含分布式电源的配电网设备的利用率检测方法及其系统转让专利

申请号 : CN201511010021.2

文献号 : CN105406474B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 黄华茂李凤珍胡群勇黄群古江浩侠廖美英

申请人 : 广东电网有限责任公司中山供电局广州市奔流电力科技有限公司

摘要 :

本发明提供一种含分布式电源的配电网设备的利用率检测方法及其系统,所述方法通过设定时间内配电网设备的负荷曲线、净负荷曲线以及所述配电网设备供电区域内所接的分布式电源的出力曲线,分别得到所述配电网设备的常规负载率、常规容量因子、备用负载率以及备用容量因子,计算得到所述配电网设备的综合负载率和综合容量因子,根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率。本发明针对传统的检测方法在分布式电源发电时,配电网设备作为分布式电源备用的功能不能得到体现的问题,通过备用负载率和备用容量因子,量化计算这一备用功能,从而提高检测配电网设备利用率的精确度。

权利要求 :

1.含分布式电源的配电网设备的利用率检测方法,其特征在于,包括:

获取设定时间内配电网设备的额定容量和负荷功率、以及所述配电网设备供电区域内所接的分布式电源的出力参数;

根据所述负荷功率得到配电网设备的负荷曲线、根据所述出力参数得到分布式电源的出力曲线,根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线;

根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子;

根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子;

根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率;

所述根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线,包括:

将所述负荷曲线与所述出力曲线作减法运算,得到所述配电网设备的净负荷曲线。

2.根据权利要求1所述的含分布式电源的配电网设备的利用率检测方法,其特征在于,所述根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,包括:根据所述负荷曲线以及净负荷曲线,得到配电网供电区域内负荷最大时所述配电网设备的出力、以及在所述设定时间内所述配电网设备的总发电量;

根据所述额定容量、配电网设备的出力以及配电网设备的总发电量得到所述配电网设备的常规负载率以及常规容量因子,分别为:其中,ηcommon为所述配电网设备的常规负载率,PS-system为配电网供电区域内负荷最大时所述配电网设备的出力,SN为所述配电网设备的额定容量,cosφc为预设的所述配电网设备所带负荷的功率因素,Kcommon为所述配电网设备的常规容量因子,QS-system-T为时间T内所述配电网设备的总发电量,T为所述设定时间。

3.根据权利要求1所述的含分布式电源的配电网设备的利用率检测方法,其特征在于,所述根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子,包括:根据所述负荷曲线以及分布式电源的出力曲线,得到配电网供电区域内负荷最大时分布式电源的出力、以及在所述设定时间内所述分布式电源的总发电量;

根据所述额定容量、分布式电源的出力以及分布式电源的总发电量得到所述配电网设备的备用负载率以及备用容量因子,分别为:其中,ηreserve为所述配电网设备的备用负载率,PDG-load为配电网供电区域内负荷最大时所述分布式电源的出力,SN为所述配电网设备的额定容量,cosφr为预设的所述分布式电源发电的功率因数,Kreverve为所述配电网设备的备用容量因子,QDG-T为时间T内所述分布式电源的总发电量,T为所述设定时间。

4.根据权利要求1所述的含分布式电源的配电网设备的利用率检测方法,其特征在于,所述根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子,包括:将所述常规负载率与备用负载率作加法运算,得到所述配电网设备的综合负载率,以及将所述常规容量因子与备用容量因子作加法运算,得到所述配电网设备的综合容量因子。

5.含分布式电源的配电网设备的利用率检测系统,其特征在于,包括:

采集模块,用于获取设定时间内配电网设备的额定容量和负荷功率、以及所述配电网设备供电区域内所接的分布式电源的出力参数;

处理模块,用于根据所述负荷功率得到配电网设备的负荷曲线、根据所述出力参数得到分布式电源的出力曲线,根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线;

计算模块,用于根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子;根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子;

检测模块,用于根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率;

所述处理模块包括:

处理子模块,用于将所述负荷曲线与所述出力曲线作减法运算,得到所述配电网设备的净负荷曲线。

6.根据权利要求5所述的含分布式电源的配电网设备的利用率检测系统,其特征在于,所述计算模块包括:第一计算子模块,用于根据所述负荷曲线以及净负荷曲线,得到配电网供电区域内负荷最大时所述配电网设备的出力、以及在所述设定时间内所述配电网设备的总发电量;根据所述额定容量、配电网设备的出力以及配电网设备的总发电量得到所述配电网设备的常规负载率以及常规容量因子,分别为:其中,ηcommon为所述配电网设备的常规负载率,PS-system为配电网供电区域内负荷最大时所述配电网设备的出力,SN为所述配电网设备的额定容量,cosφc为预设的所述配电网设备所带负荷的功率因素,Kcommon为所述配电网设备的常规容量因子,QS-system-T为时间T内所述配电网设备的总发电量,T为所述设定时间。

