人工心脏瓣膜递送装置转让专利

申请号 : CN201510738752.2

文献号 : CN105287052B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J·刘L·派斯M·J·波普D·埃伦M·贾法里S·德尔加多

申请人 : 爱德华兹生命科学公司

摘要 :

本公开的一些实施方式提供了人工瓣膜(例如,人工心脏瓣膜)和经人脉管系统递送人工瓣膜至天然瓣膜部位的瓣膜递送装置。该递送装置特别适于使人工心脏瓣膜前进通过主动脉(即,以逆行方法),以便替换患病的天然主动脉瓣。具体实施方式中的递送装置被配置来在体内的目标位置上以精确和受控的方式从递送鞘部署人工瓣膜。

权利要求 :

1.一种组件,其包括:

径向可压缩且可扩张的人工瓣膜;

存储管,其包含所述人工瓣膜;和

用于所述人工瓣膜的递送装置,所述递送装置包括递送鞘;

其中所述人工瓣膜可松脱地紧固至所述递送装置,所述人工瓣膜在所述递送鞘远端的远端的位置处装在所述存储管中,所述存储管被制成一定大小,以保持部分压缩状态的所述人工瓣膜,所述递送鞘配置为自所述存储管接收所述部分压缩的人工瓣膜,并将所述人工瓣膜保持在完全压缩状态用于递送入患者。

2.权利要求1所述的组件,其中所述递送鞘的所述远端延伸入所述存储管的近端部分。

3.权利要求1所述的组件,进一步包括无菌包装,其包含所述人工瓣膜、所述存储管和所述递送装置。

4.权利要求3所述的组件,其中所述人工瓣膜包括框架和由所述框架支持的一个或多个小叶,并且所述无菌包装不含任何用于所述小叶的水化流体。

5.权利要求1所述的组件,其中所述递送鞘具有的内径小于所述存储管的内径,并且所述递送鞘被配置为相对于所述人工瓣膜远端移动,其中所述递送鞘的移动对从所述存储管运输所述人工瓣膜进入所述递送鞘和将所述人工瓣膜从所述部分压缩状态压缩至所述完全压缩状态是有效的。

6.权利要求5所述的组件,其中所述存储管包括存储节段和锥形节段,所述存储节段装有所述人工瓣膜,所述锥形节段具有在从所述存储节段朝向所述递送鞘的方向中延伸的减小的直径。

7.权利要求5所述的组件,其中所述存储管具有形成有环状边缘的内表面,并且所述递送鞘的移动使得所述递送鞘的所述远端紧靠所述环状边缘,使得所述人工瓣膜从所述存储管运输到所述递送鞘中。

8.权利要求5所述的组件,其中所述递送装置包括可旋转的扭转轴,其中所述扭转轴的旋转对产生所述递送鞘相对于所述人工瓣膜的移动以将所述人工瓣膜从所述存储管运输到所述递送鞘中是有效的。

9.权利要求1所述的组件,其中所述递送装置包括瓣膜保持机构,并且所述人工瓣膜包括框架,所述框架包括多个保持臂,其可松脱地紧固至所述瓣膜保持机构。

10.一种组件,其包括:

径向可压缩且可扩张的人工瓣膜;

存储管,其包含所述人工瓣膜;和

用于所述人工瓣膜的递送装置,所述递送装置包括递送鞘;

其中所述人工瓣膜可松脱地紧固至所述递送装置,所述人工瓣膜在所述递送鞘远端的远端的位置处装在所述存储管中,所述递送鞘配置为自所述存储管接收所述人工瓣膜,并保持所述人工瓣膜在完全压缩状态用于递送入患者;

其中所述存储管具有形成有环状边缘的内表面,所述递送鞘延伸入所述存储管,以便所述递送鞘的所述远端邻接所述环状边缘,并且所述递送鞘的移动使得所述递送鞘的所述远端紧靠所述环状边缘,使得所述人工瓣膜从所述存储管运输到所述递送鞘中。

11.权利要求10所述的组件,进一步包括无菌包装,其包含所述人工瓣膜、所述存储管和所述递送装置。

12.权利要求11所述的组件,其中所述人工瓣膜包含在基本上干燥状态的所述无菌包装中。

13.权利要求11所述的组件,其中所述人工瓣膜包括框架和由所述框架支持的一个或多个小叶,并且所述无菌包装不含任何用于所述小叶的水化流体。

14.权利要求10所述的组件,其中所述人工瓣膜以部分压缩状态包含在所述存储管中。

说明书 :

人工心脏瓣膜递送装置

[0001] 本申请是分案申请,原申请的申请日为2012年2月27日、申请号为201280020562.1(PCT/US2012/026784)、发明名称为“人工心脏瓣膜递送装置”。

技术领域

[0002] 本发明涉及人工瓣膜(例如,人工心脏瓣膜)和植入人工瓣膜的递送装置的实施方式。

背景技术

[0003] 已经使用人工心脏瓣膜多年以治疗心脏瓣膜疾病。天然心脏瓣膜(诸如主动脉瓣、肺动脉瓣和二尖瓣)在确保充分供应的血液向前流动通过心血管系统中起关键作用。先天、炎性或传染性病症可使这些心脏瓣膜变得不太有效。对瓣膜的这种损害可导致严重的心血管损害或死亡。多年来,这种疾病的明确治疗是外科手术修复或在开心手术期间替换瓣膜,但这种外科手术易产生很多并发症。最近,已经开发了经血管技术,以便利用柔性导管以与开心手术相比更少侵入性的方式引入和植入人工心脏瓣膜。
[0004] 在该技术中,人工瓣膜以卷缩状态安装在柔性导管的末端部分并前进通过患者的血管,直到人工瓣膜到达植入部位。在导管顶端上的人工瓣膜随后在有缺陷的天然瓣膜的部位上诸如通过使其上安装人工瓣膜的球囊充气而扩张至它的功能性尺寸。可选地,人工瓣膜可具有有弹性的、自扩张的支架或框架,当在导管的远端上使它从递送鞘前进时,所述支架或框架扩张人工瓣膜至它的功能尺寸。
[0005] 球囊可扩张的人工瓣膜通常优选用于替换钙化天然瓣膜,因为导管球囊可施加足够的扩张力,以锚固人工瓣膜的框架至周围的钙化组织。在另一方面,自扩张的人工瓣膜有时优选用于替换有缺陷的、非狭窄的(非钙化的)天然瓣膜,尽管它们也可用于替换狭窄的瓣膜。一个与植入自扩张的人工瓣膜相关的缺点是当操作者开始使人工瓣膜从递送鞘的开放端前进时,人工瓣膜趋向于从鞘末端非常迅速地“跳”出;换言之,人工瓣膜框架的向外的偏向力趋向于使人工瓣膜非常迅速地从递送鞘的远端弹出,使得难于以精确和受控的方式从鞘递送人工瓣膜,并增加了患者的损伤风险。
[0006] 与在非狭窄的天然瓣膜中植入经皮的人工瓣膜相关的另一个问题是该人工瓣膜可能不能运用足够的力抵抗周围组织以阻止人工瓣膜的迁移。通常,人工瓣膜的支架必须提供有额外的锚固或附着设备,以有助于锚固人工瓣膜至周围组织。此外,有助于锚固人工瓣膜的支架的这种锚固设备或部分通常延伸入并固定至脉管系统的非患病区域,如果要求未来的干预,例如,如果人工瓣膜需要从患者移除,则其可导致并发症。

发明内容

[0007] 本公开的一些实施方式提供了人工瓣膜(例如,人工心脏瓣膜)和经人脉管系统递送人工瓣膜至天然瓣膜部位的瓣膜递送装置。该递送装置特别适于使人工瓣膜前进通过主动脉(即,以逆行方法),以便替换患病的天然主动脉瓣。具体实施方式中的递送装置被配置来在体内的目标位置上以精确和受控的方式从递送鞘部署人工瓣膜。
[0008] 在一个代表性的实施方式中,植入人工瓣膜的递送装置包括第一细长轴,其具有近端部分和远端部分,和第二细长轴,其延伸通过第一轴并具有近端部分和远端部分。第二轴相对于第一轴是可旋转的,但被固定抵抗相对于第一轴的轴向运动。第二轴的远端部分具有包括外螺纹或沟的外表面。鞘保持环位于第二轴的螺纹或沟上并被固定抵抗相对于第二轴的远端部分的旋转运动。递送鞘被配置来接收和以压缩的递送状态保持人工瓣膜,该递送鞘被连接至鞘保持环。第二轴被配置为相对于第一轴是可旋转的,以便第二轴的旋转使鞘保持环沿螺纹或沟轴向移动,由此相对于第一和第二轴轴向移动鞘,以部署包含在鞘内的人工瓣膜。
[0009] 在一个实施中,第二轴的远端部分包括具有外螺纹的螺丝钉,并且鞘保持环包括具有接合螺丝钉上外螺纹的内螺纹的螺母。在另一个实施中,第二轴的远端部分包括具有外部沟的线圈,并且鞘保持环包括接合线圈上的沟的垫圈。
[0010] 在另一个代表性实施方式中,植入人工瓣膜的递送装置包括第一细长轴,其具有近端部分和远端部分,和第二细长轴,其延伸通过第一轴并具有近端部分和远端部分。第二轴相对于第一轴是可旋转的,但期望被固定抵抗相对于第一轴的轴向运动。第三细长轴延伸通过第二轴并具有近端部分和远端部分。联结至第二轴的递送鞘被配置来接收和以压缩的递送状态保持人工瓣膜。递送装置可进一步包括瓣膜保持机构,所述瓣膜保持机构包括分别在第三轴的远端部分和第一轴的远端部分上的第一和第二部件,第一和第二部件配合以与人工瓣膜的支架形成可松脱的连接。第二轴被配置为相对于第一轴是可旋转的,以便第二轴的旋转使鞘相对于第一、第二和第三轴轴向移动,以部署包含在鞘内的人工瓣膜。当旋转第二轴以轴向移动鞘从而部署人工瓣膜时,瓣膜保持机构防止人工瓣膜相对于第一和第三轴的轴向和旋转运动。

