栅极驱动欠压检测转让专利

申请号 : CN201510415688.4

文献号 : CN105281552B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈礼华曹东周岩克雷格·罗杰斯

申请人 : 福特全球技术公司

摘要 :

用于逆变器的栅极驱动故障被检测,逆变器包含具有绝缘栅(比如IGBT)的相位开关。互补晶体管对适合于接收供给电压和脉冲宽度调制(PWM)信号以选择地给绝缘栅充电和放电。比较器将绝缘栅处的电压和表示栅极驱动故障的基准电压进行比较,以产生第一逻辑信号。当PWM信号具有对应于给绝缘栅充电的值时,锁存器采样第一逻辑信号。当锁存逻辑信号指示栅极驱动故障时,逻辑电路抑制绝缘栅的充电。小于基准电压的绝缘栅电压表示欠压故障以及IGBT或互补晶体管的其它设备故障。

权利要求 :

1.一种逆变器,包含:

相位开关,其具有绝缘栅;

互补晶体管对,其适合于接收供给电压和PWM信号以选择地给所述绝缘栅充电和放电;

比较器,其将在所述绝缘栅处的电压与表示栅极驱动故障的基准电压进行比较以产生第一逻辑信号;

锁存器,其当所述PWM信号具有对应于给所述绝缘栅充电的值时采样所述第一逻辑信号;

逻辑电路,其当锁存的所述第一逻辑信号指示所述栅极驱动故障时抑制所述绝缘栅的充电;以及第二比较器,用于将所述相位开关两端的电压与表示所述相位开关的导通状态的第二基准电压进行比较,其中所述锁存器在所述导通状态被检测到时通过所述第二比较器触发。

2.根据权利要求1所述的逆变器,其中所述栅极驱动故障是所述供给电压的欠压故障。

3.根据权利要求2所述的逆变器,其中所述基准电压配置为每当所述供给电压小于目标值的90%时指示所述欠压故障。

4.根据权利要求1所述的逆变器,其中所述栅极驱动故障包括所述绝缘栅的绝缘故障和所述互补晶体管对的传导故障。

5.根据权利要求1所述的逆变器,其中所述锁存器通过所述PWM信号的下降沿触发。

6.根据权利要求1所述的逆变器,其中所述锁存器包含D-型触发器。

说明书 :

栅极驱动欠压检测

背景技术

[0001] 本发明总体上涉及用于电气化车辆的逆变器驱动系统,并且,更具体地,涉及检测有关逆变器中相位开关的转换操作的故障。
[0002] 电动车辆(比如混合动力电动车辆(HEV)和插电式混合动力电动车辆(PHEV))使用逆变器驱动的电机来提供牵引扭矩和再生制动扭矩。典型的电驱动系统包括DC电源(比如电池组或燃料电池),DC电源通过接触开关耦接到可变电压转换器(VVC)以调节主链路电容器两端的主总线电压。第一逆变器在主总线和牵引马达之间被连接以推进车辆。第二逆变器在主总线和发电机之间被连接以在制动过程中再生能量来通过VVC给电池再充电。如本文所使用的,电机指的是马达或发电机。
[0003] 逆变器包括在桥式配置中连接的晶体管开关(比如绝缘栅双极晶体管,或IGBT)。电子控制器打开和关闭开关是为了使来自总线的DC(直流)电压转化为应用到马达的AC(交流)电压,或使来自发电机的AC电压转化为在总线上的DC电压。在任一情况下,逆变器响应于包括电机的旋转位置的各种感测的条件而被控制。
[0004] 用于马达的逆变器脉冲宽度调制DC链路电压以传送正弦电流输出的近似值来以期望的速度和扭矩驱动马达。应用于IGBT的栅极的PWM控制信号必要时打开和关闭它们以便产生的电流匹配期望的电流。IGBT和它们的反向恢复二极管具有关联开关损耗,开关损耗必须被最小化是为了限制效率损失和余热产生。
[0005] 一个潜在的栅极驱动的问题涉及具有应用到IGBT的栅极的不足电压(即,欠压故障)。如果栅极驱动电压在打开时不足以完全地使IGBT饱和(sat),则IGBT两端的电压降(vce)和电阻增加,导致功率损失和过热。
[0006] 传统的系统监测供给电压以试图确保足够的电压应用到相位开关来达到饱和。检测欠压故障连同其它类型的故障而不需要复杂或昂贵的电路是可以期望的。