7.根据权利要求5所述的含分布式电源的配电网设备的利用率检测系统,其特征在于,所述计算模块还包括:第二计算子模块,用于根据所述负荷曲线以及出力曲线,得到配电网供电区域内负荷最大时所述分布式电源的出力、以及在所述设定时间内所述分布式电源的总发电量;

根据所述额定容量、分布式电源的出力以及分布式电源的总发电量得到所述配电网设备的备用负载率以及备用容量因子,分别为:其中,ηreserve为所述配电网设备的备用负载率,PDG-load为配电网供电区域内负荷最大时所述分布式电源的出力,SN为所述配电网设备的额定容量,cosφr为预设的所述分布式电源发电的功率因数,Kreverve为所述配电网设备的备用容量因子,QDG-T为时间T内所述分布式电源的总发电量,T为所述设定时间。

8.根据权利要求5所述的含分布式电源的配电网设备的利用率检测系统,其特征在于,所述检测模块包括:检测子模块,用于将所述常规负载率与备用负载率作加法运算,得到所述配电网设备的综合负载率,以及将所述常规容量因子与备用容量因子作加法运算,得到所述配电网设备的综合容量因子。

说明书 :

含分布式电源的配电网设备的利用率检测方法及其系统

技术领域

[0001] 本发明涉及配电系统领域,特别是一种含分布式电源的配电网设备的利用率检测方法及其系统。

背景技术

[0002] 在含有分布式电源的配电网络中,分布式电源的接入会影响配电网设备所带负荷的负荷特性,进而影响配电网设备的利用率。
[0003] 设备利用率反映设备利用水平,是电网经济建设的一个重要指标,在评估一个供电企业管理水平时,设备利用率是一个重要指标。负载率和容量因子常用于评价配电网设备的利用率,目前,多采用下送功率、下送电量来计算负载率与容量因子,由于分布式电源接入配电网时,影响配电网设备的负载率和容量因子,从而影响配电网设备的利用率的评价。
[0004] 从配电网规划的角度,电力企业会对分布式电源的接入考虑一定的备用容量。在配电网运行期间,相关部门对配电网设备利用率进行评估时,因配电网承担分布式电源备用,按常规方法不能正确评估设备利用率。

发明内容

[0005] 针对上述现有技术中存在的问题,本发明提供一种含分布式电源的配电网设备的利用率检测方法及其系统,能够提高检测配电网设备利用率的精确度。
[0006] 本发明的含分布式电源的配电网设备的利用率检测方法,技术方案如下,包括:
[0007] 获取设定时间内配电网设备的额定容量和负荷功率、以及所述配电网设备供电区域内所接的分布式电源的出力参数;
[0008] 根据所述负荷功率得到配电网设备的负荷曲线、根据所述出力参数得到分布式电源的出力曲线,根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线;
[0009] 根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子;
[0010] 根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子;
[0011] 根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率。
[0012] 本发明的含分布式电源的配电网设备的利用率检测系统,技术方案如下,包括:
[0013] 采集模块,用于获取设定时间内配电网设备的额定容量和负荷功率、以及所述配电网设备供电区域内所接的分布式电源的出力参数;
[0014] 处理模块,用于根据所述负荷功率得到配电网设备的负荷曲线、根据所述出力参数得到分布式电源的出力曲线,根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线;
[0015] 计算模块,用于根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子;根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子;
[0016] 检测模块,用于根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率。
[0017] 本发明的含分布式电源的配电网设备的利用率检测方法及其系统,通过设定时间内配电网设备的负荷曲线、净负荷曲线以及所述配电网设备供电区域内所接的分布式电源的出力曲线,分别得到所述配电网设备的常规负载率、常规容量因子、备用负载率以及备用容量因子,计算得到所述配电网设备的综合负载率和综合容量因子,根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率。本发明针对传统的检测方法在分布式电源发电时,配电网设备作为分布式电源备用的功能不能得到体现的问题,通过备用负载率和备用容量因子,量化计算了这一备用功能,从而提高检测配电网设备利用率的精确度。