附图说明

[0011] 图1为根据一个实施方式的可用于替换心脏的天然主动脉瓣的人工瓣膜的透视图。
[0012] 图2为图1的人工瓣膜的一部分的透视图,其图解了将两个小叶连接至人工瓣膜的支持框架。
[0013] 图3为图1的人工瓣膜的支持框架的侧立视图。
[0014] 图4为图1的人工瓣膜的支持框架的透视图。
[0015] 图5A为心脏的剖视图,其显示在主动脉瓣环内植入的图1的人工瓣膜。
[0016] 图5B为图5A的放大视图,其图解了在主动脉瓣环内植入的人工瓣膜,为了清楚,显示移除了人工瓣膜的小叶结构。
[0017] 图6为在紧固至支持框架前显示图1的人工瓣膜的小叶结构的透视图。
[0018] 图7为图1的人工瓣膜的剖视图。
[0019] 图8为可用于递送和植入人工瓣膜诸如图1所示的人工瓣膜的递送装置的实施方式的剖视图。图8A-8C为图8的节段的放大剖视图。
[0020] 图9为图8的递送装置的分解图。
[0021] 图10为图8的递送装置的引导导管的侧视图。
[0022] 图11为图10的引导导管的近端部分的透视、分解图。
[0023] 图12为图10的引导导管的远端部分的透视、分解图。
[0024] 图13为图8的递送装置的扭转轴导管的侧视图。
[0025] 图14为图13的扭转轴导管的可旋转螺丝钉的放大侧视图。
[0026] 图15为位于扭转轴的末端上的联结构件的放大透视图。
[0027] 图16为用于图13的扭转轴导管的有螺纹的螺母的放大透视图。
[0028] 图17为图8的递送装置的前端椎体导管的远端部分的放大侧视图。
[0029] 图17A为图17所示的导管的前端椎体的放大的、剖视图。
[0030] 图17B为图8的递送装置的远端部分的放大剖视图,其显示了在递送鞘内保持压缩的状态的人工瓣膜的支架。
[0031] 图18为图8的递送装置的远端部分的放大侧视图,其显示覆盖处于压缩状态人工瓣膜的在递送位置中的递送鞘,用于递送入患者。
[0032] 图19为图8的递送装置的远端部分节段的放大剖视图,其显示了将人工瓣膜的支架紧固至递送装置的瓣膜保持机构。
[0033] 图20为类似于图19的的放大剖视图,其显示了在松脱位置中的瓣膜保持机构的内叉,用于从递送装置松脱人工瓣膜。
[0034] 图21和22为图8的递送装置的远端部分的放大侧视图,其图解了扭转轴的操作,用于从递送鞘部署人工瓣膜。
[0035] 图23-26为可用于操作图8所示的递送装置的扭转轴的电动式递送装置的实施方式的多个视图。
[0036] 图27为可用于操作图8所示的递送装置的扭转轴的可选电动机的透视图。
[0037] 图28A为图10的引导导管轴的远段的放大视图。
[0038] 图28B显示了用于诸如通过激光切割金属管形成图28A所示的轴的部分的切割模式。
[0039] 图29A为根据另一个实施方式的引导导管轴的远段的放大视图。
[0040] 图29B显示了用于诸如通过激光切割金属管形成图29A的轴的切割模式。
[0041] 图30为递送装置的另一个实施方式的远端部分的侧视图。
[0042] 图31为类似于图30的侧视图,其显示了在部分收缩位置中的递送装置的鞘。
[0043] 图32为类似于图30的侧视图,为了图解的目的显示移除了鞘。
[0044] 图33为类似于图32的侧视图,其显示了在弯曲位置中的递送装置的一部分。该图图解了递送装置可沿包括螺丝钉机构的部分展示足够的柔性。
[0045] 图34为根据一个实施方式的图30所示的递送装置手柄部分的透视图。
[0046] 图35为图解了手柄部分内部的透视图。
[0047] 图36为图解从图30的递送装置的鞘部署人工瓣膜的侧视图。
[0048] 图37为图解图30的递送装置的瓣膜保持机构的操作的侧视图。
[0049] 图38为根据一个实施方式的改进的瓣膜保持机构的侧视图。
[0050] 图39为根据另一个实施方式的改进的瓣膜保持机构的侧视图。
[0051] 图40为根据一个实施方式的可用于递送装置的扭转轴的节段的侧视图。
[0052] 图40A为图40所示的扭转轴的节段的放大视图。
[0053] 图41显示了用于诸如通过激光切割金属管形成图40的扭转轴的切割模式。
[0054] 图42-45图解了根据一个实施方式的装载锥和使用装载锥将人工瓣膜装载入递送装置(例如,图8的递送装置)的鞘的方法。
[0055] 图46为装载锥的可选实施方式的透视图。
[0056] 图47-48显示了递送装置的鞘的可选实施方式。
[0057] 图49显示了从图47-48所示的鞘部署人工瓣膜。
[0058] 图50为递送装置的鞘的另一个实施方式的透视图。
[0059] 图51为根据另一个实施方式的用于将人工瓣膜装载入递送鞘的装载锥和柱塞组件的透视图。
[0060] 图52为图51的装载锥的可选实施方式的透视图。
[0061] 图53-57为递送装置的五个额外实施方式的远端部分侧视图。
[0062] 图58A为根据另一个实施方式的导入鞘的透视图。
[0063] 图58B为图58A的导入鞘的套管的放大透视图。
[0064] 图59为可与图58A的导入鞘一起使用的套管的另一个实施方式的放大透视图。
[0065] 图60为可与图58A的导入鞘一起使用的套管的端视图。
[0066] 图61为根据另一个实施方式的导入鞘套管的一段的透视图。
[0067] 图62为用于根据另一个实施方式的导入鞘的金属套管的侧立视图。
[0068] 图63显示了用于形成图61的金属套管的切割模式。
[0069] 图64显示了用于形成图62的金属套管的切割模式。
[0070] 图65显示了类似于图64但具有较窄的孔的切割模式。
[0071] 图66为代替图13所示的螺丝钉和螺母组件可并入扭转轴的金属线线圈和垫圈组件的前立视图。
[0072] 图67为以节段部分地显示的图66的金属线线圈和垫圈组件的侧视图。
[0073] 图68-72为用于人工心脏瓣膜的支架的多种实施方式的扁平视图。
[0074] 图73为根据一个实施方式的用于存储处于部分卷缩状态的人工瓣膜的存储管组件的透视图。
[0075] 图74为图73的存储管组件的分解的透视图。
[0076] 图75为图73的存储管组件的分解的剖视图。
[0077] 图76为根据一个实施方式的可用于将部分卷缩的人工瓣膜转移入存储管的人工瓣膜转移管的侧立视图。
[0078] 图77为图76的转移管的剖视图。
[0079] 图78为可用于连接人工瓣膜至递送装置的附接间隔器设备的透视图。
[0080] 图79为图78的附接间隔器设备的侧立视图。
[0081] 图80为沿图79的线80-80得到的剖视图。
[0082] 图81为根据一个实施方式的可用于紧固人工瓣膜至递送装置的瓣膜附接工具的分解透视图。
[0083] 图82和83为分别显示图81所示的瓣膜附接工具的外壳部分的外侧表面和内侧表面的立视图。
[0084] 图84为根据一个实施方式的适于与图81的附接工具一起使用的瓣膜柱塞的剖视图。
[0085] 图85为图84的瓣膜柱塞的仰视图。
[0086] 图86和87分别为适于与图84的瓣膜柱塞一起使用的保护套管或管的侧视图和剖视图。
[0087] 图88-101为图解用于将人工瓣膜附接至递送装置的示例性方法的多个视图。
[0088] 图89-113为图解用于部分卷缩人工瓣膜以便存储和最终使用的示例性方法的多个视图。
[0089] 发明详述
[0090] 首先参考图1,显示的是根据一个实施方式的人工主动脉心脏瓣膜10。人工瓣膜10包括支持柔性小叶节段14的可扩张的框架构件或支架12。人工瓣膜10径向可压缩至压缩状态,以便递送通过身体至部署部位,并在部署部位上可扩张至图1所示的它的功能性尺寸。在一些实施方式中,人工瓣膜10是自扩张的;即,人工瓣膜当从递送鞘的远端前进时可径向扩张至它的功能性尺寸。以下详细描述了特别适于自扩张人工瓣膜的经皮递送和植入的装置。在其他实施方式中,人工瓣膜可为球囊可扩张的人工瓣膜,其可适于以压缩的状态安装在递送导管的球囊上。人工瓣膜可通过使球囊充气在部署部位上扩张至它的功能性尺寸,如本领域已知的。
[0091] 图解的人工瓣膜10适于在天然主动脉环中部署,尽管它也可用于替换心脏的其他天然瓣膜。此外,人工瓣膜10可适于在体内替换其他瓣膜,诸如静脉瓣。
[0092] 为了图解目的,图3和4显示了没有小叶节段14的支架12。如所示,支架12可由多个纵向延伸的大体正弦形的框架构件或支柱16形成。支柱16以交替弯曲形成并被焊接或以其他方式在从邻近弯曲的顶点形成的节点18上相互紧固,以便形成网孔结构。支柱16可由合适的形状记忆材料制成,诸如已知为镍钛诺的镍钛合金,其允许人工瓣膜被压缩至减少的直径,用于在递送装置(诸如以下描述的)中的递送,并且随后使人工瓣膜当从递送装置部署时在患者的身体内部扩张至它的功能性尺寸。如果人工瓣膜是适于卷缩至递送装置的可充气的球囊上并通过球囊充气扩张至它的功能性尺寸的球囊可扩张的人工瓣膜,则支架12可由合适的延性材料制成,诸如不锈钢。
[0093] 支架12具有流入端26和流出端27。由支柱16形成的网孔结构包括大体圆柱形的“上部”或流出端部分20,向外弯曲或膨胀的中间节段22,和向内弯曲的“下部”或流入端部分24。中间节段22期望被制成一定的尺寸和形状,以延伸进入主动脉根部中的瓦耳萨耳瓦窦,从而在植入后有助于在适当位置上锚固人工瓣膜。如所示,网孔结构沿它的整个长度期望具有弯曲的形状,所述弯曲的形状从流出端部分20至中间节段22直径逐渐增加,随后从中间节段22至流入端部分24上的位置直径逐渐减少,并随后直径逐渐增加,以形成在流入端26上终止的张开的部分。
[0094] 当人工瓣膜处于它的扩张状态时,中间节段22具有直径D1,流入端部分24具有最小直径D2,流入端26具有直径D3,和流出端部分20具有直径D4,其中D2小于D1和D3,D4小于D2。另外,D1和D3期望地大于要植入人工瓣膜的天然瓣环的直径。以该方式,支架12的总体形状有助于保持人工瓣膜在植入部位上。更具体地,并参考图5A和5B,人工瓣膜10可被植入在天然瓣膜内(图解的实施例中为主动脉瓣),以便下部节段24位于主动脉瓣环28内,中间节段
24在主动脉瓣环上方延伸进入瓦耳萨耳瓦氏窦56,并且下部张开端26在主动脉瓣环下面延伸。人工瓣膜10通过抵抗主动脉瓣环28的周围组织以及支架的几何形状的下部节段24的径向向外的力保持在天然瓣膜内。具体地,中间节段24和张开下端26径向向外延伸超过主动脉瓣环28,以更好地对抗人工瓣膜在上下游方向(朝向和远离主动脉)上的轴向移动。取决于天然小叶58的状况,人工瓣膜通常部署在天然瓣环28内,天然小叶58向上折叠并在支架
12的外表面和瓦耳萨耳瓦窦的壁之间压缩,如图5B所描绘的。在一些情况下,可能期望在植入人工瓣膜10前切除小叶58。
