0079] 实施案例17的核磁数据:1H NMR(400MHz,CDCl3)δ7.77(d,J=7.5Hz,1H),7.63(d,J=7.4Hz,1H),7.36(t,J=7.4Hz,1H),7.33-7.26(m,2H),7.12(d,J=7.4Hz,1H),3.78(s,2H),2.42(s,3H)ppm.13C NMR(101MHz,CDCl3)δ143.1,142.1,142.0,141.3,134.2,127.7,
127.0,126.7,126.5,125.0,120.0,117.4,35.8,18.9ppm.
[0080] 实施案例18的核磁数据:1H NMR(400MHz,CDCl3)δ7.74(d,J=7.4Hz,1H),7.53(d,J=7.3Hz,1H),7.39(d,J=7.6Hz,1H),7.37-7.23(m,3H),6.78(d,J=8.0Hz,1H),3.87(s,3H),3.80(s,2H)ppm.13C NMR(101MHz,CDCl3)δ156.2,143.3,143.3,141.7,130.5,128.3,
126.7,126.5,125.0,120.0,112.7,108.5,55.2,34.2ppm.
[0081] 以上所有实施案例得到的产物均通过1H-NMR,13C-NMR表征得到印证。
[0082] 以上所述仅为本发明的一些实施例,并不限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。