附图说明

[0018] 图1为一个实施例的含分布式电源的配电网设备的利用率检测方法的流程示意图;
[0019] 图2为10KV配变所带负荷曲线、分布式电源的出力曲线和净负荷曲线示意图;
[0020] 图3为一个实施例的含分布式电源的配电网设备的利用率检测系统的结构示意图。

具体实施方式

[0021] 为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
[0022] 请参阅图1中一个实施例的含分布式电源的配电网设备的利用率检测方法的流程示意图,包括步骤S101至S105:
[0023] S101,获取设定时间内配电网设备的额定容量和负荷功率、以及所述配电网设备供电区域内所接的分布式电源的出力参数。
[0024] 其中,所述配电网设备为线路和/或变压器。获取设定时间内线路或变压器的额定容量和负荷功率、以及所述线路或变压器供电区域内所接的分布式电源的出力参数,从而为后续的线路或变压器的利用率检测提供原始数据。
[0025] S102,根据所述负荷功率得到配电网设备的负荷曲线、根据所述出力参数得到分布式电源的出力曲线,根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线。
[0026] 进一步地,将所述负荷曲线与所述出力曲线作减法运算,得到所述配电网设备的净负荷曲线。通过所述净负荷曲线能方便快捷计算设定时间内的配电网设备变送电量,从而提高配电网设备利用率的检测效率。
[0027] S103,根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子。通过所述配电网设备的的备用负载率以及备用容量因子,进一步提高检测配电网设备利用率的精确度。
[0028] 进一步地,所述根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,包括:根据所述负荷曲线以及净负荷曲线,得到配电网供电区域内负荷最大时所述配电网设备的出力、以及在所述设定时间内所述配电网设备的总发电量;根据所述额定容量、配电网设备的出力以及配电网设备的总发电量得到所述配电网设备的常规负载率以及常规容量因子,分别为:
[0029]
[0030] 其中,ηcommon为所述配电网设备的常规负载率,PS-system为配电网供电区域内负荷最大时所述配电网设备的出力,SN为所述配电网设备的额定容量,cosφc为预设的所述配电网设备所带负荷的功率因素,Kcommon为所述配电网设备的常规容量因子,QS-system-T为时间T内所述配电网设备的总发电量,T为所述设定时间。
[0031] 进一步地,所述根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子,包括:根据所述负荷曲线以及出力曲线,得到配电网供电区域内负荷最大时所述分布式电源的出力、以及在所述设定时间内所述分布式电源的总发电量;根据所述额定容量、分布式电源的出力以及分布式电源的总发电量得到所述配电网设备的备用负载率以及备用容量因子,分别为:
[0032]
[0033] 其中,ηreserve为所述配电网设备的备用负载率,PDG-load为配电网供电区域内负荷最大时所述分布式电源的出力,SN为所述配电网设备的额定容量,cosφr为预设的所述分布式电源发电的功率因数,Kreverve为所述配电网设备的备用容量因子,QDG-T为时间T内所述分布式电源的总发电量,T为所述设定时间。
[0034] S104,根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子。
[0035] 针对传统的检测方法在分布式电源发电时,配电网设备作为分布式电源备用的功能不能得到体现的问题,通过备用负载率和备用容量因子,从而提高检测配电网设备利用率的精确度。
[0036] 进一步地,所述根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子,包括:将所述常规负载率与备用负载率作加法运算,得到所述配电网设备的综合负载率,以及将所述常规容量因子与备用容量因子作加法运算,得到所述配电网设备的综合容量因子。
[0037] S105,根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率。
[0038] 进一步地,所述含分布式电源的配电网设备的利用率检测方法还包括:计算分布式电源接入前,根据所述负荷曲线以及净负荷曲线,得到配电网供电区域内负荷最大时所述配电网设备的出力、以及在所述设定时间内所述配电网设备的总发电量;根据所述额定容量、配电网设备的出力以及配电网设备的总发电量得到计算分布式电源接入前所述配电网设备的初始负载率以及初始容量因子,分别为:
[0039]
[0040] 其中,ηcommon-1为分布式电源接入前所述配电网设备的初始负载率,Psystem为分布式电源接入前配电网供电区域内负荷最大时所述配电网设备的出力,SN为所述配电网设备的额定容量,cosφc1为预设的所述配电网设备所带负荷的功率因素,Kcommon-1为分布式电源接入前所述配电网设备的初始容量因子,Qsystem-T为分布式电源接入前时间T内所述配电网设备的总发电量,T为所述设定时间。
[0041] 将所述常规负载率以及常规容量因子、综合负载率以及综合容量因子分别与所述初始负载率以及初始容量因子比较,根据比较结果,得到含分布式电源的配电网设备的利用率的精确度。
[0042] 本实施例的含分布式电源的配电网设备的利用率检测方法,通过设定时间内配电网设备的负荷曲线、净负荷曲线以及所述配电网设备供电区域内所接的分布式电源的出力曲线,分别得到所述配电网设备的常规负载率、常规容量因子、备用负载率以及备用容量因子,计算得到所述配电网设备的综合负载率和综合容量因子,根据所述综合负载率以及综合容量因子得到所述配电网设备的利用率。本实施例针对传统的检测方法在分布式电源发电时,配电网设备作为分布式电源备用的功能不能得到体现的问题,通过备用负载率和备用容量因子,量化计算了这一备用功能,从而提高检测配电网设备利用率的精确度。
[0043] 以下提供含分布式电源的配电网设备的利用率检测方法的一个较佳实施方式,以10KV配变为例进行说明,请参阅图2的10KV配变所带负荷曲线、分布式电源的出力曲线和净负荷曲线示意图:
[0044] 获取12个月内10KV配变的额定容量SN为8MVA、负荷功率以及所选10KV配变供电区域内所接的分布式电源的出力参数,利用10KV配变的负荷功率得到线路负荷曲线,利用所选10KV配变供电区域内所接的分布式电源的出力参数得到分布式电源的出力曲线,利用10KV配变的负荷曲线和分布式电源的出力曲线作减法运算得到净负荷曲线,为了简化计算,10KV配变所带负荷和分布式电源出力的功率因数均取值为1。
[0045] 分布式电源接入后,通过以下公式计算所述10KV配变的常规负载率以及常规容量因子:
[0046]
[0047] 其中,ηcommon为所述10KV配变的常规负载率,PS-system为配电网供电区域区域内负荷最大时所述10KV配变的出力,SN为所述10KV配变的额定容量,cosφc为预设的所述10KV配变所带负荷的功率因素,Kcommon为所述10KV配变的常规容量因子,QS-system-T为时间T内所述10KV配变的总发电量,T为所述设定时间。由图2的负荷曲线以及净负荷曲线可知,10KV配变供电区域内负荷功率最大时为2月份,所述10KV配变供电区域内在2月份的出力PS-system为
3.5MW,12个月内所述10KV配变的总发电量QS-system-T为24.55MWh,计算得到所述10KV配变的常规负载率ηcommon为43.75%以及常规容量因子Kcommon为25.57%。而分布式电源接入前,计算得到所述10KV配变的常规负载率ηcommon-1和常规容量因子Kcommon-1分别为:ηcommon-1=
50.00%,Kcommon-1=32.55%。可见,分布式电源的接入,配电网设备的常规负载率和常规容量因子均会不同程度地减小。
[0048] 通过以下公式计算所述10KV配变的备用负载率以及备用容量因子:
[0049]
[0050] 其中,ηreserve为所述10KV配变的备用负载率,PDG-load为配电网供电区域内负荷最大时所述分布式电源的出力,SN为所述10KV配变的额定容量,cosφr为预设的所述分布式电源发电的功率因数,Kreverve为所述10KV配变的备用容量因子,QDG-T为时间T内所述分布式电源的总发电量,T为所述设定时间。由图2的负荷曲线以及出力曲线可知,10KV配变供电区域内负荷功率最大时为2月份,所述10KV配变供电区域内所接的分布式电源在2月份的出力PDG-load为0.5MW,12个月内所述分布式电源的总发电量QDG-T为6.7MWh,计算得到所述10KV配变的备用负载率ηreserve为6.25%以及备用容量因子Kreverve为6.98%。
[0051] 将所述常规负载率与备用负载率作加法运算,得到所述10KV配变的综合负载率η为50.00%,以及将所述常规容量因子与备用容量因子作加法运算,得到所述10KV配变的综合容量因子K为32.55%。