[0095] 已知的具有自扩张框架的人工瓣膜通常具有额外的延伸进入并固定至脉管系统的非患病区域的锚固设备或框架部分。因为支架12的形状有助于保持人工瓣膜,不要求额外的锚固设备,并且支架的总长L可被最小化以防止支架上部部分20延伸进入主动脉的非患病区域,或至少最小化上部部分20延伸进入主动脉的非患病区域的程度。如果要求未来的干预,避开患者的脉管系统的非患病区域有助于避免并发症。例如,人工瓣膜可更容易地从患者中移除,因为该支架主要被锚固至天然瓣膜的患病部分。此外,较短的人工瓣膜更容易在主动脉弓周围游移(navigate)。
[0096] 在具体的实施方式中,对于意欲用于22-mm至24-mm瓣环的人工瓣膜,直径D1为大约28mm至大约32mm,30mm为具体实例;直径D2为大约24mm至大约28mm,26mm为具体实例;直径D3为大约28mm至大约32mm,30mm为具体实例;和直径D4为大约24mm至大约28mm,26mm为具体实例。长度L在具体的实施方式中为大约20mm至大约24mm,22mm为具体实例。
[0097] 参考图1,支架12可具有多个有角度地相隔的保持臂或突出,以从支架上部部分20延伸的柱30(图解的实施方式中为三个)的形式。每个保持臂30具有各自的孔32,其被制成一定尺寸以容纳可用于形成人工瓣膜和递送装置之间的可松脱连接的瓣膜保持机构的尖头(以下描述)。在可选实施方式中,如果不使用瓣膜保持机构,则不必提供保持臂30。
[0098] 最好如图6和7所示的,图解的实施方式中的小叶组件14包括三个由柔性材料制成的小叶34a、34b、34c。每个小叶都具有流入端部分60和流出端部分62。小叶可包括任何合适的生物材料(例如,心包组织,诸如牛或马心包)、生物相容的合成材料或其他这样的材料,诸如美国专利申请号6,730,118中描述的,其在此通过引用全文并入。小叶组件14可包括环状增强裙42,其在邻近人工瓣膜的流入端的缝合线44上紧固至小叶34a、34b、34c的流入端部分的外表面。小叶组件14的流入端部分可通过缝合裙42至支架的下部节段24的支柱16紧固至支架12(最好图1所示的)。如图7所示的,小叶组件14可进一步包括内增强条46,其紧固至小叶的流入端部分60的内表面。
[0099] 参考图1和2,小叶组件14的流出端部分可以在小叶34a、34b、34c的三个有角度地相隔的连合附接处紧固至支架12的上部部分。最好如图2所示的,每个连合附接可通过包裹在由两个小叶形成的连合上的一对小叶的邻近上部边缘部分38周围的增强节段36和利用缝合48紧固增强节段36至边缘部分38形成。增强材料和小叶的夹层可然后被紧固至支架12的支柱16,缝合50邻近支架的流出端。小叶因此期望地从流入端26延伸支架的整个长度或基本上整个长度至流出端27。增强节段36增强了小叶对支架的附接,以便在缝合线上最小化应力集中和避免在使用期间屈曲的小叶的部分上的“针孔”。增强节段36、裙42和内增强条46期望地由生物相容的合成材料制成,诸如聚四氟乙烯(PTFE),或编织的织物材料,诸如编织的聚酯(例如,聚对苯二甲酸乙二醇酯)(PET))。
[0100] 图7显示了人工瓣膜10的操作。在心脏舒张期间,小叶34a、34b、34c缩陷以有效关闭人工瓣膜。如所示,支架12的中间节段22的弯曲形状限定了模拟瓦耳萨耳瓦窦的中间节段和小叶之间的空间。因此,当小叶关闭时,进入“窦”的逆流沿小叶的上表面产生血液的湍流,如箭头52所指示的。该湍流有助于清洗小叶和裙42,以最小化血块形成。
[0101] 人工瓣膜10可以逆行方法植入,其中在递送装置的远端上以卷缩状态安装的人工瓣膜经股动脉引入身体并前进通过主动脉弓至心脏,如在美国专利公布号2008/0065011中进一步描述的,其在此通过引用全文并入。
[0102] 图8和9显示了根据一个实施方式的递送装置100,其可用于递送自扩张的人工瓣膜,诸如如上所述的人工瓣膜10,通过患者的脉管系统。递送装置100包括具有细长轴104的第一、最外或主导管102(仅在图10中示出),所述细长轴104的远端被联结至递送鞘106(图18;也被称为递送圆筒)。主导管102的近端被连接至递送装置的手柄。图23-26显示了具有用于操作递送装置的电动机的手柄机构的实施方式。以下详细描述了该手柄机构。在人工瓣膜的递送期间,该手柄可由外科医生用于使递送装置前进和缩回通过患者的脉管系统。
尽管不要求,主导管102可包括引导导管,其被配置来当使它前进通过患者的脉管系统时允许外科医生引导或控制轴104的远侧部的弯曲或屈曲量,诸如以下进一步描述的。引导导管的另一个实施方式在美国专利公布号2008/0065011中描述,其在此通过引用全文并入。
[0103] 最好如图9所示的,递送装置100也包括第二、中间导管108(本文也被称为扭转轴导管),其具有细长轴110(本文也被称为扭转轴)和连接至轴110的远端的细长螺丝钉112。中间导管108的轴110同轴地延伸通过主导管102的轴104。递送装置100也可包括具有细长轴120的第三、前端椎体导管118,和紧固至轴120的远端部分的前端件或前端椎体122。前端件122可具有如所示的锥形外表面,以便无损伤的行走(track)通过患者的脉管系统。前端椎体导管的轴120延伸通过人工瓣膜10(图8-9未示出)和中间导管108的轴110。在图解的结构中,最内轴120被配置来相对于轴104、110是轴向和可旋转地可移动的,并且扭转轴110被配置为相对于轴104、120是可旋转的,从而实现人工瓣膜从递送装置的瓣膜部署和松脱,如以下详细描述的。另外,最内轴120可具有容纳引导金属线的腔,以便可在患者的脉管系统内的引导金属线上使递送装置前进。
[0104] 最好如图10所示的,外导管102可在其近端上包括屈曲控制机构168,以当使它前进通过患者的脉管系统时控制外轴104的远侧部的弯曲或屈曲量,诸如以下进一步描述的。外轴104可包括从屈曲控制机构168延伸的近段166,和包括增加在该位置上的外轴的柔性的带槽金属管的远段126。远段126的远端部分可包括瓣膜保持机构114的外叉130,其被配置来在瓣膜递送期间可松脱地紧固人工瓣膜10至递送装置100,如以下详细描述的。
[0105] 图28A为外轴104的远段126的一部分的放大视图。图28B显示了可用于通过激光切割金属管中的图案形成远段126的切割模式。远段126包括多个相互连接的环形带或链接160,形成带槽金属管。拉线162可位于远段126内部并可从远段126(图10和12)的位置164延伸至屈曲控制机构。拉线162的远端可诸如通过焊接在位置164上紧固至远段126的内表面。
拉线162的近端可可操作地连接至屈曲控制机构168,其被配置来施加和释放张力至拉线,以便控制轴的弯曲,如以下进一步描述的。轴的链接160和邻近链接之间的间隙被制成一定的形状以允许当在拉线162上施加轻拉力时轴弯曲。在图解的实施方式中,最好如图12所示的,远段126被紧固至具有不同构造的近段166(例如,一层或多层的聚合管材)。在图解的实施方式中,近段166从屈曲控制机构168延伸至远段126并且因此构成外轴104的大部分长度。在可选实施方式中,外轴104的整个长度或基本上整个长度可由包括相互连接的链接
160的一个或多个节段的带槽金属管形成。在任何情况下,具有这种构造的主轴的使用可允许递送装置是高度易操纵的,尤其是当与具有图40和41所示的构造的扭转轴结合使用时(以下描述)。
[0106] 可改变链接160的宽度,以沿它的长度改变远段的柔性。例如,带槽管的远端部分内的链接可相对较窄,以在那个位置上增加轴的柔性,同时带槽管的近端部分内的链接可相对更宽,以便该轴在那个位置上相对少柔性。
[0107] 图29A显示了远段的可选实施方式,在126’上指示,其可例如通过激光切割金属管形成。区段126’可包括递送装置(如图12所示的)的外轴的远段,或外轴的基本上整个长度可具有图29A所示的构造。图29B显示了形成区段126’的切割模式。在另一个实施方式中,递送装置可包括复合外轴,其包括用在金属层中的间隙内熔化的聚合外层层压的激光切割的金属管。在一个实例中,复合轴可包括具有图29A和29B的切割模式的激光切割金属管,和在金属管的链接160之间的间隙中熔化的聚合外层。在另一个实例中,复合轴可包括具有图28A和28B的切割模式的激光切割金属管,和在金属管的链接160之间的间隙中熔化的聚合外层。复合轴也可包括在金属管的链接160之间的间隙中熔化的聚合内层。
[0108] 参考图8A和11,屈曲控制机构168可包括装有安装在横杆(rail)192上的滑动螺母188的可旋转的外壳或手柄部分186。防止滑动螺母188在外壳内通过一个或多个杆192旋转,所述杆192中的每一个部分地位于横杆192内的相应的凹处和螺母188的内部上的槽或凹处。拉线162的近端被紧固至螺母188。螺母188具有接合外壳内螺纹的外螺纹。因此,旋转外壳186使螺母188在外壳内以近端或远端方向轴向移动,这取决于外壳旋转的方向。在第一方向(例如,顺时针方向)上旋转外壳,使螺母在近端方向上行进,其施加张力至拉线162,使递送装置的远端弯曲或屈曲。在第二方向(例如,逆时针方向)上旋转外壳,使螺母在远端方向上行进,其缓解了拉线162中的张力和允许递送装置的远端在它自身的弹性下屈曲返回它的屈曲前构造。
[0109] 最好如图13所示的,扭转轴导管108包括以安装在邻近螺丝钉112的扭转轴110的远端部分上的环128(也被称为锚固圆盘)的形式存在的环状突出。环128被紧固至扭转轴110的外表面,以便它不可相对于扭转轴轴向或旋转移动。外轴104的内表面形成有特征诸如槽或凹处,其以这样的方式容纳环128:该环和在外轴104的内表面上的相应特征允许扭转轴110相对于外轴104旋转,但防止扭转轴相对于外轴轴向移动。容纳环128的外轴104上的相应特征可以是向内延伸的形成在远段126上的突出部分,诸如图12中的164所示。在图解的实施方式中(最好如图14所示的),环128为螺丝钉112的整体部分(即,螺丝钉112和环
128为单一部件的部分)。可选地,螺丝钉112和环为单独形成的部件,但两者被固定地紧固至扭转轴110的远端。
[0110] 扭转轴110期望地被配置为相对于递送鞘106是可旋转的,从而实现人工瓣膜10从递送鞘106的增长和受控的前进。为此并根据一个实施方式,递送装置100可包括以安装在螺丝钉112的外螺纹上的有螺纹的螺母150的形式的鞘保持环。最好如图16所示的,螺母150包括接合螺丝钉外螺纹的内螺纹152和轴向延伸腿154。每个腿154具有凸起的远端部分,其延伸进入和/或与鞘106的近端上的开口172形成扣合(snap fit)连接(最好如图18所示的),以便将鞘106紧固至螺母150。如图17B和18图解的,鞘106在人工瓣膜10上延伸并保持人工瓣膜处于径向压缩的状态,直到鞘106由用户收缩,以部署人工瓣膜。