发明内容

[0007] 在本发明的一个方面中,逆变器的栅极驱动故障被检测,逆变器包含具有绝缘栅(比如IGBT)的相位开关。互补晶体管对适合于接收供给电压和PWM信号以选择地给绝缘栅充电和放电。比较器将绝缘栅处的电压和表示栅极驱动故障的基准电压进行比较,以产生第一逻辑信号。当PWM信号具有对应于给绝缘栅充电的值时,锁存器采样第一逻辑信号。当锁存逻辑信号指示栅极驱动故障时,逻辑电路抑制绝缘栅的充电。小于基准电压的绝缘栅电压表示欠压故障以及IGBT或互补晶体管的其它设备故障。
[0008] 根据本发明,提供一种在电气化车辆的逆变器中检测绝缘栅相位开关的栅极驱动故障的方法,包含:
[0009] 将PWM信号耦接到互补晶体管对以在PWM信号的充电和放电阶段期间选择地给相位开关的绝缘栅分别充电和放电;
[0010] 将在绝缘栅处的电压与表示栅极驱动故障的基准电压进行比较以产生第一逻辑信号;
[0011] 在PWM信号的充电阶段期间,锁存第一逻辑信号一次;以及
[0012] 在锁存逻辑信号指示栅极驱动故障之后抑制绝缘栅的充电。
[0013] 根据本发明的一个实施例,其中栅极驱动故障是供给电压的欠压故障,并且其中基准电压配置为每当供给电压小于目标值的90%时指示欠压故障。
[0014] 根据本发明的一个实施例,其中栅极驱动故障包括绝缘栅的绝缘故障和互补晶体管对的传导故障。
[0015] 根据本发明的一个实施例,其中锁存步骤通过PWM信号的下降沿触发。
[0016] 根据本发明的一个实施例,进一步包含步骤:
[0017] 将相位开关两端的电压与表示相位开关的导通状态的第二基准电压进行比较;
[0018] 其中锁存步骤在导通状态被检测到时通过第二比较器触发。
[0019] 根据本发明,提供一种欠压检测器,包含:
[0020] 具有绝缘栅的逆变器相位开关;
[0021] 使用供给电压来给栅极充电和放电的晶体管对;
[0022] 当栅极电压小于基准电压时产生逻辑信号的比较器;
[0023] 用于在栅极的充电过程中采样逻辑信号的锁存器;以及
[0024] 当锁存逻辑信号指示栅极的欠压时抑制栅极的充电的逻辑电路。

附图说明

[0025] 图1是示出具有脉冲宽度调制的逆变器的混合动力电动车辆的一个典型示例的示意性框图;
[0026] 图2是具有欠压检测的传统的电路拓扑;
[0027] 图3是示出了根据本发明的一个实施例用于检测栅极驱动故障的电路;
[0028] 图4更详细地示出了逻辑电路;
[0029] 图5示出了根据本发明的第二实施例用于检测栅极驱动故障的电路。

