滚动角可控的低密度聚乙烯超疏水片材/容器及其制备方法转让专利

申请号 : CN201510654988.8

文献号 : CN105235294B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 熊忠郑成林夏延致

申请人 : 青岛大学

摘要 :

本发明属于超疏水材料制备技术领域,涉及滚动角可控的低密度聚乙烯超疏水片材/容器及其制备方法,先通过平板硫化机将低密度聚乙烯粒料模压成10微米至2厘米的低密度聚乙烯片材;再使用平板硫化机在模具中将2~4片低密度聚乙烯片材叠压在一起;然后将叠压在一起的低密度聚乙烯片材冷却至室温,或将转移至曲面模具上并使其与曲面模具贴合后冷却至室温,最好用手、铁钳或万能试验机将叠压在一起的低密度聚乙烯片材进行剥离,得到低密度聚乙烯超疏水片材/容器;其方法简单易行,原理科学,操作简便,制备成本低,环境友好,制备的超疏水片材/容器具有很高的水接触角,并且滚动角可控。

权利要求 :

1.一种滚动角可控的低密度聚乙烯超疏水片材的制备方法,其特征在于具体步骤如下:在85*115*2mm的模具中放入低密度聚乙烯粒料20g,用平板硫化机在140℃下将模具预热5min,在保压压力10MPa条件下保压5min,冷却至室温制得低密度聚乙烯片材,然后在85*

115*4mm模具中将制得的两片低密度聚乙烯片叠压在放入平板硫化机中,在120℃下预热

3min,在5MPa压力下保压为2min,冷却至室温后用手将前面叠压在一起的低密度聚乙烯片材进行剥离,制得低黏附低密度聚乙烯超疏水片材,其接触角为160°,滚动角<5°。

说明书 :

滚动角可控的低密度聚乙烯超疏水片材/容器及其制备方法

技术领域:

[0001] 本发明属于超疏水材料制备技术领域,涉及滚动角可控的低密度聚乙烯超疏水片材/容器及其制备方法。背景技术:
[0002] 疏水性是材料表面的重要特征之一,它是由表面的化学组成和微观几何结构共同决定的。当液滴与材料表面接触,它仍保持液滴形状或者在表面铺展形成液膜,这一性质通常用水接触角(WCA)来衡量。通常将接触角大于150°,滚动角小于10°的表面称为超疏水表面。超疏水材料独特的表面特性使其广泛应用于防水、防污、防雾、自清洁、流体减阻、微流体芯片和抑菌等领域。与金属材料相比,高聚物材料的表面超疏水化研究显得更为广泛和重要。聚合物本身具有较低的自由能和良好的热成型加工性能,在制备工艺上方便简洁,方式多样,适合大批量快速生产,且成本低廉。制备超疏水表面,主要从两个方面着手:一方面是在疏水材料(接触角大于90°)表面构建粗糙结构;另一方面是在粗糙表面上用低表面能物质进行修饰。常用于表面修饰的低表面能材料大多是含氟、硅基团的物质,如:氟化烷基硅烷、氟高聚物、氟化合物等。近十几年来,源源不断的加工技术被用来制备超疏水表面,如光刻工艺、模板法、刻蚀法、自组装法、电化学沉积法、电纺丝法、等离子体法、溶胶凝胶法和相分离法等,采用这些方法制备超疏水表面的思想是构建微观尺度上微米和纳米级的分层复杂几何结构,增加表面粗糙度(参考文献:Xinjian Feng,Jiang Lei,Adv.Mater.200,618,3063-3078;Ye Tian,Bin Su,Lei Jiang,Adv.Mater.2014,26,6872–6897;Paul Roach,Neil J.Shirtcliffe,Michael I.Newton,Soft Matter,2008,4:224-240)。
[0003] 低密度聚乙烯(LDPE)是一种常见的热塑性塑料,广泛应用于生产生活的各个方面,关于低密度聚乙烯的超疏水化研究一直备受关注(参考文献:Qianfeng Xu,Bikash Mondal,Alan M.Lyons,ACS Appl.Mater.Interfaces,2011,3:3508-3514;J.Fresnais,J.P.Chapel,F.Poncin-Epaillard,Surface&Coatings Technology,2006,200:5296–5305;Steven M.Hurst,Bahador Farshchian,Junseo Choi,Jinsoo Kim,Sunggook Park,Colloids and Surfaces A:Physicochem.Eng.Aspects,2012,407:85–903;张春雨,蔡洪光,陈斌,董为民,穆志远,张学全,催化学报,2008,29(1):1-3;林飞云,冯杰,黄明达,钟明强,功能高分子学报,2010,23(2):211-214;冯杰,林飞云,钟明强,材料科学与工程学报,
2010,28(6):835-838),但实际应用方面却进展不大,主要原因在于:一是许多制备方法涉及到特定的设备、专门的带有微纳米结构的模板、苛刻的条件和较长的周期,难以用于超疏水表面的大面积制备;二是很多方法需要用低表面能物质进行化学修饰,如含氟或硅的化合物,这些化合物价格昂贵,增加了产品成本;三是很多方法需要大量的化学试剂和溶剂,涉及环境和污染问题;四是关于滚动角可控的超疏水低密度聚乙烯报道非常少。中国专利CN102627799B公开了一种超疏水低密度聚乙烯薄膜材料及其制备方法,该发明将低密度聚乙烯和纳米氧化锌颗粒均匀混合后采用挤出流延法或压延法制备薄膜,将薄膜在醋酸溶液中浸泡使纳米氧化锌颗粒被充分溶解,取出烘干后得到超疏水低密度聚乙烯薄膜,该方法需以单独的纳米氧化锌为模板基质,步骤繁琐,并需通过化学反应将纳米氧化锌反应去除;
中国专利CN104387606A公开了一种通过蜡烛燃烧法制备低密度聚乙烯超疏水表面的方法,该方法在低密度聚乙烯薄膜上涂布热熔胶,然后点燃蜡烛,使燃烧产生的蜡烛灰沉积在低密度聚乙烯薄膜上制备超疏水表面,该方法制备条件苛刻并且表面的滚动角无法调控;中国专利CN102909813A公开了一种线性低密度聚乙烯/线性低密度聚乙烯、线性低密度聚乙烯/聚丙烯共混物超疏水薄膜的制备方法,该方法虽然未使用溶剂和模板,但增加了配制共混物及混炼等步骤,增加了工序及成本,上述专利CN102627799B、CN104387606A、CN102909813A均不能通过实验条件对滚动角进行调控。