[0111] 最好如图21和22所示的,瓣膜保持机构的外叉130包括多个尖头134,其中的每一个延伸通过螺母的两个邻近的腿154之间限定的区域,以便防止在螺丝钉旋转时螺母相对于螺丝钉112的旋转。如此,扭转轴110(和因此螺丝钉112)的旋转引起螺母150相应的轴向运动。配置螺母150和鞘106之间的连接,以便螺母沿螺丝钉112(在远端或近端方向上)的轴向移动使鞘106在相同的方向上相对于螺丝钉和瓣膜保持机构轴向移动。图21显示了在远端位置上的螺母150,其中鞘106(图21未示出)延伸至人工瓣膜10上并保持人工瓣膜10处于压缩的状态,以便递送。螺母150从远端位置(图21)移动至近端位置(图22)使鞘106在近端方向上移动,由此从鞘106部署人工瓣膜。旋转扭转轴110以实现鞘106的轴向运动可利用电动式机构(诸如图23-26所示和下面描述的)或通过手动转动曲柄或轮子完成(诸如图30-37的实施方式所示,在下面进行描述)。
[0112] 图17显示了紧固至最内轴120远端的前端椎体122的放大视图。图解的实施方式中的前端椎体122包括近端部分174,其被制成一定尺寸,以装配在鞘106的远端内。前端椎体的中间节段176在使用中紧邻近鞘的末端放置,并形成有多个纵向沟或凹入部分178。中间节段176在它的近端180上的直径期望地略微大于鞘106的外径。近端180可保持与鞘106的远端紧密接触,以保护周围组织不与鞘的金属边缘接触。当使递送装置前进通过导入鞘时,沟178允许中间节段被径向压缩。这允许前端椎体相对于导入鞘的内径被制成略微过大的尺寸。图17B显示了递送位置中的前端椎体122和鞘106的横截面,在鞘106内部保持人工瓣膜处于压缩的递送状态(为了图解的目的,仅显示人工瓣膜的支架12)。如所示,中间节段176的近端180可邻接鞘106的远端和前端椎体的锥形邻接面182可在支架12的远侧部内延伸。
[0113] 如以上所述的,递送装置100可包括瓣膜保持机构114(图8B),用于可松脱地保持人工瓣膜的支架12。瓣膜保持机构114可包括以外叉130的形式的第一瓣膜紧固部件(最好如图12所示的)(也被称为“外三叉(trident)”或“松脱三叉”),和以内叉132的形式的第二瓣膜紧固部件(最好如图17所示的)(也被称为“内三叉”或“闭锁三叉”)。外叉130与内叉132配合,以与支架12的保持臂30形成可松脱地连接。
[0114] 外叉130的近端被连接至外轴104的远段126,和外叉的远端被可松脱地连接至支架12。在图解的实施方式中,外叉130和远段126可被整体形成为单一部件(例如,外叉和远段可被激光切割或以其他方式由金属管材的单一件进行机器加工),尽管这些部件可被分别形成并随后相互连接。内叉132可被安装在前端导管轴120上(最好如图17所示的)。内叉132连接支架至前端导管轴120的远端部分。前端导管轴120可相对于外轴104轴向移动,以从瓣膜保持机构上松脱人工瓣膜,如以下进一步描述的。
[0115] 最好如图12所示的,外叉130包括多个相应于支架12的保持臂30的有角度地相隔的尖头134(图解的实施方式中为三个),其尖头从远段126的远端上延伸。每个尖头134的远端部分包括各自的开口140。最好如图17所示的,内叉132包括多个相应于支架12的保持臂30的有角度地相隔的尖头136(图解的实施方式中为三个),其尖头从在内叉近端上的底座部分138上延伸。内叉的底座部分138被固定地紧固至前端导管轴120(例如,以合适的粘合剂),以防止内叉相对于前端导管轴120的轴向和旋转运动。
[0116] 外叉的每个尖头与内叉相应的尖头配合,以与支架的保持臂30形成可松脱的连接。在图解的实施方式中,例如,每个尖头134的远端部分形成有开口140。当人工瓣膜被紧固至递送装置时(最好如图19所示的),支架12的每个保持臂30向内延伸通过外叉的尖头134的开口140并且内叉的尖头136被插入通过保持臂30的开口32,以使保持臂30保持不退出开口140。图42也显示了在人工瓣膜被装入鞘106前,通过内叉和外叉紧固至递送装置的人工瓣膜10。近端缩回内尖头136(在图20中的箭头184的方向上)以从开口32移除尖头对从保持机构松脱人工瓣膜10是有效的。当内叉132被移动至近端位置时(图20),支架的保持臂
30可在支架的弹性下从外叉130中的开口140径向向外移动。以该方式,瓣膜保持机构114与人工瓣膜形成可松脱的连接,所述连接足够紧固以相对于递送装置保持人工瓣膜,从而允许用户在人工瓣膜从递送鞘部署后细微调整或调节人工瓣膜的位置。当人工瓣膜位于期望的植入部位时,人工瓣膜和保持机构之间的连接可通过相对于外轴104缩回前端导管轴120松脱(其相对于外叉130缩回内叉132)。
[0117] 压缩和装载人工瓣膜10进入鞘106的技术在下面进行描述。一旦人工瓣膜10被装入递送鞘106,则递送装置100可被插入患者的身体,以便递送人工瓣膜。在一个方法中,人工瓣膜可以逆行性程序递送,其中递送装置被插入股动脉和前进通过患者的脉管系统到达心脏。在插入递送装置前,导入鞘可被插入股动脉,随后是引导金属线,其前进通过患者的脉管系统,通过主动脉并进入左心室。递送装置100可随后通过导入鞘插入并在引导金属线上前进,直到包含人工瓣膜10的递送装置的远端部分前进至邻近天然主动脉瓣或位于天然主动脉瓣内的位置。
[0118] 此后,人工瓣膜10可通过相对于外轴104旋转扭转轴110从递送装置100部署。如以下描述的,扭转轴110的近端可被可操作地连接至允许外科医生实现扭转轴110相对于外轴104的旋转的手动可旋转的手柄部分或电动式机构。扭转轴110和螺丝钉112的旋转使螺母
150和鞘106在近端方向上朝向外轴移动(图22),其从鞘上部署人工瓣膜。当人工瓣膜从递送鞘的开放远端前进并开始扩张时,扭转轴110的旋转使鞘相对于人工瓣膜以精确和受控的方式移动。因此,不像已知的递送装置,当人工瓣膜开始从递送鞘前进并扩张时,保持人工瓣膜对抗来自由人工瓣膜对抗鞘的远端的扩张力而引起的鞘的不受控的移动。另外,当鞘106被收缩时,由于瓣膜保持机构114,人工瓣膜10相对于内轴120和外轴104的末端保持在静止位置上。如此,当鞘被收缩时,人工瓣膜10可相对于体内的目标位置保持静止。此外,在使人工瓣膜从鞘部分前进后,可期望将人工瓣膜缩回进入鞘,例如,重新放置人工瓣膜或从身体中整个收回人工瓣膜。部分部署的人工瓣膜可通过反转扭转轴的旋转收缩返回到鞘中,其使鞘106在远端方向上,在人工瓣膜上移动回去。
[0119] 在已知的递送设备中,外科医生必须施加推拉力至轴和/或鞘以拔出人工瓣膜。因此难以传送力至设备的远端而不扭曲轴(例如,轴向压缩或拉伸轴),其又在拔出过程期间引起人工瓣膜不受控的移动。为了减轻该作用,轴和/或鞘可制造得更刚硬,其是不期望的,因为设备变得更难操纵通过脉管系统。相比之下,上述拔出人工瓣膜的方式消除了在轴上的推拉力的施加,如已知设备要求的,以便相对高和精确的力可被施加至轴的远端,而不损害设备的柔性。在一些实施方式中,多达20lbs.的力可被传送至扭转轴的末端,而不不利地影响拔出过程。相比之下,利用推拉机构的现有技术设备在拔出过程中通常不可超过大约5lbs.的力。
[0120] 在使人工瓣膜10从递送鞘前进并扩张至它的功能性尺寸(紧固至递送装置的扩张的人工瓣膜10在图42中进行描述)后,人工瓣膜保持经保持机构114连接至递送装置。因此,在使人工瓣膜从递送鞘前进后,外科医生可相对于天然瓣膜中期望的植入位置重新放置人工瓣膜,诸如通过在近端和远端方向上或从一边到另一边移动递送装置,或旋转递送装置,这引起人工瓣膜的相应的移动。保持机构114期望地提供在人工瓣膜和递送装置之间的连接,所述连接足够紧固和刚硬,以当相对于天然瓣膜中期望的植入位置调节人工瓣膜的位置时,保持人工瓣膜相对于递送装置的位置,抵抗血液流动。一旦外科医生在天然瓣膜中期望的植入位置上放置人工瓣膜,则人工瓣膜和递送装置之间的连接可通过相对于外轴104在近端方向上缩回最内轴120松脱,其有效缩回内叉132,以从人工瓣膜的保持臂30上的开口32收回它的尖头136(图20)。略微缩回外轴104允许外叉130退出人工瓣膜的保持臂30,其向外滑动通过外叉中的开口140,以完全将人工瓣膜从保持机构114上分离。此后,递送装置可从身体收回,留下人工主动脉瓣10植入在天然瓣膜内(诸如图5A和5B所示的)。
[0121] 递送装置100在它的远端上具有半刚硬区段,其由用于将扭转轴的旋转转变成鞘的轴向运动的相对刚硬的部件组成。特别地,该半刚硬区段在图解的实施方式中由人工瓣膜和螺丝钉112组成。递送装置100的优点是半刚硬区段的总体长度是最小化的,因为用于影响鞘的转换的是螺母150而不是外轴上的内螺纹。减少长度的半刚硬区段沿递送导管的远端部分增加了总体柔性。此外,半刚硬区段的长度和位置保持恒定,因为扭转轴不相对于外轴轴向转换。如此,在瓣膜部署期间可保持递送导管的弯曲的形状,其改善了部署的稳定性。递送装置100的进一步益处是环128防止轴向负载(压缩和张力)转移至环末端的扭转轴110的节段。
[0122] 在可选实施方式中,递送装置可适于递送球囊可扩张的人工瓣膜。如上所述,瓣膜保持机构114可用于紧固人工瓣膜至递送装置的末端。因为人工瓣膜的支架不是自扩张的,所以鞘106可为任选的。保持机构114提高了递送装置和人工瓣膜组件通过导入鞘的可推性。
[0123] 图23-26图解了根据一个实施方式的递送装置100的近端部分。递送装置100可包括手柄202,其被配置为可松脱地连接至包括导管102、108、118的导管组件204的近端部分。因多种原因可期望将手柄202从导管组件204上分离。例如,分离手柄可允许另一个设备在导管组件上滑动,诸如瓣膜取回设备或辅助操纵导管组件的设备。应当注意,手柄202和导管组件204的任何特征都可在本文公开的递送装置的任何实施方式中实施。
[0124] 图23和24显示了被部分插入手柄202的远端开口的导管组件204的近端部分。主轴104的近端部分形成有环状沟212(最好如图24所示的),其与手柄内的支撑机构或闭锁机构
214配合。当导管组件的近端部分被完全插入手柄时,如图25和26所示的,支撑机构214的接合部分216至少部分延伸进入沟212。支撑机构214的一侧被连接至延伸穿过手柄外壳的按钮218。支撑机构214的相反侧由将支撑机构偏斜至在沟212上接合主轴104的位置的弹簧
220接触。沟212内的支撑机构214的接合防止导管组件从手柄上轴向脱离。导管组件可通过压下按钮218从手柄松脱,其利用主轴移动支撑机构214离开闭锁接合。此外,主轴104可在沟212内形成有平坦表面部分。平坦表面部分位于紧靠接合部分216的相应平坦表面部分。
当扭转轴在瓣膜部署期间旋转时,该接合保持主轴104相对于扭转轴110静止。
[0125] 扭转轴110的近端部分可具有从动螺母222(图26),其可滑动地容纳在安装在手柄内部的驱动圆筒224(图25)中。螺母222可通过紧固联结构件170(图15)上的螺母222紧固至扭转轴100的近端。图26为手柄202内部的透视图,移除了驱动圆筒和其他部件,以显示位于驱动圆筒内的从动螺母和其他部件。圆筒224具有延伸圆筒长度的透过开口(或腔),其被制成一定形状,以相应于螺母222的扁平,以便驱动圆筒的旋转有效旋转螺母222和扭转轴110。驱动圆筒可具有可装有一个或多个密封件(例如,O形环246)的放大的远端部分236,所述密封件与主轴104(图25)的外表面形成密封。手柄也可容纳配件238,其具有与扭转轴的腔和/或主轴的腔联通的冲洗孔(flush port)。