[0052] 由上述较佳实施方式可知,通过12个月内10KV配变的负荷曲线、净负荷曲线以及所述10KV配变供电区域内所接的分布式电源的出力曲线,分别得到所述10KV配变的常规负载率、常规容量因子、备用负载率以及备用容量因子,计算得到所述10KV配变的综合负载率和综合容量因子,根据所述综合负载率以及综合容量因子得到所述10KV配变的利用率,从而提高了检测10KV配变利用率的精确度。
[0053] 本发明的含分布式电源的配电网设备的利用率检测系统,如图3所示,包括采集模块301、处理模块302、处理模块303以及检测模块304。
[0054] 所述采集模块301,用于获取设定时间内配电网设备的额定容量和负荷功率、以及所述配电网设备供电区域内所接的分布式电源的出力参数。
[0055] 所述处理模块302,用于根据所述负荷功率得到配电网设备的负荷曲线、根据所述出力参数得到分布式电源的出力曲线,根据所述负荷曲线以及出力曲线得到所述配电网设备的净负荷曲线。
[0056] 所述计算模块303,用于根据所述额定容量、负荷曲线以及净负荷曲线得到所述配电网设备的常规负载率以及常规容量因子,根据所述额定容量、负荷曲线以及出力曲线得到所述配电网设备的备用负载率以及备用容量因子;根据所述常规负载率以及备用负载率得到所述配电网设备的综合负载率,以及根据所述常规容量因子以及备用容量因子得到所述配电网设备的综合容量因子。针对传统的检测方法在分布式电源发电时,配电网设备作为分布式电源备用的功能不能得到体现的问题,通过备用负载率和备用容量因子,从而提高检测配电网设备利用率的精确度。
[0057] 所述检测模块304,用于根据所述综合负载率以及综合容量因子检测所述配电网设备的利用率。
[0058] 本实施例的含分布式电源的配电网设备的利用率检测系统,通过设定时间内配电网设备的负荷曲线、净负荷曲线以及所述配电网设备供电区域内所接的分布式电源的出力曲线,分别得到所述配电网设备的常规负载率、常规容量因子、备用负载率以及备用容量因子,计算得到所述配电网设备的综合负载率和综合容量因子,根据所述综合负载率以及综合容量因子得到所述配电网设备的利用率。本实施例针对传统的检测方法在分布式电源发电时,配电网设备作为分布式电源备用的功能不能得到体现的问题,通过备用负载率和备用容量因子,量化计算这一备用功能,从而提高检测配电网设备利用率的精确度。
[0059] 在其中一个实施例中,所述处理模块302包括处理子模块,用于将所述负荷曲线与所述出力曲线作减法运算,得到所述配电网设备的净负荷曲线。
[0060] 在其中一个实施例中,所述计算模块303包括第一计算子模块,用于根据所述负荷曲线以及净负荷曲线,得到配电网供电区域内负荷最大时所述配电网设备的出力、以及在所述设定时间内所述配电网设备的总发电量;根据所述额定容量、配电网设备的出力以及配电网设备的总发电量得到所述配电网设备的常规负载率以及常规容量因子,分别为:
[0061]
[0062] 其中,ηcommon为所述配电网设备的常规负载率,PS-system为配电网供电区域内负荷最大时所述配电网设备的出力,SN为所述配电网设备的额定容量,cosφc为预设的所述配电网设备所带负荷的功率因素,Kcommon为所述配电网设备的常规容量因子,QS-system-T为时间T内所述配电网设备的总发电量,T为所述设定时间。
[0063] 在其中一个实施例中,所述计算模块303包括第二计算子模块,用于根据所述负荷曲线以及出力曲线,得到配电网供电区域内负荷最大时所述分布式电源的出力、以及在所述设定时间内所述分布式电源的总发电量;根据所述额定容量、分布式电源的出力以及分布式电源的总发电量得到所述配电网设备的备用负载率以及备用容量因子,分别为:
[0064]
[0065] 其中,ηreserve为所述配电网设备的备用负载率,PDG-load为配电网供电区域内负荷最大时所述分布式电源的出力,SN为所述配电网设备的额定容量,cosφr为预设的所述分布式电源发电的功率因数,Kreverve为所述配电网设备的备用容量因子,QDG-T为时间T内所述分布式电源的总发电量,T为所述设定时间。
[0066] 在其中一个实施例中,所述检测模块304包括检测子模块,用于将所述常规负载率与备用负载率作加法运算,得到所述配电网设备的综合负载率,以及将所述常规容量因子与备用容量因子作加法运算,得到所述配电网设备的综合容量因子。
[0067] 以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
[0068] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。