具体实施方式

[0030] 参照图1,电动车辆驱动系统10包括DC电源11(比如电池组或燃料电池),DC电源11通过接触开关12和13耦接到输入电容器14。开关12和13优选是机械开关,该机械开关具有用于根据驱动系统10的驱动模式选择地将电池11耦接到输入电容器14的打开状态和关闭状态。
[0031] 可变电压转换器(VVC)15将输入电容器14耦接到主电容器16,主电容器16起到例如用于转换器17和19的链路电容器的作用。每个逆变器包括在桥式配置中的多个开关设备。在逆变器17中的开关以期望的方式被切换来驱动马达18。逆变器19被切换以从发电机20中再生能量到主电容器16上。
[0032] 在逆变器17和19中的相位开关设备中的每个优选包含绝缘栅双极晶体管(IGBT)。每个IGBT优选包括反向并联二极管。逆变器17的第一桥臂21包括例如相位开关22。每个IGBT具有耦接到控制器23的各自的控制(即,栅极)端子,控制器23根据逆变器的各种操作模式通过本领域已知的PWM信号来控制开关。
[0033] 图2显示了用于具有典型地用于IGBT开关控制的欠压(UV)检测的IGBT 22的传统栅极驱动电路25。栅极驱动电路25接收来自主控制器23的脉冲宽度调制(PWM)信号并通过互补配对的晶体管26和27放大PWM信号以通过栅极电阻器31选择地给IGBT22的绝缘栅30充电和放电,从而根据各自的PWM信号的充电和放电阶段打开和关闭IGBT 22。栅极驱动电路25包括隔离的电源供给,隔离的电源供给包含如所示连接以提供Vcc线路35和VEE线路36的变压器32和电容器33和34。栅极驱动电压通过监测电路37间接地被监测,监测电路37在比较器38中将在VCC线路35上的供给电压与基准电压Vref进行比较。供给电压VCC被耦接到比较器38的反相输入端和Vref被耦接到同相输入端。基准电压Vref被优选设定为比供给电压的标称值(典型的标称值为15V)小约10%的值。每当VCC低于Vref时,比较器38输出就从低逻辑电平转换到高逻辑电平。逻辑电路39接收PWM信号和比较器38的输出。如果检测到栅极驱动UV故障(即,VCC低于Vref),则逻辑电路39阻断PWM信号以便关闭IGBT。此外,逻辑电路39产生故障输出来将UV故障通知系统控制器。
[0034] 在图2中所示的传统监测电路不能直接地监测IGBT22的栅极开启电压。VCC线路35和绝缘栅30之间的不期望的电压降仍然可以产生未被检测到的UV故障。而且,栅极驱动设备(比如互补晶体管对26/27,电阻器31,或IGBT22本身)的任何其它栅极驱动失常或的故障不能被检测到。例如,栅极30的绝缘故障可能降低栅极电容Cge和降低栅极-发射极电阻Rge(图3),导致未被检测到的IGBT22的较低的电导和较高的Vce(sat)。
[0035] 用于动态地和直接地检测IGBT的导通状态的栅极电压的本发明的第一实施例在图3中示出。栅极驱动电路与图2相同。改进的监测电路40包括具有接收基准电压Vref的同相输入端和直接耦接到绝缘栅30的反相输入端的比较器41。基准电压Vref被再次设定为VCC的目标或标称值的约90%。比较器41的输出被耦接到D-型触发器锁存器42的锁存输入端。触发器42的输出端Q被耦接到逻辑电路43。触发器42的触发或时钟输入被连接以从控制器23中接收PWM信号。
[0036] 触发器锁存器42被设置为通过PWM信号的下降沿触发。因此,比较器41的逻辑电平输出(即,绝缘栅电压和基准电压Vref之间的比较的结果)被采样,并在IGBT 22仍然处于完全导通状态时的Q输出端处保持(因为栅极30在PWM信号的充电阶段处于刚通过互补晶体管26充电的充电状态)。假设供给电压VCC足够接近它的标称电平,并且在驱动电路中没有其他故障(例如,在互补晶体管26和27中的传导故障或晶体管26或27或IGBT 22的其它设备故障),则栅极30处的栅极电压在PWM信号的下降沿处将足够高,以确保来自比较器41的低逻辑输出。否则,来自比较器41的高逻辑电平将被锁存。通过触发器42锁存的任何一个逻辑电平被提供到逻辑电路43,作为表示栅极驱动故障的存在或不存在的锁存逻辑信号。逻辑电路43在高逻辑电平输出从触发器42的Q输出端中被接收的情况下抑制栅极30的充电。
[0037] 图4更详细地示出了逻辑电路43的一实施例。与门44被连接以操作为PWM信号的传输门。来自触发器锁存输出端Q的锁存逻辑信号被提供到与门44的反相输入端。如果锁存逻辑信号具有低逻辑电平(例如,零伏),则PWM信号通过与门44传送到输出线46,然后到互补晶体管对上。当锁存逻辑信号具有高逻辑电平(例如,5伏)时,与门44抑制PWM信号传播到输出46。锁存逻辑信号还提供故障指示信号到主控制器,以指示驱动故障已被检测到和对应的相位开关已被禁用。如图3中所示,控制器23可以包括到触发器42的CLR(限流电阻)输入的连接,以便每当需要恢复IGBT相位开关22的操作(例如,在故障被校正或以其他方式清除之后)时,控制器可以复位触发器42。
[0038] 图5示出了替代实施例,其中监测电路50已被修改来基于IGBT的状态而不是使用PWM信号触发触发器的锁存。比较器41和逻辑电路43以如结合图3所讨论的相同的方式操作。在图5中,集电极-发射极电压VCE用来检测IGBT 22的导通状态的存在。因此,监测电路50包括第二比较器51,第二比较器51具有耦接到IGBT 22的集电极端子52的同相输入端和耦接到第二基准电压Vref2的反相输入端。在IGBT 22的正常关闭到打开的过渡过程中,VCE从DC总线电压(例如,约400V)下降到导通状态饱和电压(例如,大约1.5V)。第二基准电压Vref2被优选设定为比通常预期的饱和电压更大的值(例如,设定Vref2为约5V)。因此,当IGBT 22打开和集电极-发射极电压降到低于Vref2时,触发器42的输出被锁存,对应的逻辑信号表示栅极电压是否是在用于IGBT 22的适当的打开的足够的电平处。
[0039] 上述发明直接地和动态地监测IGBT的实际的导通状态的栅极电压以提供欠压故障检测。此外,其他的栅极驱动组件故障可以被检测到。因此,灾难性的驱动故障和效率损失可以在电动车辆的应用中避免。低成本和低部件计数通过本发明实现,本发明每个开关事件采样绝缘栅电压一次和锁存栅极电压和基准电压之间的比较结果。采样时间在栅极电压在正常条件下被期望具有对应于完全打开相位开关的值(例如,根据PWM信号或响应于集电极电压确定)时出现。