[0126] 驱动圆筒224通过齿轮228和230被可操作地连接至电动机226。手柄也可装有包含向电动机226提供动力的电池的电池隔室232。电动机单向旋转使扭转轴110旋转,其又使鞘106在导管组件的远端上缩回和露出人工瓣膜。电动机在相反方向上的旋转使扭转轴在相反方向上旋转,其使鞘在人工瓣膜上移动返回。手柄上的操作员按钮234允许用户起动电动机,其可在任一方向旋转,以拔出人工瓣膜或取回扩张或部分扩张的人工瓣膜。
[0127] 如上所述,前端导管轴120的远端部分可被紧固至相对于外叉130移动的内叉132,以松脱紧固至递送装置末端的人工瓣膜。轴120相对于主轴104(其紧固外叉130)的移动可由相对于主外壳244可滑动的手柄的近端部分240实现。末端部分240可操作地连接至轴120,以便末端部分240的移动对轴120相对于主轴104的轴向转换是有效的(使人工瓣膜从内叉和外叉上松脱)。末端部分240可在手柄的相对侧上具有柔性侧板242,其在锁定位置上通常向外偏向,以相对于主外壳244保持末端部分。在人工瓣膜的部署期间,用户可压下侧板242,其从外壳中相应的特征上分离,并允许末端部分240在近端上相对于主外壳拉动,其引起轴120相对于主轴的相应的轴向运动。轴120的近端移动使内叉132的尖头136从支架12的孔32中分离,其又允许支架的保持臂30从外叉130的尖头134中的开口140径向向外偏离,由此松脱人工瓣膜。
[0128] 图27显示了可用于驱动扭转轴(例如,扭转轴110)的电动机的可选实施方式,其在400处指示。在该实施方式中,导管组件可被直接连接至电动机的轴402的一端,而不用传动装置。轴402包括允许导管组件的最内轴(例如,轴120)、引导金属线和/或用于冲洗导管组件的腔的液体穿过的腔。
[0129] 可选地,旋转扭转轴110的动力源可为被配置来旋转扭转轴的液压动力源(例如,液压泵)或气动的(空气操作的)动力源。在另一个实施方式中,手柄可具有可操作以旋转扭转轴110的可手动移动的杠杆或轮子。
[0130] 在另一个实施方式中,动力源(例如,电的、液压的或气动的动力源)可以可操作地连接至轴,其又连接至人工瓣膜10。该动力源被配置来在远端方向上相对于瓣膜鞘以精确和受控的方式使轴纵向往复,以使人工瓣膜从鞘前进。可选地,该动力源可可操作地连接至鞘,以便在近端方向上相对于人工瓣膜使鞘纵向往复,从而从鞘部署人工瓣膜。
[0131] 根据另一个实施方式,图30-37图解了递送装置300。图30-33显示了递送装置300的远端部分。图34-35显示了递送装置300的近端部分。图36-37显示了人工瓣膜10从递送装置300上的部署(在图中为了清楚,移除了人工瓣膜的小叶)。
[0132] 递送装置300包括具有在装置远端上的瓣膜保持机构306(图32和33)和在装置近端上的手柄部分308(图34和35)之间延伸的细长轴304的第一、外导管302。主导管轴304的远端被联结至瓣膜保持机构306,其又被紧固至人工瓣膜10。外导管302可为引导导管,其被配置来允许轴304的一部分的选择性弯曲或屈曲,以便于递送装置前进通过患者的脉管系统。
[0133] 该递送装置也包括具有延伸通过主导管轴304的细长扭转轴312的第二、扭转导管310。扭转轴304的远端被连接至包括柔性轴316的柔性螺丝钉机构314,所述柔性轴316延伸通过保持机构306和沿轴316(图32和33)的长度相隔的一个或多个螺丝钉构件318。如图33所示的,螺丝钉机构314的轴316展示了足够的柔性,以允许弯曲或屈曲,从而有助于递送装置行走通过患者的脉管系统。主导管轴304可形成有接合螺丝钉构件318的外螺纹的内螺纹。例如,主轴304的远端部分(例如,在轴304的远端上的11mm区段)可形成有内螺纹。扭转轴312的近端部分延伸进入手柄部分308,其中它被联结至控制旋钮320,从而允许扭转轴相对于主导管轴304(图34和35)的旋转,如以下进一步描述的。
[0134] 在操作中,每个螺丝钉构件318穿过并接合主轴304内部有螺纹的部分。螺丝钉构件318期望地是相互相隔的,以便螺丝钉构件318可接合主轴304的内部有螺纹的部分的一端,然后当螺丝钉构件穿过内部有螺纹的部分时,邻近的螺丝钉构件318与主轴的内部有螺纹的部分的另一端分离,以便防止或至少最小化扭转轴上轴向指向的力的施加。以该方式,相对高的拔出力可被施加至鞘,而不损害递送装置的总体柔性。
[0135] 递送装置也可包括具有细长轴326的第三、前端导管324,所述细长轴326在它的远端上连接至前端件328。前端导管轴326延伸通过扭转轴312并具有从手柄部分308的近端向外延伸的近端部分(图34和35)。主导管轴30、扭转轴312和前端导管轴326期望地被配置为相对于彼此是轴向可移动的。
[0136] 如图30和31所示的,递送装置可进一步包括在压缩的人工瓣膜10上延伸的可移动的鞘322。鞘322被连接至螺丝钉机构314,以便扭转轴312和螺丝钉机构314的纵向移动引起鞘322的相应的纵向移动。例如,鞘可具有向内延伸的尖头358(图31),其延伸进入指状物(finger)362的各自的孔360(图32),其又被连接至柔性轴316的远端。指状物362期望地通过回转接头连接至轴316,当轴316分别在远端或近端上移动时,所述回转接头推动或拉动指状物362,而且允许轴316相对于指状物362旋转。因此,扭转轴312和螺丝钉机构314相对于主轴304的旋转有效的使鞘322在近端和远端方向上相对于人工瓣膜移动(如图30中的双头箭头330所指示),以允许人工瓣膜从鞘受控的部署,如以下进一步描述的。
[0137] 参考图32和33,瓣膜保持机构306包括外叉330和内叉332。指状物362的部分在图33中切除以显示内叉332。外叉330包括头部334和多个从头部334延伸的细长、柔性尖头336(图解的实施方式中为三个)。头部334可形成有弹性的保持凸缘338,以允许外叉与主导管轴304的阶梯式轴部分形成扣合连接,如上所述。内叉332具有固定地紧固至前端导管轴326的头部340和多个从头部340延伸的细长尖头342。外叉的尖头336的远端部分可形成有孔
344,其被制成一定尺寸以容纳人工瓣膜10的各自的保持臂30。内叉332的尖头342的远端延伸通过保持臂30中的孔32,以形成可松脱的连接,用于紧固人工瓣膜10,类似于上述瓣膜保持机构114并如图19-20所示的。在人工瓣膜从鞘322部署后,人工瓣膜和保持机构306之间的连接可通过相对于主导管轴304缩回前端导管轴326松脱,以从保持臂30中的孔32收回尖头342。外尖头336和螺丝钉机构314的轴316展示了足够的柔性,以当使递送装置前进通过患者的脉管系统到达植入部位时允许递送装置的部分弯曲或屈曲,然而其足够刚硬,以允许在人工瓣膜从鞘322部署后重新放置人工瓣膜。外叉330,包括尖头336,可由提供期望柔性的多种合适的材料中的任一种制造,诸如金属(例如,不锈钢)或聚合物。
[0138] 参考图34和35,手柄部分308包括装有第一齿轮348和第二齿轮350的外壳346。第一齿轮348具有轴,其延伸通过外壳并被连接至位于外壳的外部上的控制旋钮320。第二齿轮350位于扭转轴312上并固定地紧固至扭转轴312。因此,控制旋钮320的手动旋转引起第一齿轮348的旋转,其又旋转第二齿轮350。第二齿轮350相对于主导管轴304、瓣膜保持机构306和人工瓣膜10旋转扭转轴312和螺丝钉机构314。扭转轴312和螺丝钉机构314的旋转又引起鞘322相对于人工瓣膜的线性移动。
[0139] 在使用中,人工瓣膜10以径向压缩的状态装入鞘322(如图30所描述的),其可例如通过使用下面描述的装载锥之一完成。递送装置300随后被插入患者的脉管系统并前进至处于或邻近植入部位的位置。人工瓣膜10可随后通过旋转手柄部分上的旋钮320从鞘部署,其又使扭转轴312和螺丝钉机构316在主轴304内缩回,使鞘322在近端方向(图31中的箭头352)上移动以暴露人工瓣膜,如图31所描绘的。旋钮320的旋转使在瓣膜部署期间鞘322的受控和精确缩回得以实现。有利地,收缩鞘,同时人工瓣膜的位置在拔出过程期间可相对于植入部位上的瓣环保持恒定。旋钮在相反方向上的旋转使鞘在远端方向上移动,以再次覆盖人工瓣膜。因此,在使人工瓣膜已经至少部分从鞘前进时,如果在身体内重新放置递送装置或从身体完全收回递送装置和人工瓣膜变得有必要,有可能反转旋钮的旋转以促使人工瓣膜以压缩的状态返回鞘。
[0140] 在人工瓣膜10从递送鞘前进并扩张至它的功能性尺寸后(如图36所示的),人工瓣膜保持经保持机构306连接至递送装置。因此,在人工瓣膜从递送鞘前进后,外科医生可相对于天然瓣膜中期望的植入位置重新放置人工瓣膜,诸如通过在近端和远端方向上或从一边到另一边移动递送装置,或旋转递送装置,这引起人工瓣膜的相应的移动。保持机构306期望地提供人工瓣膜和递送装置之间的连接,所述连接足够紧固和刚硬,以当相对于天然瓣膜中期望的植入位置调节人工瓣膜的位置时,保持人工瓣膜相对于递送装置的位置,抵抗血液流动。一旦外科医生在天然瓣膜中期望的植入位置上放置人工瓣膜,则外科医生可通过在近端方向(如图34中的箭头356所指示的)上相对于主导管轴304拉动前端导管轴326的近端354松脱人工瓣膜和递送装置之间的连接,其有效缩回内叉332从而从人工瓣膜的保持臂30上的开口32收回它的尖头342(图37)。主导管轴304的缩回使外叉330缩回,以从保持机构306上完全分离人工瓣膜(如图37所示的)。此后,保持机构可被收回进入鞘322,递送装置可从身体撤回,留下植入在天然瓣膜内的人工瓣膜(诸如图5A和5B所示的)。
[0141] 因为外叉130的尖头134(和外叉330的尖头336)相对长并增加了以上讨论的半刚硬区段的刚性,所以期望尽可能薄地形成尖头134。然而,相对较薄的尖头虽然更柔性,但如果它们受到压缩和弯曲负荷,仍可能更易于缩塌。为了最大化尖头的柔性同时在装载期间保持功能性,外叉的尖头可为向内或向外预弯曲的。例如,图38显示了外叉500的例子,其具有类似于外叉130的构造,除了前者在尖头的大约中部上具有多个预弯曲径向向内朝向扭转轴的尖头502。因此,在压缩负荷下尖头可以受控的方式向内弯曲并由扭转轴和/或螺丝钉(其延伸通过外叉)支持,以保持尖头的柱强度。图39显示了具有多个径向向外预弯曲的尖头602的外叉600的另一个实施方式。可为覆盖人工瓣膜的鞘106的近端延伸的外鞘(未示出)可在尖头602上延伸。在压缩负荷下,尖头602可向外弯曲并接触鞘以保持柱强度。