[0004] 滚动角可控的超疏水低密度聚乙烯是指通过改变制备条件来调节超疏水表面的滚动角,滚动角不同,其用途也不同。低密度聚乙烯表面的滚动角由表面黏附力决定,水滴在低黏附性超疏水表面,即使有轻微的倾斜(<10°)也极易滚动滑落,在水滴与高黏附性超疏水表面的接触角大于150°的情况下,将表面倾斜90°甚至180°,水滴仍然黏附在表面上,这种性质被用来在微米尺度上操纵液滴,可以在微流体系统、液体无损转移和生物技术等方面发挥重大作用。卢晓英等(Macromolecular Rapid Communications,2004,25:1606-1610)将低密度聚乙烯溶解在二甲苯中进行涂膜,通过控制溶剂挥发温度得到高黏附(水珠在其表面倾斜90°不滚动)聚乙烯超疏水表面,在聚乙烯溶液中加入非溶剂环己酮,然后控制低密度聚乙烯的结晶速率得到的表面接触角为173±2.5°,滚动角为1.9°。袁志庆等(Zhiqing Yuan,Jiping Bin,Xian Wang,Qilong Liu,Dejian Zhao,Hong Chen,Haiyun Jiang,Polymer Engineering and Science,2012:2310-2315)用相似的方法也制备了滚动角可控的低密度聚乙烯涂层。李昱鹏等(Y.P.Li,S.Y.Li,W.Shi,M.K.Lei,Surface&Coatings Technology,2012,206:4952–4958;大连理工大学硕士学位论文,李声耀,2012;
大连理工大学硕士学位论文,郝寅虎,2010)报道了在低密度聚乙烯表面进行氧电容耦合射频等离子刻蚀获得滚动角可控的超疏水表面,通过控制等离子体处理时间、老化温度和老化时间,能够得到高黏附性超疏水表面(接触角:151°,滚动角:表面倾斜90°甚至180°仍然黏附)和低黏附性超疏水表面(接触角:~153°,滚动角:3±0.4°),但等离子刻蚀技术设备价格昂贵,聚合物表面改性的效果会随时间发生明显衰减,且等离子体技术目前主要用于实验室的小规模实验,离规模化生产尚有相当的距离。另外,关于曲面型低密度聚乙烯超疏水容器的绿色、简便、低成本制备方法也未见报道。
[0005] 综上所述,可控滚动角(从水滴几乎无法稳定的超小滚动角到水滴在表面倾转90°或180°也不发生滚动的超大滚动角)的超疏水低密度聚乙烯表面已有报道,但目前的方法存在过程繁琐、难以控制、周期较长、成本较高和环境污染等问题。因此,寻求一种易于工业化生产、绿色环保、低成本、快速的方法来制备滚动角可控的超疏水低密度聚乙烯片材/容器显得尤为重要。发明内容:
[0006] 本发明的目的在于克服现有技术存在的缺点,寻求设计提供滚动角可控的低密度聚乙烯超疏水片材/容器及其制备方法。
[0007] 为了实现上述目的,本发明所述滚动角可控的低密度聚乙烯超疏水片材的厚度为10微米至2厘米,其外观根据厚度和尺寸包含薄膜、片材和块材三种形式;制备滚动角可控的低密度聚乙烯超疏水曲面容器所需片材的厚度为10微米至2厘米,制得的曲面容器高度为0.1~50厘米,开口直径为0.5~100厘米;低密度聚乙烯超疏水片材/容器表面为层压或热压剥离产生的多层次微纳米结构,多层次微纳米结构包括有类环形结构和无类环形结构两种;低密度聚乙烯超疏水片材/容器表面有类环形结构时,类环形结构的直径为0.5~10微米,高度为0.1~20微米;类环形结构周围有带状或齿状变形,带状或齿状变形的长度为
0.5~50微米;类环形结构、带状变形和齿状变形中有直径5~50纳米的纤维状结构,带状变形的表面有直径小于50纳米线状和束状变形;低密度聚乙烯超疏水片材/容器表面无类环状结构时,其表面呈现带状或锯齿状结构,且带有洞穴状结构;低密度聚乙烯超疏水片材/容器表面与水的接触角均大于150°,滚动角大于0°,小于180°;低密度聚乙烯超疏水片材/容器根据制备条件处于超疏水低黏附状态或超疏水高黏附状态。
[0008] 本发明制备滚动角可控的低密度聚乙烯超疏水片材/容器的具体步骤如下:
[0009] (1)压片:在100~165℃温度和1~10Mpa压强下通过平板硫化机将低密度聚乙烯粒料模压成10微米至2厘米的低密度聚乙烯片材;
[0010] (2)叠压:高黏附低密度聚乙烯超疏水表面的叠压条件:设定温度为106~108℃,预热2~5min,保压压力为1~5MPa,保压时间为1~5min,使用平板硫化机在模具中将步骤(1)制得的2~4片低密度聚乙烯片材叠压在一起;低黏附低密度聚乙烯超疏水表面的叠压条件:设定温度为109~165℃,预热2~5min,保压压力为1~5MPa,保压时间为1~5min,使用平板硫化机在模具中将步骤(1)制得的2~4片低密度聚乙烯片材叠压在一起;