[0142] 图40根据另一个实施方式显示了扭转轴700(由于它的构造类似于项链,也被称为“项链”轴),其可用于本文公开的任一递送装置中。如所示,扭转轴700包括一个或多个节段701,所述节段701包括相互串联连接的多个环状金属链接702。每个链接702包括大体环形的带,其具有交互的远端延伸的腿704和近端延伸的腿706。在邻近的腿之间的间隙形成容纳空间,用于容纳邻近链接的腿。在图解的实施方式中,每个腿704、706和容纳空间具有大体梯形的形状,尽管可使用其他形状。邻近链接之间的连接允许扭转轴在任何方向上弯曲并允许扭转力沿轴的长度传送。图41显示了用于形成扭转轴的链接的切割模式。轴可通过激光切割金属管中的链接形成。柱切割蚀刻可用于使邻近腿704、706之间的间隙变宽,以获得轴的期望的柔性。
[0143] 在图40所示的实施方式中,扭转轴700包括由多个相互连接的链接组成的远段701a和近段701b。图解的轴700也包括中间节段710,所述中间节段710包括以激光切割或以其他方式形成在轴中的多个槽或间隙,类似于外轴104的远段126。应当理解,扭转轴的整个长度或基本上整个长度(从手柄至螺丝钉112)可由多个相互连接的链接702形成。在可选实施方式中,扭转轴的所选部分可由相互连接的金属链接形成,所述金属链接被连接至由一个或多个聚合层组成的扭转轴的部分。
[0144] 现在转至图42,显示的是经包括外叉130和内叉132的瓣膜保持机构紧固至导管组件的远端的人工瓣膜10。有螺纹的螺母150可见位于外叉130的尖头之间。人工瓣膜10准备被压缩并装入递送装置的鞘106。图43-45图解了装载锥的一个实施方式,在800指示,以及利用装载锥800将人工瓣膜10装入鞘106的方法。
[0145] 如所示,装载锥800在图解的实施方式中具有锥形第一节段802、细长的圆柱形的第二节段804、相对短的锥形第三节段806和细长的锥形第四节段808。第一节段限定了装载锥的入口开口,而第四节段限定了装载锥的出口开口。第四节段808可形成有多个轴向缝隙,其限定了在装载锥的出口开口上的柔性腿810。
[0146] 在使用中,导管组件的近端被插入入口开口并被拉动通过装载锥的出口开口,以便在第一节段802中部分放置人工瓣膜,如图43所描述的。随后进一步拉动导管组件,以拉动人工瓣膜进入第二节段804,从而部分压缩人工瓣膜。在这点上,用户可视觉检查瓣膜小叶、瓣膜裙、瓣膜保持机构和其他部件,并在最终压缩人工瓣膜前进行任何调整。例如,用户可去除瓣膜小叶或裙中的任何折叠,以当完全压缩人工瓣膜并确保以均匀和可预测的方式进一步压缩人工瓣膜时,最小化对这些部件的损害。
[0147] 在进行任何调节后,人工瓣膜可被拉动通过第三节段806进入第四节段808,其压缩人工瓣膜接近它的最终压缩的尺寸,直到从装载锥的出口向外拉动有螺纹的螺母150,如图44所描绘的。当螺母150被拉动通过装载锥的出口时,柔性腿810可扩张。第三节段806用作过渡区,其便于人工瓣膜从第二节段移动进入第四节段。在这点上,鞘106(位于圆锥800外部并到达图中螺母150的左边)可通过在螺母上滑动鞘直到螺母的凸起的腿部分154扣入鞘106中相应的开口172连接至有螺纹的螺母150。如图45所示的,环814可随后在装载锥的出口上被放置在腿810上,以当人工瓣膜被拉出装载锥并拉入鞘时,确保出口的直径保持略微小于鞘106的内径。最终,鞘106的远端可紧靠装载锥的出口放置,并且完全压缩的人工瓣膜可被拉入鞘。
[0148] 图46显示了装载锥的另一个实施方式,在900指示。装载锥900类似于装载锥800,但在装载锥的不同节段之间具有更多逐渐的过渡。
[0149] 图47和48显示了鞘的可选实施方式,在1000指示。鞘1000可具有类似于先前描述的鞘106的构造,除了鞘1000在它的远端上具有多个在圆周上相隔的、柔性襟状物1002。襟状物1002期望地是向内偏向的(如图48所示的),并且当人工瓣膜被部署通过鞘的远端开口时可径向向外扩张(图49)。图48显示了邻接前端椎体122的末端的鞘1000的远端,用于递送通过患者的脉管系统。在该实施方式中的前端椎体122在它的近端上可具有增强环1004。当使递送导管前进通过患者的脉管系统时,襟状物1002用作鞘的末端和前端椎体之间的防损伤的过渡区,以帮助防止对周围组织的损害,所述损害否则可能由于与鞘的远端的接触发生。
[0150] 图50显示了递送鞘的另一个实施方式,在1100指示。鞘1100包括柔性聚合套管1102而不是具有远端襟状物,所述柔性聚合套管1102被结合至外部的、圆柱形的金属管
1104的内表面并从金属管1104的远端向外延伸。套管1102可由聚对苯二甲酸乙二醇酯(PET)或相似的聚合材料制成。套管1102用作在鞘和前端椎体之间的防损伤的过渡,其保护周围组织不接触鞘的金属边缘。同时,因为套管1102防止人工瓣膜和鞘的远端边缘之间的直接接触,所以套管1102减少了人工瓣膜上的滑动摩擦。结果,在人工瓣膜从鞘部署后,需要显著更小的力取回人工瓣膜(即,在它在患者中部署后在人工瓣膜上使鞘滑动返回所需的力)。在一些情况下,可能有必要重新拉动(re-track)递送装置的远端,以便合适放置瓣膜,其可涉及从患病的瓣膜收回递送装置的远端(例如,收回远端返回进入主动脉)和随后使递送装置前进返回进入患病的瓣膜。套管1102保护周围组织不接触鞘的金属边缘,特别是当再次穿过患病的瓣膜时。
[0151] 图51根据另一个实施方式显示了用于将人工瓣膜装入递送装置的鞘的装载锥和柱塞组件。组件包括装载锥1200和包括细长轴1204和手柄1206的柱塞1202。装载锥1200在图解的实施方式中包括限定装载锥的入口的锥形第一节段1208、圆柱形的第二节段1210、锥形第三节段1212和限定装载锥的出口的圆柱形的第四节段1214。在可选实施方式中(图52),装载锥不具有第四节段1214,并且在锥形第三节段1212的末端提供出口开口。
[0152] 轴1204具有略微小于第二节段1210的内径的直径,以允许轴容易滑动进入第二节段。同时,该轴被制成一定尺寸,以便当支架在装载锥的第二节段1210内处于部分压缩的状态时,它的外径等于瓣膜支架12的直径。轴1204的远端在它的外表面上形成有多个适于当支架被部分压缩时在它的流入端26上容纳支架的尖端的在圆周上相隔的凹处1216。位于装载锥的内表面上的是多个在圆周上相隔的肋条1218,其可部分沿第一节段1208的内表面延伸和部分沿第二节段1210的内表面延伸。当迫使支架进入第二节段1210时,肋条1218适于部分延伸进入支架12的小室。以该方式,肋条1218可防止人工瓣膜的小叶或裙当在装载锥内部被压缩时向外伸出通过支架的小室,并因此保护小叶和裙不被支架的金属支柱16夹住。
[0153] 在使用中,人工瓣膜(例如,人工瓣膜10)被安装在导管组件上,其近端被拉动通过装载锥以在第一节段1208中放置人工瓣膜。人工瓣膜随后被拉入第二节段1210以部分压缩人工瓣膜。一旦人工瓣膜被部分压缩,柱塞可用于协助进一步前进通过人工瓣膜,通过装载锥。特别地,柱塞轴的末端与人工瓣膜轴向对齐,并且支架的尖端位于凹处1216中。当人工瓣膜被拉动通过第四节段1214和进入递送鞘106时(例如,通过在远离装载锥的方向上拉动导管组件),人工瓣膜可利用柱塞被同时推动通过装载锥。
[0154] 如以上所述的,递送装置可具有电动式手柄以实现递送鞘相对于人工瓣膜的移动。电动式手柄可用于拉动人工瓣膜通过装载锥并进入递送鞘。例如,在导管组件被插入通过装载锥后,导管组件的近端被连接至电动式手柄。人工瓣膜被手动拉动通过装载锥足够远,以在导管组件远端上能够紧固递送鞘106至它的连接(例如,螺母150)。随后启动电动机以相对于导管组件往远端移动鞘并紧靠装载锥1200的出口末端,其将人工瓣膜拉出装载锥并进入鞘。
[0155] 图53根据另一个实施方式图解了递送装置1300。在该实施方式中,递送装置1300包括图30-33的递送装置300的所有特征,除了它包括图40所示的扭转轴700。在瓣膜部署期间,扭转轴700的使用增加了位于升主动脉中的递送装置的部分的柔性。递送装置的该部分在瓣膜部署期间通常受到最大的弯曲量。在具体的实施方式中,扭转轴700从瓣膜保持机构延伸至递送装置的手柄。在另一个实施方式中,递送装置可包括扭转轴,其具有由相互连接的金属链接702形成的远段和由其他材料(例如,一层或多层的聚合管材)形成的近段。
[0156] 图54根据另一个实施方式图解了递送装置1400。在该实施方式中的递送装置1400包括延伸通过外叉330的扭转轴700。螺丝钉1402沿扭转轴的长度放置在接近外叉330的位置上。外轴304(图54未示出)形成有与螺丝钉1402的螺纹匹配的内螺纹,以将扭转轴的旋转转变成鞘322(其经联结构件362连接至扭转轴)的轴向移动。期望地,在瓣膜部署期间,螺丝钉1402和外轴的内螺纹处于沿位于降主动脉中的扭转轴的长度的位置上。扭转轴700往远端延伸进入由瓣膜保持机构占据的区域增加了递送装置的该部分的总体柔性。
[0157] 由于形成扭转轴的链接702中间隙的存在(其允许链接之间有限量的轴向运动),人工瓣膜对抗鞘322的远端的扩张力可使人工瓣膜在被部署时略微“跳跃”出鞘。为了控制人工瓣膜当它被部署时的扩张,弹簧1404可同轴安装在扭转轴700上。外轴304(未示出)在弹簧1404上至少部分延伸。弹簧的近端1406相对于外轴304的内表面固定。在瓣膜部署期间,放置弹簧1408的远端以当旋转扭转轴以使鞘322近端移动时接触联结构件362。以该方式,弹簧1404压缩并施加远端方向力抵抗联结构件362和鞘,其阻止由人工瓣膜的扩张引起的在近端方向上的鞘的突然移动。
[0158] 图55根据另一个实施方式显示了递送装置1500,其为递送装置的改型。该实施方式类似于图53所示的实施方式1300,除了环或锚固圆盘1508(类似于环128)被放置在接近螺丝钉的扭转轴1502上。如所示,扭转轴1502可包括具有图40所示的轴700的相同构造的远段1506和可包括一层或多层聚合管材的近段1504。环1508可被安装靠近近段1504的远端。环由形成在外轴126的内表面上的特征容纳,以允许扭转轴的旋转,但防止扭转轴相对于外轴的轴向移动。有螺纹的螺母150可以类似于图21所示的方式安装在螺丝钉112上,以将扭转轴的旋转转变为鞘106的轴向运动。弹簧1512可被安装在扭转轴的远段1506上,以在瓣膜部署期间接触螺母150和最小化瓣膜跳跃。
[0159] 图56根据另一个实施方式显示了递送装置1600。该实施方式类似于图55所示的实施方式1500,除了环1508可远离扭转轴的远段1506放置。在图56的实施方式中,可排除弹簧1512,因为环1508防止扩张的人工瓣膜的轴向力被传送至扭转轴的远段1506中的链接。
[0160] 图57根据另一个实施方式显示了递送装置1700。该实施方式类似于图55所示的实施方式1500,除了它包括扭转轴,所述扭转轴包括具有图40所示的轴700的相同构造的远段1706和包括接合外轴104上内螺纹(未示出)的螺丝钉1704的近段1702。远段1706部分延伸进入由外叉330占据的区域。弹簧1708可被安装在远段1706上,以如之前所述最小化瓣膜跳跃。该实施方式允许远端螺丝钉/多个螺丝钉(在区段1706远端的螺丝钉/多个螺丝钉)旋转并移动螺母150,同时允许扭转轴轴向移动。与上述实施方式相比,该机构驱动螺母150快两倍。因此,该实施方式可使用更短长度的螺丝钉/多个螺丝钉移动螺母150,并且因此可减少半刚硬区段的总体长度。此外,该实施方式允许由远段1706占据的递送装置的部分在递送装置行走通过患者的脉管系统期间弯曲。
[0161] 已知的导入鞘通常使用由具有大约0.010至0.015英寸的径向壁厚度的聚合管材制成的套管。图58A显示了导入鞘的另一个实施方式,在2000指示,其使用具有与已知设备相比小得多的壁厚度的薄金属管形层。在具体的实施方式中,鞘2000的壁厚度为大约0.0005至大约0.002英寸。导入鞘2000包括近端放置的外壳或轮毂2002和远端延伸的套管或插管2004。外壳2002可如本领域已知的装有密封件或一系列密封件,以最小化血液损失。
套管2004包括由金属或金属合金诸如镍钛诺或不锈钢形成的管形层2006,并期望地形成有一系列在圆周上延伸或螺旋状延伸的缝隙或开口,以赋予套管期望程度的柔性。
[0162] 如图58B所示的,例如,管形层2006形成(例如,激光切割)有交互的环形带2007和开口2008的“I-柱”图案,轴向延伸的连接部分2010连接邻近的带2007。两个邻近的带2007可通过多个有角度地相隔的连接部分2010诸如在套管的轴线周围相互相隔90度的四个连接部分2010连接,如图解的实施方式所示。套管2004展示了足够的柔性,以允许套管当被推动通过弯曲通道时屈曲,而不扭结或压弯。图59显示了开口的另一个图案,其可被激光切割或以其他方式形成在管形层2006中。图59的实施方式中的管形层具有交互的带2012和开口2014的图案,连接部分2016连接邻近的带2012并沿套管的长度以螺旋状图案布置。在可选实施方式中,带和开口的图案和/或带和/或开口的宽度可沿套管的长度改变,以便沿它的长度改变套管的刚度。例如,带的宽度可从套管的近端至远端降低,以在套管的近端附近提供更大的刚度和在套管的远端附近提供更大的柔性。
[0163] 如图60所示的,套管可具有薄外层2018,其在管形层2006上延伸并由低摩擦材料制成以减少套管和插入套管的容器壁之间的摩擦。套管也可具有薄内层2020,其覆盖管形层2006的内表面并由低摩擦材料制成以减少套管和被插入套管的递送装置之间的摩擦。内层和外层可由合适的聚合物制成,诸如PET、PTFE和/或FEP。
[0164] 在具体的实施方式中,管形层2006具有在大约0.0005英寸至大约0.002英寸范围中的径向壁厚度。如此,套管可提供有小于已知设备大约1-2Fr的外径。套管2004的相对更小的轮廓改善了使用舒适度、降低了患者通过动脉壁撕裂的伤害的风险并增加了针对具有高度钙化动脉、弯曲通道或小血管直径的患者的最小侵入性程序(例如,心脏瓣膜替换)的潜在使用。
[0165] 在导入鞘2000的改型中,鞘可分别具有内层和外层2020、2018,其仅在金属套管的近端和远端上被紧固至金属套管(例如,套管2004)。内聚合层和外聚合层可例如利用合适的粘合剂结合至金属套管(或通过金属套管中的间隙相互结合)。以该方式,金属套管沿套管的大部分长度在套管的近端和远端之间不附接至内聚合层和外聚合层,并且因此沿套管的大部分长度相对于聚合层是“自由漂浮的”。该构造允许金属的邻近的带相对于内层和外层更容易弯曲,与如果内层和外层沿套管的整个长度被结合相比,提供给鞘更大的柔性和扭结抗性。
[0166] 图61显示了可用于导入鞘2000中的可选金属套管的区段,在2100指示。该实施方式中的鞘2000期望地包括内聚合层和外聚合层,如以上讨论的,其期望地仅在它的近端和远端上被紧固至金属套管。套管2100包括通过两个链接或连接部分2104连接的环形带2102,其在两个邻近环之间延伸。连接两个邻近的带2102的每对链接期望地相互相隔180度,并期望地与邻近对的链接旋转地偏离90度,这允许多轴向弯曲。
[0167] 图62显示了可用于导入鞘2000的金属套管的另一个实施方式的区段,在2200指示。套管2200具有与套管2100相同的切割模式,并因此具有环形带2202和连接邻近带的两个链接2204,并进一步包括形成在每个带2202中的两个切口或孔2206,以增加套管的柔性。切口2206期望具有大体椭圆的形状,但也可具有其他形状。每个切口2206期望地在套管的圆周方向上延伸大约180度并期望地与邻近的带2202中的切口2206旋转地偏离大约90度。
[0168] 在具体的实施方式中,导入鞘的金属套管具有在大约.002英寸至大约.006英寸范围中的壁厚度。在一个实施中,鞘具有金属套管,所述金属套管具有大约.002英寸的壁厚度和大约.229英寸的内径,具有大约.0025英寸的壁厚度的内聚合层,具有大约.001英寸的壁厚度的外聚合层,和大约.0055英寸的总壁厚度(所有三层)。在另一个实施中,鞘具有金属套管,所述金属套管具有大约.004英寸的壁厚度和大约.229英寸的内径,具有大约.0025英寸的壁厚度的内聚合层,具有大约.001英寸的壁厚度的外聚合层,和大约.0075英寸的总壁厚度(所有三层)。图63显示了用于形成图61的金属套管2100的切割模式。图64显示了用于形成图62的金属套管2200的切割模式。图65显示了与图64相同的切割模式,但包括比图64所示的更窄的切口2206。
[0169] 表1
[0170]
[0171] 以上表1说明了数个金属套管的弯曲性能。每个金属套管具有大约.229英寸的内径。每个套管形成有图62所示的切割模式,除了表1中的最后一个套管,其形成有图61所示的切割模式。表1表明所有的套管在相对小的弯曲半径(1英寸)上提供递送能力。此外,发现金属套管可恢复它们的环形横截面形状,即使在使递送设备传送通过套管的明显扭结的节段之后。
[0172] 图66-67显示了用于递送装置100的螺丝钉112和螺母150的可选构造。在该实施方式中,螺丝钉112用螺旋状线圈2300(其可为例如金属压缩或张力弹簧)替换,和螺母150用安装在线圈2300上的以垫圈或叶片的形式的鞘保持环2302替换。线圈的近端被固定地紧固至扭转轴110的远端(例如通过焊接或合适的粘合剂)。线圈2300可由多种合适的金属(例如,不锈钢、镍钛诺等)或聚合材料中的任一种制成。
[0173] 垫圈2302具有容纳线圈2300的中心孔2304和内齿2306,所述内齿2306接合在线圈的外表面上限定的沟并期望地在线圈的邻近的圈或回路之间径向向内延伸。垫圈2302的外圆周边缘可形成有多个凹处或沟2308,其中的每一个都被制成一定尺寸,以容纳外叉130的尖头134,其防止在扭转轴110旋转时垫圈的旋转。鞘106可以任何方便的方式被紧固至垫圈2302的外圆周边缘。例如,凹处2308之间的部分可延伸进入鞘的开口172(图18),以相对于垫圈轴向和旋转地固定鞘。可选地,垫圈可被焊接或用粘合剂紧固至鞘。
[0174] 当并入递送装置100中时,线圈2300和垫圈2302以类似于螺丝钉112和螺母150的方式操作。因此,当旋转扭转轴110时,使垫圈2302沿线圈2300的长度轴向移动,以实现鞘的相应的轴向运动,或部署人工瓣膜或重新捕获人工瓣膜返回进入鞘。线圈和垫圈构造的优点为它允许由线圈占据的递送装置的远侧部弯曲或屈曲,以便于行走通过患者的脉管系统,特别是在具有相对小的主动脉弓和短的升主动脉的患者中。当线圈在患者的脉管系统内处于屈曲或弯曲的状态时,线圈也允许鞘在扭转轴旋转时移动(近端或远端地)。在具体的实施方式中,由线圈占据的递送装置的远侧部可从笔直的构造屈曲至具有大约1cm的曲率半径的弯曲的构造。另外,线圈在动态载荷(压缩或张力)下可改变它的节距,其减少了沿递送装置长度的张力的积累并避免了垫圈当受到弯曲力时的磨损。
[0175] 线圈和垫圈构造可在用于在身体管道内植入多种其他类型的人工植入物的其他递送装置中实施。例如,线圈和垫圈构造可并入用于在冠状窦内植入支架或类似的植入物的递送装置。线圈和垫圈构造也可用于多种非医学应用,以替换其中螺丝钉受到弯曲力的螺丝钉和螺母组件。
[0176] 图68显示了可并入人工心脏瓣膜诸如人工瓣膜10的支架2400的可选实施方式。因此,小叶组件(例如,小叶组件14)可被安装至支架以形成人工心脏瓣膜。尽管图68显示了支架的扁平视图,但本领域技术人员将理解到该支架具有环状构造,其可为基本上圆柱形的或可被制成一定形状,以具有沿支架(类似于支架12)的长度改变的直径。支架2400可由多种自可扩张材料(例如,镍钛诺)或塑性可扩张材料(例如,不锈钢)制成,如本领域已知的。
[0177] 支架2400被配置以便于一旦从递送鞘(例如,鞘106)完全部署后重新捕获人工瓣膜。如图68所示的,支架具有第一端2402(通常为支架的流出端)和在支架相反端的第二端2404(通常为支架的流入端)。第一端2402被配置为可松脱地被连接至递送装置。因此,类似于支架12,支架2400具有多个保持臂2406,每个具有相应的开口2408。支架2400的保持臂
2406可利用上述由外叉和内叉130、132组成的瓣膜保持机构114可松脱地紧固至递送装置
100。如可见,支架2400被形成而没有任何形成指向第一端2402的方向的自由尖端的支柱,除了保持臂2406。换言之,除了保持臂2406,支架包括多个指向第一端的方向的尖端2410,每个这样的尖端2410由在相同排的支柱中的两个支柱2412a、2412b和在邻近排中的至少第三支柱2412c形成。因此,指向第一端2402的方向的每个尖端2410保持相对于邻近尖端向外屈曲或弯曲。相比之下,支架也可形成有多个指向支架的第二端2404的方向的自由尖端
2414。自由尖端2414不受如固定的尖端2410那样的相对屈曲约束。
[0178] 在使用中,支架的保持臂2406可以上述方式被紧固至递送装置100,以便递送至患者体内的植入部位。当收缩递送鞘106时,人工瓣膜自扩张至它的扩张的构造(类似于图36或图42所示的人工瓣膜10)。如果变得有必要重新捕获人工瓣膜返回进入递送鞘,诸如重新放置人工瓣膜或从患者中完全收回人工瓣膜,则可操作递送装置以拉动人工瓣膜返回入鞘或在人工瓣膜上向远端移动鞘。因为除了保持臂(其被紧固至递送装置),支架2400不包括任何指向第一端2402的方向的自由尖端,所以鞘在支架上可容易地滑动,而不卡住支架的任何尖端。换言之,当递送鞘在支架上被推回时,所有指向递送鞘远端的尖端都由于向外屈曲或弧状弯曲进入递送鞘的行进路径而限制。
[0179] 支架2400显示为在支架的第一端上具有三个自由尖端/保持臂2406,尽管这不是要求。第一端上自由尖端的数量可改变,但期望地等于瓣膜保持机构的内叉和外叉中的每一个上的尖头数量,以便在第一端2402上的每个自由尖端可被紧固至瓣膜保持机构。同时,第二端2404上的自由尖端2414的数量可改变。以下表2显示了可在支架中实施的流入自由尖端2414、支柱的排的数量和流出自由尖端2406的多种组合。如以上提及的,人工瓣膜的支架通常在支架流出端上被紧固至递送装置(在该情况下,第一端2402为支架的流出端)。如果人工瓣膜和递送导管被设计以紧固支架的流入端至递送导管,则该支架可具有相同的构造,除了第一端2402为支架的流入端和第二端2404为支架的流出端。在任一情况下,每排支柱中支柱和尖端的数量通常增加,在从第一端2402至第二端2404的方向上移动。