[0011] (3)层间剥离:将步骤(2)叠压在一起的低密度聚乙烯片材冷却至室温,用手、铁钳或万能试验机将叠压在一起的低密度聚乙烯片材进行剥离,得到滚动角可控的低密度聚乙烯超疏水片材;将步骤(2)叠压在一起的低密度聚乙烯片材迅速转移至曲面模具上并使其与曲面模具贴合,冷却至室温,用手、铁钳或万能试验机将叠压在一起的低密度聚乙烯片材进行剥离,得到低密度聚乙烯超疏水曲面容器。
[0012] 本发明所述滚动角可控的低密度聚乙烯超疏水片材/容器的制备方法将传统的聚合物加工技术—平板热压技术应用到超疏水表面的制备过程中,不需要隔绝空气或特殊环境,不需要低表面能化学物质的后期修饰,方法简单易行,无需共混其它材料,仅需对塑料粒料进行压片、层压、剥离三步便可完成,无需化学试剂,适合大规模、大批量、大面积制备,不仅能制作平面状超疏水片材,还可制作曲面形超疏水容器。
[0013] 本发明与现有技术相比,具有以下优点:一是仅使用单一聚合物本体材料—低密度聚乙烯,不使用和添加其他任何的材料和化学试剂,绿色环保;二是采用传统的叠压(或层压、热压)工艺制样,辅以手动、铁钳或万能试验机等方式剥离制备聚合物超疏水表面,工艺简单,加工时间短,成本低,所得聚合物表面近乎100%具备超疏水效果,可大规模、低成本生产各种片材或三维立体形状的聚合物超疏水产品;三是能够实现超疏水低黏附与超疏水高黏附聚合物表面的制备,制得的超疏水材料与水的接触角均大于150°,滚动角大于0°小于5°,最大可达90°~180°;其方法简单易行,原理科学,操作简便,制备成本低,环境友好,制备的超疏水片材/容器具有很高的水接触角,并且滚动角可控。附图说明:
[0014] 图1为本发明实施例1中低密度聚乙烯在120℃叠压(层压)条件下剥离后的表面扫描电镜照片和接触角照片(a)以及水滴在倾斜的低密度聚乙烯表面滚动的视频截图(b,滚动角<5°)。
[0015] 图2为本发明实施例2所述低密度聚乙烯在108℃叠压(层压)条件下剥离后的扫描电镜照片(a,右上角为45度拍摄电镜照片)、150°接触角测试照片(b)、水滴在90°垂直的低密度聚乙烯表面的照片(c)以及水滴在倒置的低密度聚乙烯表面的照片(d)。
[0016] 图3为本发明实施例3所述低密度聚乙烯超疏水曲面凹形容器照片(a,容器口直径为4.2cm,高度为0.8cm)以及曲面凹形容器装有5毫升蓝色硫酸铜水溶液的照片(b)。具体实施方式:
[0017] 下面通过实施例并结合附图对本发明作进一步说明。
[0018] 实施例1:
[0019] 本实施例在85*115*2mm的模具中放入低密度聚乙烯粒料20g,用平板硫化机在140℃下将模具预热5min,在保压压力10MPa条件下保压5min,冷却至室温制得低密度聚乙烯片材,然后在85*115*4mm模具中将制得的两片低密度聚乙烯片叠压在放入平板硫化机中,在120℃下预热3min,在5MPa压力下保压为2min,冷却至室温后用手将前面叠压在一起的低密度聚乙烯片材进行剥离,制得低黏附低密度聚乙烯超疏水片材,图1为低密度聚乙烯在120℃叠压(层压)条件下剥离后的扫描电镜照片和接触角(160°)测试照片及水滴在倾斜的低密度聚乙烯表面滚动的视频截图,其滚动角<5°。
[0020] 实施例2:
[0021] 本实施例在85*115*1mm的模具中放入低密度聚乙烯粒料10g,用平板硫化机在120℃下将模具预热5min,在保压压力5MPa条件下保压3min,冷却至室温制得低密度聚乙烯薄片,然后在85*115*2mm模具中将制得的两片低密度聚乙烯薄片叠压在一起放入平板硫化机中,在108℃下预热3min,在5MPa压力下保压3min,冷却至室温后用铁钳将前面叠压在一起的低密度聚乙烯薄片进行剥离,制得高黏附低密度聚乙烯超疏水片材,图2是低密度聚乙烯在108℃叠压(层压)条件下剥离后的表面扫描电镜照片及水滴在表面朝上、90°垂直、倒置的低密度聚乙烯表面的照片。
[0022] 实施例3:
[0023] 本实施例在85*115*1mm的模具中放入低密度聚乙烯粒料10g,用平板硫化机在130℃下将模具预热5min,在保压压力5MPa条件下保压2min,冷却至室温制得低密度聚乙烯薄片,然后在85*115*2mm模具中将制得的两片低密度聚乙烯薄片叠压在一起放入使用平板硫化机中,在125℃下预热3min,在5MPa压力下保压3min,迅速将叠压在一起的片材转移到曲面凹形模具上并使其与曲面型模具贴合,待降到室温后用铁钳将叠压在一起的低密度聚乙烯片材进行剥离,制得低黏附低密度聚乙烯超疏水曲面容器,图3是低密度聚乙烯超疏水曲面凹形容器照片及其装有蓝色硫酸铜水溶液的照片。