[0180] 如果人工瓣膜意欲在支架的流入或流出端上被紧固至递送装置,则支架可具有构造——其中每排中的尖端数量从第一端2402至支架的中部增加,并随后从中部至支架的第二端2404降低。在具体的实施方式中,支架可具有构造,其相对于延伸通过支架的中部(垂直于流动轴线)的线对称,并且每排中尖端的数量从第一端2402至支架的中部增加并随后从中部至支架的第二端2404降低。
[0181] 图69-72显示了由多个支柱形成的支架的可选实施方式,除了保持臂2406,没有任何自由尖端指向朝向支架一端的方向。图68-72中图解的支架也可在除了人工瓣膜的人工植入物中实施,诸如植入体内的多种管或腔中的支架移植物或裸支架。
[0182] 表2
[0183]
[0184] 图73-87显示了系统的部件,其可用于连接人工瓣膜10至递送装置100和用于部分卷缩人工瓣膜,以便包装人工瓣膜和递送装置组件。系统通常包括存储管组件3000(图73-75)、转移管3006(图76-77)、附接间隔器3008(图78-80)、附接工具3018(图81-83)、附接柱塞3034(图84-85)和套管3038(图86-87)。
[0185] 这些部件将在以下结合附接人工瓣膜10至递送装置100的方法和部分卷缩人工瓣膜和以部分卷缩状态存储人工瓣膜以便最终包装人工瓣膜和递送装置组件的方法进行详细描述。首先参考图88,存储管组件3000,其包括前存储部分3002和后存储管部分3004,在递送装置的远端部分上滑动。存储管组件3000将随后用于以部分卷缩状态存储人工瓣膜10,以便最终包装人工瓣膜和递送装置组件。接下来参考图89,跟随存储管组件,转移管
3006在递送装置的远端部分上滑动,前端导管轴120被向远端拉动远离鞘106几英寸。
[0186] 接下来参考图90-91,附接间隔器3008被放置在前端椎体轴120上。最好如图78-80所示的,附接间隔器3008包括从中间轮毂部分3014延伸的多个近端尖头或三叉3010,和在邻近尖头3010之间限定的多个纵向延伸的槽3012。从轮毂部分的相反端延伸的是两个细长远端尖头3016。如图90-91所示的,尖端尖头3010通过挤压它们朝向彼此和在外叉130的尖头134的远端部分下面滑动而被略微径向压缩。每个尖头134的远端部分与各自的槽3012对齐并被放置在一对邻近的尖头3010之间,以便每个尖头134的侧边缘可置于附接间隔器的该对邻近的尖头3010的凹入部分3013内(见图80和91)。
[0187] 接下来参考图92-93,附接工具3018被放置在鞘106和附接间隔器3008周围。附接工具3018可包括两个可分离的外壳部分3020。当两个外壳部分3020被放置在一起时(图93),两个闭锁夹3022可被放置在工具上相反的侧边缘上,以保持两个外壳部分在一起。组装的附接工具3018限定了围绕递送鞘106的大体圆柱形的近端部分3024和被制成一定尺寸以当人工瓣膜处于扩张的状态时容纳人工瓣膜10的大体圆柱形的、扩大的远侧部3026。如图94所示的,附接工具3018具有三个有角度地相隔的孔或窗口3028,其位于近端部分3024开始平移进入扩大的远侧部3026的区域。外叉130的每个尖头134在各自的窗口3028内对齐,以便每个尖头134的开口140在相应的窗口3028内居中,如图94所示的。如图95所示的,底部闭锁部件3030在近端部分3024上滑动并放置在近端部分3024周围。闭锁部件3030可施加足够的压力至近端部分,以相对于鞘106保持附接工具。如图96所示的,内叉132的尖头
136与外叉的尖头134旋转对齐。随后在近端方向上拉动轴120(朝向附接工具的近端部分
3024,如箭头3032所指示的),直到内尖头136处于接近附接工具中的窗口3028的位置。如图
112所示的,外叉132的尖头136可具有向外弯曲的远端部分136a,其通常限定圆锥体形状,以便于将外尖头136插入至支架保持臂30。
[0188] 接下来参考图97,人工瓣膜10通过将人工瓣膜的连合与柱塞的各自的引导轨3036(也见图85)对齐和在柱塞的近端上将人工瓣膜的流入端部分插入开口而安装在附接柱塞3034上。邻近柱塞的开口的内侧表面可形成有小的凹处3037(图85),其被制成一定尺寸以容纳人工瓣膜的支架12的尖端。人工瓣膜10可被压入柱塞,以便支架的尖端扣入柱塞中的凹处。参考图98,保护管形套管3038被插入通过柱塞3034和人工瓣膜10,直到套管的近端部分3040略微延伸超出人工瓣膜10的流出端(图99)。套管3038在紧固人工瓣膜至递送装置的随后的步骤期间保护人工瓣膜的小叶。
[0189] 图99和100显示了用于紧固人工瓣膜10至递送装置的柱塞和附接工具。如图99所示的,附接间隔器3008的远端尖头3016被插入套管3038的近端部分3040,和柱塞的有弹性的闭锁臂3042与附接工具的配合的开口3044旋转对齐。此后,如图100所示的,人工瓣膜10和柱塞3034被压入附接工具3018,直到闭锁臂3042延伸超过并扣入在附接工具上的闭锁突起(tab)3046后面的位置。推动人工瓣膜进入附接工具的行动使人工瓣膜的保持臂30沿附接工具的远侧部3026的内表面滑动并随后向内穿过外叉的尖头134中的各自的开口140(见图113)。最好如图83所示的,附接工具的内侧表面可形成有三个有角度地相隔的与窗口3028对齐的沟3045,以有助于沿附接工具的内表面和通过尖头134的开口140引导支架的保持臂30。在该阶段,如图101所示的,使前端椎体轴120向远端前进(在箭头3048的方向上),其使内叉的尖头136延伸通过人工瓣膜的保持臂30中的开口32,由此紧固人工瓣膜至递送装置(也见图113)。一旦人工瓣膜被紧固至递送装置,则附接工具、柱塞和附接间隔器可从递送装置上移除。
[0190] 接下来参考图102,转移管3006(先被置于递送装置上)被移动至邻近人工瓣膜的位置。随后,如图103所示的,人工瓣膜10和转移管的扩大的末端部分3019被插入瓣膜卷缩机3050的孔。瓣膜卷缩机3050用于卷缩(径向压缩)人工瓣膜至部分卷缩状态,以便部分卷缩的人工瓣膜可被拉入转移管的主圆筒3052。部分卷缩状态表示人工瓣膜从它完全扩张的状态被径向压缩至它完全扩张的状态和它完全压缩的状态之间的状态,其中人工瓣膜可装配在递送鞘106内。
[0191] 如图105所示的,主圆筒3052具有多个小叶卷填窗口3054。利用卷填工具3056(图106),用户可插入卷填工具3056通过窗口3054并进入支架12的各自小室,以确保所有的小叶和裙材料被“卷填”在支架的金属支柱内部。如图107和108所示的,后存储管部分3004随后被插入转移管的主圆筒3052。最终,如图109和100所示的,帽部分3005被放置在后存储管部分3004的延伸部分3007上,前存储管部分3002被紧固至后存储管部分3004。最好如图74所示的,前存储管部分3002可具有接收在后存储管部分3004上相应的槽3062中的闭锁突起
3060。部分3002和3004可通过将突起3060插入槽3062和扭曲部分3002以建立这两个部件之间的扣合连接而紧固在一起。
[0192] 图111显示了在后存储管部分3004内部的人工瓣膜10,和部分延伸进入后存储管部分的相对末端部分的递送鞘106。如所示,存储管组件的内表面形成有锥形表面3064,其从包含人工瓣膜的内钻孔3066延伸至包含鞘106的具有减小直径的内钻孔3068。当在鞘106内拉动人工瓣膜时,锥形表面3064帮助引导和完全卷缩人工瓣膜。最接近锥形表面的钻孔3068的开口形成有邻接鞘106的远端的环状边缘3070。
[0193] 在具体的实施方式中,包括递送装置100、存储管组件3000和部分卷缩的人工瓣膜10(钻孔3066内)的组件可在包括所有这些部件的无菌包装中包装在一起。包含这些部件的包装可供应至最终用户,以便存储和最终使用。在具体的实施方式中,人工瓣膜的小叶34(通常由牛心包组织或其他天然或合成组织制成)在制造过程期间进行处理,以便它们完全或基本上脱水并且可以部分或完全卷缩状态存储,而没有水化流体。以该方式,包含人工瓣膜和递送装置的包装可不含任何液体。处理组织小叶以便干存储的方法在于2008年12月18日提交的美国专利申请号8,007,992和美国专利公布号2009/0164005中公开,两个文件都在此通过引用并入。
[0194] 当外科医生准备在患者中植入人工瓣膜时,递送装置100、部分卷缩人工瓣膜10和存储管组件3000可在手术室内时从包装上移出。人工瓣膜10可通过在促使鞘106紧靠环状边缘3070的方向上旋转扭转轴110装入鞘106,其使人工瓣膜滑入鞘106。如果提供了电动式手柄(如上所述),扭转轴可通过启动手柄的电动机旋转。一旦人工瓣膜位于鞘内部,存储管组件3000可从递送装置中移出,其现在准备好插入患者。如可理解的,在存储管组件内部以部分卷缩状态存储人工瓣膜消除了连接人工瓣膜至递送装置的任务并对于外科医生来说大大简化了卷缩过程。
[0195] 在可选实施方式中,人工瓣膜,一旦被附接至递送装置,则可利用装载锥工具部分卷缩,诸如图51-52所示的。人工瓣膜可以部分卷缩状态存储在装载锥内部(例如,利用圆锥1200的节段1210),其可与递送装置包装在一起。当使用递送装置和人工瓣膜时,外科医生可从包装上移除组件并将人工瓣膜装入鞘106,诸如通过起动扭转轴,其使人工瓣膜从装载锥拉入鞘。
[0196] 在额外的实施方式中,人工瓣膜的小叶可被处理以湿存储人工瓣膜,在该情况下,与保持人工瓣膜处于部分卷缩状态的部件(例如,上述装载锥或存储管组件)一起的部分卷缩的人工瓣膜可被放置在包含用于小叶的水化流体的密封的存储容器中。如果人工瓣膜如上所述被预安装至递送装置,则用于递送装置和人工瓣膜的包装可包括密封的存储容器——其中水化流体(湿存储隔室)包含人工瓣膜,保持人工瓣膜的部件和递送装置的远端部分。递送装置的剩余部分可延伸出湿存储隔室进入包装的干存储隔室。处理组织小叶以便湿存储的方法在美国专利申请号7,579,381中公开,其在此通过引用全文并入。
[0197] 在另一个实施方式中,人工瓣膜可如上所述被预安装在递送装置上但不预卷缩,并且改为与递送装置包装在一起,人工瓣膜处于它的完全扩张的状态(在湿存储隔室或干存储隔室中)。
[0198] 鉴于可应用本公开发明原理的很多可能的实施方式,应当意识到图解的实施方式仅为本发明的优选实施例而且不应被看作限制本发明的范围。此外,额外的实施方式公开在美国专利申请公布号2010/0049313(美国专利申请号12/429,040)中,其在此通过引用全文并入。因此,本发明的范围由权利要求限定。因此,作为我们的发明,我们要求保护落入这些权利要求的范围和精神内的全部。